

Dieses Modulhandbuch gilt für Studierende die im Zeitraum vom 01.10.2017 – 30.09.2024 immatrikuliert wurden.

Modulhandbuch

Studienbereich Technik

School of Engineering

Studiengang

Wirtschaftsingenieurwesen

Business Administration and Engineering

Studienrichtung

Allgemeines Wirtschaftsingenieurwesen

General Business Administration and Engineering

Studienakademie

MANNHEIM

Curriculum (Pflicht und Wahlmodule)

Aufgrund der Vielzahl unterschiedlicher Zusammenstellungen von Modulen können die spezifischen Angebote hier nicht im Detail abgebildet werden. Nicht jedes Modul ist beliebig kombinierbar und wird möglicherweise auch nicht in jedem Studienjahr angeboten. Die Summe der ECTS aller Module inklusive der Bachelorarbeit umfasst 210 Credits.

Die genauen Prüfungsleistungen und deren Anteil an der Gesamtnote (sofern die Prüfungsleistung im Modulhandbuch nicht eindeutig definiert ist oder aus mehreren Teilen besteht), die Dauer der Prüfung(en), eventuelle Einreichungsfristen und die Sprache der Prüfung(en) werden zu Beginn der jeweiligen Theoriephase bekannt gegeben.

	FESTGELEGTER MODULBEREICH		
NUMMER	MODULBEZEICHNUNG	VERORTUNG	ECTS
T3WIW1001	Mathematik	1. Studienjahr	5
T3WIW1002	Volkswirtschaftslehre	1. Studienjahr	5
T3WIW1003	Informatik	1. Studienjahr	5
T3WIW1004	Allgemeine Betriebswirtschaftslehre	1. Studienjahr	5
T3WIW1005	Mathematik II	1. Studienjahr	5
T3WIW2001	Mathematik III	2. Studienjahr	5
T3WIW2002	Projektmanagement	2. Studienjahr	5
T3WIW2003	Finanz- und Rechnungswesen	2. Studienjahr	5
T3WIW2004	Recht	2. Studienjahr	5
T3WIW2005	Marketing	2. Studienjahr	5
T3WIW3001	Qualitätsmanagement	3. Studienjahr	5
T3WIW3002	Controlling	3. Studienjahr	5
T3WIW3003	Unternehmensführung	3. Studienjahr	5
T3_3100	Studienarbeit	3. Studienjahr	5
T3_1000	Praxisprojekt I	1. Studienjahr	20
T3_2000	Praxisprojekt II	2. Studienjahr	20
T3_3000	Praxisprojekt III	3. Studienjahr	8
T3WIW1101	Werkstoffkunde 1		5
T3WIW1102	Technische Mechanik	1. Studienjahr	5
T3WIW1103	Konstruktionslehre	1. Studienjahr	5
T3WIW1119	Ingenieurwissenschaftliche Grundlagen	1. Studienjahr	5
T3WIW1120	Ausgewählte Technische Grundlagen	1. Studienjahr	5
T3WIW2103	Einführung in die Elektrotechnik	2. Studienjahr	5
T3WIW2111	Ausgewählte Managementmethoden	2. Studienjahr	5
T3WIW2112	Ausgewählte Supply Chain Management (SCM) Themen	2. Studienjahr	5
T3WIW9005	Technische Physik	2. Studienjahr	5
T3WIW9012	Vernetzte Systeme	2. Studienjahr	5
T3WIW9016	IT-gestützte Modellbildung	2. Studienjahr	5
T3WIW9045	Fallstudie Businessplan	3. Studienjahr	5
T3WIW9137	Grundlagen Digitaler Transformation	3. Studienjahr	5
T3WIW9165	Digitalisierung in Produktion und Logistik	3. Studienjahr	5

Stand vom 01.10.2025 Curriculum // Seite 2

	FESTGELEGTER MODULBEREICH		
NUMMER	MODULBEZEICHNUNG	VERORTUNG E	CTS
T3 3300	Bachelorarbeit	3. Studieniahr	12

Stand vom 01.10.2025 Curriculum // Seite 3

	VARIABLER MODULBEREICH		
NUMMER	MODULBEZEICHNUNG	VERORTUNG	ECTS
T3WIW9001	Höhere Mathematik	3. Studienjahr	5
T3WIW9009	Nachhaltige Energieversorgung	3. Studienjahr	5
T3WIW9013	Mikrocontroller Systeme	3. Studienjahr	5
T3WIW9015	IoT - Mechatronische Anwendungen	3. Studienjahr	5
T3WIW9020	Mechatronische Systeme	3. Studienjahr	5
T3WIW9021	Anlagen- und Sicherheitstechnik	3. Studienjahr	5
T3WIW9033	Procurement and Supply Chain Management	3. Studienjahr	5
T3WIW9076	Prozessmanagement	3. Studienjahr	5
T3WIW9081	IT-Management und Simulation von Produktionssystemen	3. Studienjahr	5
T3WIW9082	Innovationsmanagement	3. Studienjahr	5
T3WIW9131	Gebäudetechnik	3. Studienjahr	5
T3_9007	Nachhaltige Energiesysteme	3. Studienjahr	5

Stand vom 01.10.2025 Curriculum // Seite 4

Mathematik (T3WIW1001)

