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1. Overall idea

* Providing an Al-based model to predict cost metrics of executing arbitrary queries in
Distributed Stream Processing Systems (DSPS) [1]

 The model uses transferable features and Graph Neural Networks (GNNSs)
 The model makes precise estimations for known and even unknown streaming

 We deliver an Al-based model to predict

workloads and thus is generalizable l?y the zero-shot Igarning_ ap_)pro_ach | cost metrics of executing DSPS queries
 The model can be used by cloud providers to help solving optimization tasks like » We propose transferable features to
finding the placement of streaming operators describe streaming queries

 We applied our model on Apache Storm
 We evaluated our zero-shot model which:
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