Zero-Shot Cost Estimation for **Distributed Stream Processing**

Roman Heinrich, Manisha Luthra, Harald Kornmayer & Carsten Binnig DHBW Mannheim & TU Darmstadt

- 1. Overall idea
- Providing an Al-based model to predict cost metrics of executing arbitrary queries in Distributed Stream Processing Systems (DSPS) [1]
- The model uses transferable features and Graph Neural Networks (GNNs)
- The model makes precise estimations for known and even unknown streaming workloads and thus is generalizable by the zero-shot learning approach
- The model can be used by cloud providers to help solving optimization tasks like finding the placement of streaming operators

Results

- We deliver an Al-based model to **predict** cost metrics of executing DSPS queries
- We propose **transferable features** to describe streaming queries

2. Foundations

- Execuction of queries on data streams are fundamental for modern business applications
- The optimal deployment of query operators has a large impact on the overall performance
- These optimization tasks require precise and general cost estimation models
- Current models are **workload-driven** \rightarrow specific for a given use-case or query

3. Our Zero-Shot approach

- In contrast to workload-driven models, we propose a generalizable learned cost model to predict the execution costs of DSPS queries
- We introduce transferable features that can be applied on any operator and data stream We train a GNN that combines a set of multi-layer perceptrons in a flexible way. We make use of a broad training-dataset that includes a variety of workloads, operators and hardware

- We applied our model on Apache Storm
- We evaluated our zero-shot model which:
- provides very accurate estimates for queries within the training range
- predicts cost for queries **beyond the** training range with reasonable precision
- shows a one-time training effort
- First contact with cloud providers established

Outlook

- Extend the model towards inclusion of real heterogeneous hardware, user-defined operators or operator parallelism
- **Apply** the model in optimization tasks like operator placement by combining it with a reinforcement learning approach

- 4. Experimental evaluation
- We executed 15.000 Queries on 10 clusters using DSPS Apache Storm[2]:
- By reporting the Q-error: $q(c, \hat{c}) = max(c/\hat{c}, \hat{c}/c)$ we evaluated the ability of the model to:
 - A) interpolate for an **unseen test-set**
 - B) extrapolate for **unseen benchmark** queries from DSPBench[3]
 - C) extrapolate for unseen and extreme operator properties and streaming workloads
 - D) unseen query structures (see paper)

B) Prediction accuracy for unseen benchmark

Benchmark	Latency		Throughput	
	median	95th	median	95th
Advertisement (clicks)	1.51	1.53	1.38	1.39
Advertisement (imp.)	1.51	1.52	1.38	1.39
Advertisement (join)	1.99	2.06	1.55	2.16
Spike Detection	1.01	1.04	1.73	1.94
Smart Grid (local)	1.21	1.23	1.92	1.92
Smart Grid (global)	1.20	1.66	1.91	1.91

C) Extrapolation for unseen

Cooperative partners

References

[1] Roman Heinrich, Manisha Luthra, Harald Kornmayer, and Carsten Binnig. 2022. "Zero-shot cost models for distributed stream processing". In ACM DEBS, 2022, p. 85–90.

[2] A. Toshniwal, S. Taneja, A. Shukla, K. Ramasamy, J. M. Patel, S. Kulkarni, J. Jackson, K. Gade, M. Fu, J. Donham, N. Bhagat, S. Mittal, and D. Ryaboy, "Storm@twitter," in ACM SIGMOD, 2014, p. 147-156.

[3] M. V. Bordin, D. Griebler, G. Mencagli, C. F. R. Geyer, and L. G. L. Fernandes, "DSP-bench: A suite of benchmark applications for distributed data stream processing systems," IEEE Access, vol. 8, pp. 222 900–222 917, 2020.

A) Prediction accuracy for unseen test-set

Latency		Throughput		
median	95th	median	95th	
1.13	3.19	1.16	3.50	

Kontakt

Duale Hochschule Baden-Württemberg

Roman Heinrich Coblitzallee 9, 68163 Mannheim roman.heinrich@dhbw-mannheim.de

Alle Informationen finden Sie unter: www.dhbw.de