Mathematics

FORMALE ANGABEN ZUM MODUL

MODULNUMMERVERORTUNG IM STUDIENVERLAUFMODULDAUER (SEMESTER)MODULVERANTWORTUNGSPRACHET3WIW10011. Studienjahr1Prof. Dr. rer. nat. Gerrit NandiDeutsch/Englisch

EINGESETZTE LEHRFORMEN

LEHRFORMENLEHRMETHODENVorlesung, ÜbungLehrvortrag, Diskussion

EINGESETZTE PRÜFUNGSFORMEN

PRÜFUNGSLEISTUNGPRÜFUNGSUMFANG (IN MINUTEN)BENOTUNGKlausur90ja

WORKLOAD UND ECTS-LEISTUNGSPUNKTE

WORKLOAD INSGESAMT (IN H)

DAVON PRÄSENZZEIT (IN H)

DAVON SELBSTSTUDIUM (IN H)

ECTS-LEISTUNGSPUNKTE

88

5

QUALIFIKATIONSZIELE UND KOMPETENZEN

FACHKOMPETENZ

- Die Studierenden kennen und verstehen die Grundlagen der linearen Algebra (insbesondere der Vektorrechnung, der Matrizen- und Determinantenrechnung, der linearen Gleichungssysteme) und können diese auf mathematische und technische Fragestellungen anwenden.
- Die Studierenden kennen und verstehen grundlegende Eigenschaften elementarer Funktionen und können diese auf mathematische und technische Fragestellungen anwenden.

METHODENKOMPETENZ

Die Studierenden kennen grundlegende Methoden der linearen Algebra und der Theorie der Funktionen und können diese auf konkrete technische und wirtschaftliche Problemstellungen anwenden. Sie sind sich der Reichhaltigkeit der Anwendung dieser Methoden, aber auch ihrer Grenzen bewusst.

PERSONALE UND SOZIALE KOMPETENZ

ÜBERGREIFENDE HANDLUNGSKOMPETENZ

- Die Studierenden erlernen strukturierte und systematische Herangehensweisen an komplexe Sachverhalte.
- Die Studierenden können mathematische Grundkenntnisse auf die Lösung technischer Problemstellungen anwenden.

LERNEINHEITEN UND INHALTE

LEHR- UND LERNEINHEITENPRÄSENZZEITSELBSTSTUDIUMMathematik6288

- Lineare Algebra: Vektoren (Grundlagen; Anwendungen, z.B. aus der analytischen Geometrie und / oder der Technischen Mechanik), Matrizen, lineare Gleichungssysteme, Determinanten, Eigenwerte und Eigenvektoren. Optional Vertiefung: Vektorraum, lineare Abbildungen, symmetrische Matrizen und quadratische Formen, Diagonalisierung.
- Komplexe Zahlen
- Analysis: Grundlagen, Funktionen (allgemeine Eigenschaften), Grenzwerte, Stetigkeit, spezielle elementare Funktionstypen, Einführung in die Differentialrechnung mit Funktionen einer Variablen

BESONDERHEITEN

Stand vom 01.10.2025 T3WIW1001 // Seite 5

LITERATUR

- Papula, Lothar:

Mathematik für Ingenieure und Naturwissenschaftler, Band 1 und 2; Vieweg.

- Papula , Lothar:

Mathematik für Ingenieure und Naturwissenschaftler; Anwendungsbeispiele; Vieweg.

- Papula, Lothar:

Mathematik für Ingenieure und Naturwissenschaftler, Klausur- und Übungsaufgaben; Vieweg.
- Burg, K., H. Haf, F. Wille und A.Meister: Höhere Mathematik für Ingenieure, Band I und II, Springer Vieweg.

Stand vom 01.10.2025 T3WIW1001 // Seite 6

Volkswirtschaftslehre (T3WIW1002)

Economics

FORMALE ANGABEN ZUM MODUL

MODULNUMMERVERORTUNG IM STUDIENVERLAUFMODULDAUER (SEMESTER)MODULVERANTWORTUNGSPRACHET3WIW10021. Studienjahr1Prof. Volker Claus IhleDeutsch/Englisch

EINGESETZTE LEHRFORMEN

LEHRFORMEN LEHRMETHODEN

Vorlesung, Übung Lehrvortrag, Diskussion, Fallstudien

EINGESETZTE PRÜFUNGSFORMEN

PRÜFUNGSLEISTUNGPRÜFUNGSUMFANG (IN MINUTEN)BENOTUNGKlausur90ja

WORKLOAD UND ECTS-LEISTUNGSPUNKTE

WORKLOAD INSGESAMT (IN H)DAVON PRÄSENZZEIT (IN H)DAVON SELBSTSTUDIUM (IN H)ECTS-LEISTUNGSPUNKTE150501005

QUALIFIKATIONSZIELE UND KOMPETENZEN

FACHKOMPETENZ

Die Studierenden können wirtschaftliche Zielsetzungen wiedergeben. - Sie können die Theorie von Angbot und Nachfrage erklären und die Abstimmung von Nachfrage- und Angebotsplänen beschreiben. - Sie können die wesentlichen Aspekte von "Geld und Währung", "Außenwirtschaft einschl. europ. Wirtschaftsraum" sowie der volkswirtschaftlichen Gesamtrechnung erklären. - Sie können die Begriffe Beschäftigung, Wachstum und Konjunktur im volkswirtschaftlichen Umfeld erklären und die Zusammenhänge unter Berücksichtigung der ethischen Dimensionen erläutern.

METHODENKOMPETENZ

.

PERSONALE UND SOZIALE KOMPETENZ

_

ÜBERGREIFENDE HANDLUNGSKOMPETENZ

-

LERNEINHEITEN UND INHALTE

LEHR- UND LERNEINHEITEN	PRÄSENZZEIT	SELBSTSTUDIUM
Volkswirtschaftslehre	50	100

Gegenstand und Grundbegriffe der VWL- Klassische Theorien der VWL - Ordnungsrahmen, Ethik, Soziale Marktwirtschaft - Nachfrage, Angebot und Preisbildung - Haushalte, Unternehmen, Produkt- und Faktormärkte - Markteingriffe des Staates - Volkswirtschaftliche Gesamtrechung: Ged und Inflation - Einkommen, Beschäftigung, Wachstum, Konjunktur - Grundlagen der Außenwirtschaftspolitik.

BESONDERHEITEN

_

VORAUSSETZUNGEN

-

Stand vom 01.10.2025 T3WIW1002 // Seite 7

LITERATUR

- Felderer, Bernhard / Homburg, Stefan: Makroökonomik und neue Makroökonomik; Springer - Hardes, Heinz-Dieter / Rahmayer, Fritz: Volkswirtschaftslehre, Eine problemorientierte Einführung; J.C.B. Mohr (Paul Siebeck), Tübingen. - Lachmann, Werner: Volkswitschaftslehre

Stand vom 01.10.2025 T3WIW1002 // Seite 8

Informatik (T3WIW1003)

Computer Science

FORMALE ANGABEN ZUM MODUL

MODULNUMMERVERORTUNG IM STUDIENVERLAUFMODULDAUER (SEMESTER)MODULVERANTWORTUNGSPRACHET3WIW10031. Studienjahr2Prof. Dr. Udo HeuserDeutsch/Englisch

EINGESETZTE LEHRFORMEN

 LEHRFORMEN
 LEHRMETHODEN

 Vorlesung, Übung, Labor
 Lehrvortrag, Diskussion, Gruppenarbeit

EINGESETZTE PRÜFUNGSFORMEN

PRÜFUNGSLEISTUNGPRÜFUNGSUMFANG (IN MINUTEN)BENOTUNGProgrammentwurfSiehe Pruefungsordnungja

WORKLOAD UND ECTS-LEISTUNGSPUNKTE

WORKLOAD INSGESAMT (IN H)DAVON PRÄSENZZEIT (IN H)DAVON SELBSTSTUDIUM (IN H)ECTS-LEISTUNGSPUNKTE15074765

QUALIFIKATIONSZIELE UND KOMPETENZEN

FACHKOMPETENZ

Die Studierenden kennen die für die Informatik relevanten Grundbegriffe und besitzen ein grundlegendes Verständnis der Prinzipien der Informatik. Sie können diese einordnen und gezielt auf die in Unternehmen vorherrschende Informations- und Kommunikationstechnik (IuK) anwenden. Sie können relevante Kernanwendungen der IuK identifizieren sowie aktuelle Themen im Bereich IuK im Unternehmensumfeld und im gesellschaftlichen Umfeld einordnen. Sie beherrschen die Problemlösung mittels Algorithmen sowie deren exemplarische Implementierung in einer Programmier- oder Skriptsprache. Sie beherrschen den Entwurf und die Implementierung einer Datenbank in einem Datenbankmanagementsystem.

METHODENKOMPETENZ

Die Studierenden sind in der Lage, vorgegebene algorithmische und Entwurfsmethoden auf konkrete Problemstellungen selbstständig anzuwenden. Die Studierenden können Daten und Informationen aus diversen internen und externen Quellen konsistent speichern, verarbeiten und nutzbar machen. Sie können die zur Verfügung stehenden Lern- und Arbeitsmittel zunehmend selbstständig zum Wissenserwerb nutzen.

PERSONALE UND SOZIALE KOMPETENZ

ÜBERGREIFENDE HANDLUNGSKOMPETENZ

LERNEINHEITEN UND INHALTE

LEHR- UND LERNEINHEITENPRÄSENZZEITSELBSTSTUDIUMInformatik 13639

- Grundlagen der Informatik
- Kernanwendungen der luK in den Unternehmen
- Aktuelle Themen der IuK im Unternehmens- und im gesellschaftlichen Kontext
- Algorithmen, Programm- und Datenstrukturen
- Problemlösung mit modernen Programmier-/Skriptsprachen

Stand vom 01.10,2025 T3WW1003 // Seite 9

LERNEINHEITEN UND INHALTE

LEHR- UND LERNEINHEITENPRÄSENZZEITSELBSTSTUDIUMInformatik 23837

- Einführung in Datenbankmanagementsysteme (DBMS)
- Datenbankentwurf und -implementierung
- Datenbankprogrammierung mit SQL, DBMS und modernen Entwicklungsumgebungen
- Ausblick auf alternative Datenbank-Konzepte und deren Erweiterungen
- Ausblick auf Anwendungen von Datenbanken im Unternehmen

BESONDERHEITEN

Die Veranstaltung kann mit begleitetem Selbststudium in Form von Programmierübungen und/oder Projektaufgaben ergänzt werden.

VORAUSSETZUNGEN

keine

LITERATUR

- H. Herold, B. Lurz, J. Wohlrab: Grundlagen der Informatik, Pearson Studium München
- J. M. Leimeister: Einführung in die Wirtschaftsinformatik, Springer Gabler Berlin
- F. Lehner, S. Wildner, M. Scholz: Wirtschaftsinformatik Eine Einführung, Hanser München
- K. C. Laudon, J. P. Laudon, D. Schoder: Wirtschaftsinformatik, Pearson Studium München
- N. Preiß: Entwurf und Verarbeitung relationaler Datenbanken, Oldenbourg
- A. Kemper, A. Eickler: Datenbanksysteme: Eine Einführung, Oldenbourg

Stand vom 01.10.2025 T3WIW1003 // Seite 10

Allgemeine Betriebswirtschaftslehre (T3WIW1004)

Business Administration

FORMALE ANGABEN ZUM MODUL

MODULNUMMERVERORTUNG IM STUDIENVERLAUFMODULDAUER (SEMESTER)MODULVERANTWORTUNGSPRACHET3WIW10041. Studienjahr2Prof. Dr. Thomas SeemannDeutsch/Englisch

EINGESETZTE LEHRFORMEN

 LEHRFORMEN
 LEHRMETHODEN

 Vorlesung, Übung
 Lehrvortrag, Diskussion, Gruppenarbeit

EINGESETZTE PRÜFUNGSFORMEN

PRÜFUNGSLEISTUNGPRÜFUNGSUMFANG (IN MINUTEN)BENOTUNGKlausur120ja

WORKLOAD UND ECTS-LEISTUNGSPUNKTE

WORKLOAD INSGESAMT (IN H)DAVON PRÄSENZZEIT (IN H)DAVON SELBSTSTUDIUM (IN H)ECTS-LEISTUNGSPUNKTE15086645

QUALIFIKATIONSZIELE UND KOMPETENZEN

FACHKOMPETENZ

Die Studierenden verstehen die Zielsetzungen und Restriktionen denen Unternehmen verpflichtet sind. Sie sind in der Lage die Aufgabenbereiche der Betriebswirtschaftslehre einzuordnen und dabei die Grundbegriffe fachadäquat anzuwenden.

Die Grundlagen des Rechnungswesens können die Studierenden erklären. Dies umfasst den Aufbau der Bilanz beziehungsweise GuV, und insbesondere deren Zusammenwirken. Ebenso beinhaltet es elementare Grundlagen der Kostenrechnung. Die Studierenden begreifen die unterschiedlichen Konzepte hinter den Begriffen: Auszahlung, Ausgabe, Aufwand und Kosten und können die Begriffe entsprechend einsetzen.

Theoretische Grundlagen aus dem Bereich der Entscheidungs- bzw. der Produktionstheorie werden von den Studierenden verstanden. Sie erkennen den Nutzen und können Parallelen zu Anwendungsfällen in der Betriebs- und Volkswirtschaft ziehen.

Anhand von Kriterien, können die Studierenden konstitutive Entscheidungen der Betriebswirtschaftslehre (Rechtsform-/Standortwahl) bewerten und Vor- und Nachteile von Alternativen abwägen.

Die Studierenden können gängige Methoden der Unternehmensplanung erläutern und anwenden. Sie sind in der Lage Geschäftsprozesse in Unternehmen zu erkennen. Das Zusammenwirken von Ablauf- und Aufbauorganisation wird den Studierenden deutlich. Vor- und Nachteile unterschiedlicher Organisationsformen können Sie erörtern.

METHODENKOMPETENZ

Die Studierenden können die behandelten Methoden und Werkzeuge anwenden (z.B. Bilanzierung, Kostenrechnung, strategische Analysemethoden).

PERSONALE UND SOZIALE KOMPETENZ

Die Studierenden sind in der Lage die sozialen und politischen Auswirkungen wirtschaftlichen Handels zu reflektieren. Sie verstehen im Gegenzug die Rahmenbedingungen, die Unternehmen bei der Erreichung ihrer Ziele zu beachten haben.

ÜBERGREIFENDE HANDLUNGSKOMPETENZ

Die erworbenen Kompetenzen ermöglichen den Studierenden Geschäftsprozesse in ihrem Unternehmen aus unterschiedlichen Blickwinkeln (z.B. bilanzielle Sicht, strategische Sicht oder organisatorische Sicht) zu beleuchten und die Unternehmensabläufe zu verstehen. Das Modul ABWL ist Grundlage für die weitere betriebswirtschaftliche Ausbildung im Rahmen des Wirtschaftsingenieurstudiums

LERNEINHEITEN UND INHALTE

LEHR- UND LERNEINHEITEN	PRÄSENZZEIT	SELBSTSTUDIUM
Allgemeine Betriebswirtschaftslehre	86	64

Stand vom 01.10.2025 T3WIW1004 // Seite 11

LEHR- UND LERNEINHEITEN PRÄSENZZEIT SELBSTSTUDIUM

- Gegenstand der Betriebswirtschaftslehre
- Externes Rechnungswesen (Grundbegriffe, Aufbau von Bilanz und GuV)
- Internes Rechnungswesen (Grundbegriffe)
- Standortentscheidungen (Systematisierung von Standortfaktoren, Methoden der Bewertung)
- Rechtsformen (Merkmale der wichtigsten Rechtsformen)
- Zwischenbetriebliche Zusammenarbeit (Merkmale der wichtigsten Kooperationsformen)
- Produktions- und Kostentheorie (Grundbegriffe von Produktions- und Kostenfunktionen)
- Controlling und Unternehmensplanung (Methoden der Unternehmensplanung, z.B.

Wertkettenmodell, Benchmarking, SWOT Analyse, 7-S-Modell, Branchenstrukturanalyse nach Porter, Lebenszyklus, BCG-Matrix)

- Organisation (Grundbegriffe, Aufbau- und Ablauforganisation)
- Personalwirtschaft (Überblick über die Aufgaben der Personalwirtschaft)
- Grundlagen ausgewählter betrieblicher Funktionen

BESONDERHEITEN

Das Modul kann durch eine Unternehmenssimulation ergänzt werden.

VORAUSSETZUNGEN

_

LITERATUR

Primäre Literatur:

- Vahs, D. Schäfer-Kunz, J. Einführung in die Betriebswirtschaftslehre. Stuttgart: Schäffer-Poeschel. (Zusatzmaterial unter www.betriebswirtschaft.info).

Empfohlene Artikel:

- Porter, M.: Clusters and the New Economics of Competition, Harvard Business Review.
- Porter, M. The Five Competitive Forces that Shape Strategy, Harvard Business Review.

Zum Nachschlagen und Vertiefen:

- Wo'he, G., & Do'ring, U.: Einführung in die allgemeine Betriebswirtschaftslehre. Mu'nchen: Vahlen.

Stand vom 01.10.2025 T3WIW1004 // Seite 12

Mathematik II (T3WIW1005)

Mathematics II

FORMALE ANGABEN ZUM MODUL

MODULNUMMERVERORTUNG IM STUDIENVERLAUFMODULDAUER (SEMESTER)MODULVERANTWORTUNGSPRACHET3WIW10051. Studienjahr1Prof. Dr. rer. nat. Gerrit NandiDeutsch/Englisch

EINGESETZTE LEHRFORMEN

LEHRFORMENLEHRMETHODENVorlesung, ÜbungLehrvortrag, Diskussion

EINGESETZTE PRÜFUNGSFORMEN

PRÜFUNGSLEISTUNGPRÜFUNGSUMFANG (IN MINUTEN)BENOTUNGKlausur90ja

WORKLOAD UND ECTS-LEISTUNGSPUNKTE

WORKLOAD INSGESAMT (IN H)DAVON PRÄSENZZEIT (IN H)DAVON SELBSTSTUDIUM (IN H)ECTS-LEISTUNGSPUNKTE15062885

QUALIFIKATIONSZIELE UND KOMPETENZEN

FACHKOMPETENZ

- Die Studierenden kennen und verstehen die Grundlagen der Differential- und Integralrechnung von Funktionen einer und mehrerer Variablen sowie der gewöhnlichen Differentialgleichungen und können diese auf mathematische und technische sowie ggf. wirtschaftliche Fragestellungen anwenden.

METHODENKOMPETENZ

Die Studierenden kennen grundlegende Methoden der Analysis und können diese auf konkrete technische und wirtschaftliche Problemstellungen anwenden. Sie sind sich der Reichhaltigkeit der Anwendung dieser Methoden, aber auch ihrer Grenzen bewusst.

PERSONALE UND SOZIALE KOMPETENZ

-

ÜBERGREIFENDE HANDLUNGSKOMPETENZ

- Die Studierenden erlernen strukturierte und systematische Herangehensweisen an komplexe Sachverhalte.
- Die Studierenden können mathematische Grundkenntnisse auf die Lösung technischer bzw. wirtschaftlicher Problemstellungen anwenden.

LERNEINHEITEN UND INHALTE

LEHR- UND LERNEINHEITENPRÄSENZZEITSELBSTSTUDIUMMathematik 26288

- Differentialrechnung mit Funktionen einer Variablen (falls noch nicht im ersten Semester behandelt)
- Integralrechnung mit Funktionen einer Variablen
- Unendliche Reihen (mit Potenzreihen und Taylorreihen; kurz), nach Möglichkeit Fourierreihen (kurz)
- Funktionen mehrerer Variablen (z.B. Grundlagen, Schnittliniendiagramme, partielle Ableitung, lokale Extremwerte, Doppel- und Dreifachintegrale mit Anwendungen [Trägheitsmomente])
- Differentialgleichungen 1. Ordnung
- Lineare Differentialgleichungen 2. und höherer Ordnung
- Optional: Systeme linearer Differentialgleichungen 1. Ordnung

BESONDERHEITEN

-

Stand vom 01.10.2025 T3WIW1005 // Seite 13

LITERATUR

- Papula, Lothar:

Mathematik für Ingenieure und Naturwissenschaftler, Band 1 und 2; Vieweg.

- Papula , Lothar:

Mathematik für Ingenieure und Naturwissenschaftler; Anwendungsbeispiele; Vieweg

- Papula, Lothar:

Mathematik für Ingenieure und Naturwissenschaftler, Klausur- und Übungsaufgaben; Vieweg
- Burg, K., H. Haf, F. Wille und A.Meister: Höhere Mathematik für Ingenieure, Band I und III, Springer Vieweg.

Stand vom 01.10.2025 T3WIW1005 // Seite 14

Mathematik III (T3WIW2001)

Mathematics III

FORMALE ANGABEN ZUM MODUL

MODULNUMMER	VERORTUNG IM STUDIENVERLAUF	MODULDAUER (SEMESTER)	MODULVERANTWORTUNG	SPRACHE
T3WIW2001	2. Studienjahr	1	Prof. Dr. rer. nat. Gerrit Nandi	Deutsch/Englisch

EINGESETZTE LEHRFORMEN

LEHRFORMEN	LEHRMETHODEN
Vorlesung	Lehrvortrag, Diskussion, Gruppenarbeit

EINGESETZTE PRÜFUNGSFORMEN

PRÜFUNGSLEISTUNG	PRÜFUNGSUMFANG (IN MINUTEN)	BENOTUNG
Klausur	90	ja

WORKLOAD UND ECTS-LEISTUNGSPUNKTE

WORKLOAD INSGESAMT (IN H)	DAVON PRÄSENZZEIT (IN H)	DAVON SELBSTSTUDIUM (IN H)	ECTS-LEISTUNGSPUNKTE
150	62	88	5

QUALIFIKATIONSZIELE UND KOMPETENZEN

FACHKOMPETENZ

- Die Studierenden kennen und verstehen die Grundlagen der Wahrscheinlichkeitsrechnung sowie der beschreibenden und beurteilenden Statistik und können diese auf konkrete Problemstellungen anwenden.
- Die Studierenden kennen und verstehen Grundbegriffe der numerischen Mathematik und können diese auf einfache numerische Problemstellungen anwenden. Sie sind sich der Fehlerquellen bewusst, die beim Lösen mathematischer Probleme mit numerischen Methoden auftreten können.

METHODENKOMPETENZ

Die Studierenden kennen grundlegende Methoden der Wahrscheinlichkeitsrechnung und der Statistik sowie der numerischen Mathematik und können diese auf konkrete Problemstellungen anwenden. Sie sind sich der Reichhaltigkeit der Anwendung dieser Methoden, aber auch ihrer Grenzen bewusst.

PERSONALE UND SOZIALE KOMPETENZ

ÜBERGREIFENDE HANDLUNGSKOMPETENZ

- -Die Studierenden erlernen strukturierte und systematische Herangehensweisen an komplexe Sachverhalte.
- Die Studierenden können stochastiche Grundkenntnisse auf technische und wirtschaftliche Fragestellungen anwenden.

LERNEINHEITEN UND INHALTE

LEHR- UND LERNEINHEITEN	PRÄSENZZEIT	SELBSTSTUDIUM
Mathematik 3	62	88

- Grundbegriffe der Kombinatorik
- Grundlagen der Wahrscheinlichkeitsrechnung, Wahrscheinlichkeitsverteilungen
- Datengewinnung, beschreibende Statistik
- Statistische Schätzmethoden, Konfidenzintervalle
- Statistische Prüfverfahren (z.B. Parametertests, Anpassungs- und Verteilungstests)
- Fehlerrechnung (kurz, ggf. lineare Regression, Ausgleichsrechnung)
- Nach Möglichkeit: Ausgewählte Inhalte aus der numerischen Mathematik (kurz): Z.B. gewöhnliches Iterationsverfahren, Newton-Verfahren, Interpolation, numerische Differentiation und Integration, numerisches Lösen von Anfangswertproblemen; Anwendung eines numerischen Softwarepakets (z.B. MATLAB)

Stand vom 01.10.2025 T3WIW2001 // Seite 15

BESONDERHEITEN

Für den Bereich "numerische Mathematik" können optional Labore angeboten werden.

VORAUSSETZUNGEN

LITERATUR

- Papula, Lothar:

Mathematik für Ingenieure und Naturwissenschaftler, Band 3; Vieweg.

-Papula , Lothar:

Mathematik für Ingenieure und Naturwissenschaftler; Anwendungsbeispiele; Vieweg.

- Papula, Lothar:

Mathematik für Ingenieure und Naturwissenschaftler, Klausur- und Übungsaufgaben; Vieweg. -Roos, H.-G. und Schwetlick, H.:

Numerische Mathematik; Springer Vieweg.

Stand vom 01.10.2025 T3WIW2001 // Seite 16

Projektmanagement (T3WIW2002)

Project Management

FORMALE ANGABEN ZUM MODUL

 MODULNUMMER
 VERORTUNG IM STUDIENVERLAUF
 MODULDAUER (SEMESTER)
 MODULVERANTWORTUNG
 SPRACHE

 T3WIW2002
 2. Studienjahr
 1
 Prof. Dr. Karsten Löhr
 Deutsch/Englisch

EINGESETZTE LEHRFORMEN

 LEHRFORMEN
 LEHRMETHODEN

 Vorlesung, Übung
 Lehrvortrag, Diskussion, Fallstudien

EINGESETZTE PRÜFUNGSFORMEN

PRÜFUNGSLEISTUNGPRÜFUNGSUMFANG (IN MINUTEN)BENOTUNGKombinierte Prüfung - Hausarbeit (55 %) und Klausurarbeit (45 %)90ja

WORKLOAD UND ECTS-LEISTUNGSPUNKTE

WORKLOAD INSGESAMT (IN H)DAVON PRÄSENZZEIT (IN H)DAVON SELBSTSTUDIUM (IN H)ECTS-LEISTUNGSPUNKTE150501005

QUALIFIKATIONSZIELE UND KOMPETENZEN

FACHKOMPETENZ

Die Studierenden können Projekte konzipieren, organisieren, planen und steuern.

METHODENKOMPETENZ

Die Studierenden kennen die Möglichkeiten von methodischem Vorgehen bei offenen und komplexen Ausgangssituationen.

PERSONALE UND SOZIALE KOMPETENZ

Die Studierenden beherrschen die Kommunikation im Projektteam und mit Stakeholdern.

ÜBERGREIFENDE HANDLUNGSKOMPETENZ

Die Studierenden kennen die Anforderungen an Integration eines Projektes in eine Linienorganisation und können diese begründen.

LERNEINHEITEN UND INHALTE

LEHR- UND LERNEINHEITENPRÄSENZZEITSELBSTSTUDIUMProjektmanagement50100

PM-Methoden (Vorlesung):

- Definieren von Projekten und Erkennen von Linienkonflikten.
- Grundprinzipien klassischer und agiler PM-Methoden.
- Konzeption von Projekten, z.B. Charter, Stakeholder, Ziele und Risiken.
- Modelle für eine Projektorganisation und strukturiertem Arbeiten.
- Projektplanung von Meilensteinen über Strukturen zum Ablauf.
- Projektcontrolling, z.B. Projektauswahl, Termine, Kosten, Ergebnisse.
- Kommunikation und Dokumentation, z.B. Review, Audit und Reporting.
- Aufgaben der Projektleitung, Projektkultur und interkulturelle Aspekte.

PM-Arbeitsphasen (Workshop oder Planspiel):

- Initialisierung, z.B. Themenfindung, Teambildung, Rollen, Kick-off
- Exploration, z.B. Grobplanung, Umfeld, Abbruchkriterien, Budget
- Feasibility, z.B. technisch, finanziell, organisatorisch, marktorientiert
- Realisierung, z.B. Prototyping, Testing, Launch, Audit

Stand vom 01.10.2025 T3WIW2002 // Seite 17

BESONDERHEITEN

Die Vorlesung kann ergänzt werden durch einen Workshop oder ein Planspiel zu den Arbeitsphasen eines Projekts.

Die Veranstaltung kann in englischer Sprache durchgeführt werden.

VORAUSSETZUNGEN

_

LITERATUR

PRINCE2:2009 – Projektmanagement mit Methode, Addison-Wesley Verlag A Guide to the Project Management Body of Knowledge (Pmbok), PMI Kompetenzbasiertes Projektmanagement (PM3), GPM Litke, H.-D.: Best of Projektmanagement, Haufe Taschenguide Preußig, J.: Agiles Projektmanagement, Haufe Taschenguide

Stand vom 01.10.2025 T3WIW2002 // Seite 18

Finanz- und Rechnungswesen (T3WIW2003)

Finance and Accounting

FORMALE ANGABEN ZUM MODUL

MODULNUMMERVERORTUNG IM STUDIENVERLAUFMODULDAUER (SEMESTER)MODULVERANTWORTUNGSPRACHET3WIW20032. Studienjahr2Prof. Volker Claus IhleDeutsch/Englisch

EINGESETZTE LEHRFORMEN

LEHRFORMENLEHRMETHODENVorlesung, ÜbungLehrvortrag, Diskussion, Gruppenarbeit

EINGESETZTE PRÜFUNGSFORMEN

PRÜFUNGSLEISTUNGPRÜFUNGSUMFANG (IN MINUTEN)BENOTUNGKlausur120ja

WORKLOAD UND ECTS-LEISTUNGSPUNKTE

WORKLOAD INSGESAMT (IN H)
DAVON PRÄSENZZEIT (IN H)
DAVON SELBSTSTUDIUM (IN H)
ECTS-LEISTUNGSPUNKTE

64
5

QUALIFIKATIONSZIELE UND KOMPETENZEN

FACHKOMPETENZ

Nach dem erfolgreichem Abschluss des Moduls beherrschen die Studierenden das Instrumentarium des Rechnungswesens und können es in alltäglichen Situationen anwenden - Sie können Unternehmenssituationen bilanz- und G+V-technisch deuten - Die verschiedenen Arten der Kalkulation können von den Studierenden in der beruflichen Praxis situationsgerecht angewendet werden. - Die Studierenden kennen die wesentlichen Finanzierungsarten und können eine Investitionsplanung interpretieren.

METHODENKOMPETENZ

PERSONALE UND SOZIALE KOMPETENZ

-

ÜBERGREIFENDE HANDLUNGSKOMPETENZ

-

LERNEINHEITEN UND INHALTE

LEHR- UND LERNEINHEITEN	PRÄSENZZEIT	SELBSTSTUDIUM
Finanz- und Rechnungswesen 1	37	38

Aufgaben und Gliederung des betrieblichen Rechnungswesens (Finanzbuchhaltung, Kostenrechnung, Statistik, Planungsrechnung) - Bedeutung des externenen Rechnungswesens - Inventur, Inventar, Bilanz - Bilanzaufbau -Zweck und Grundregeln der Buchführung - Buchen auf Bestand- und Erfolgskonten - Aufbau der GuV - Jahresbericht (Bilanz, GuV, Anhang und Lagebericht) - Bilanzanalyse - Grundlagen internationaler Rechnungslegung

Stand vom 01.10,2025 T3WIW2003 // Seite 19

LERNEINHEITEN UND INHALTE

LEHR- UND LERNEINHEITENPRÄSENZZEITSELBSTSTUDIUMFinanz- und Rechnungswesen 24926

- Bedeutung des internen Rechnungswesens
- Kostenarten-, Kostenstellen- und Kostenträgerrechnung
- Kostenträgerstückrechnung (auf Voll- und Teilkostenbasis)
- Divisions-, Zuschlagkalkulation, Maschinenstundensatz
- Ein- und Mehrstufige Deckungsbeitragsrechnung
- Direct costing Normal- und Plankostenrechnung
- Prozesskostenrechnung und Target Costing
- Investitionsplanung Finanzierungsarten

VORAUSSETZUNGEN

LITERATUR

- Haberstock/Breithecker: Kostenrechnung I.
- Schmidt, A.: Kostenrechnung.
- Wöltje, J.: Kosten- und Leistungsrechnung.
- Wöltje, J.: Schnelleinstieg Rechnungswesen, Freiburg.

Coenenberg, Adolf / Mattner, Gerhard / Schultze, Wolfgang: Einführung in das Rechnungswesen. Grundzüge der Buchführung und Bilanzierung - Wöltje, J.: Buchführung Schritt für Schritt - Schmolke, S. und Deitermann, M.: Industrielles Rechnungswesen - Buchholz, R.: Grundzüge des Jahresabschlusses nach HGB u. IFRS

Stand vom 01.10.2025 T3WIW2003 // Seite 20

Recht (T3WIW2004)

Law

FORMALE ANGABEN ZUM MODUL

MODULNUMMER	VERORTUNG IM STUDIENVERLAUF	MODULDAUER (SEMESTER)	MODULVERANTWORTUNG	SPRACHE
T3WIW2004	2. Studienjahr	1	Prof. DrIng. Joachim Hirschmann	Deutsch/Englisch

EINGESETZTE LEHRFORMEN

LEHRFORMEN	LEHRMETHODEN
Vorlesung, Übung	Lehrvortrag, Diskussion

EINGESETZTE PRÜFUNGSFORMEN

PRÜFUNGSLEISTUNG	PRÜFUNGSUMFANG (IN MINUTEN)	BENOTUNG
Klausur	90	ja

WORKLOAD UND ECTS-LEISTUNGSPUNKTE

WORKLOAD INSGESAMT (IN H)	DAVON PRÄSENZZEIT (IN H)	DAVON SELBSTSTUDIUM (IN H)	ECTS-LEISTUNGSPUNKTE
150	48	102	5

QUALIFIKATIONSZIELE UND KOMPETENZEN

FACHKOMPETENZ

Die Studierenden lernen die Grundlagen sowie die Zusammenhänge und den Aufbau des vorhandenen Rechtssystems kennen. Sie kennen die die wichtigsten Gesetze, Vorschriften sowie die relevanten Vertragstypen. Die Studierenden können nach erfolgreichem Bestehen des Modules einschätzen, bei welchen betrieblichen Aufgabenstellungen welche juristischen Aspekte relevant sind.

METHODENKOMPETENZ

Den Studierenden wird anhand von Fallstudien die Arbeitsweise und Denkweise bei juristischen Problemstellungen vermittelt.

PERSONALE UND SOZIALE KOMPETENZ

Die Studierenden können beurteilen, inwieweit eine betriebliche Entscheidung legal und unter Beachtung aller Rechte und Gesetze durchführbar wäre, jedoch bei den Beteiligten, Betroffenen oder in der Gesellschaft nicht im hinreichenden Maße moralisch-ethische Akzeptanz finden könnte.

ÜBERGREIFENDE HANDLUNGSKOMPETENZ

-

LERNEINHEITEN UND INHALTE

LEHR- UND LERNEINHEITEN	PRÄSENZZEIT	SELBSTSTUDIUM
Recht	48	102

Grundlagen unseres Rechtssystems - Rechtsquellen - Grundlagen des Rechtssystems - Rechtsund Handlungsfähigkeit - Öffentliches Recht und Zivilrecht - Deutsches Recht, Europäisches Recht, Internationales Recht Arbeitnehmer und Unternehmen - Handelsrecht - Grundzüge des Vertragsrechtes - Beschaffungsverträge (Kauf, Miete, Werkvertrag etc.), AGB - Eigentum, Besitz, Grundbuch, Grundstücksbelastung - Störungen bei der Abwicklung von Rechtsgeschäften (Schadenersatz, Gewährleistung, Verschuldens- und Gefährdungshaftung) - Rechtsformen von Unternehmen - Individual- und kollektives Arbeitsrecht - Schutzrechte: Patentrecht, Geschmacksmuster, Gebrauchsmuster, Markenrecht, Lizenzverträge

BESONDERHEITEN

Stand vom 01.10.2025 T3WIW2004 // Seite 21

VORAUSSETZUNGEN

keine

LITERATUR

BGB, HGB und Arbeitsrecht

Stand vom 01.10.2025 T3WIW2004 // Seite 22

Marketing (T3WIW2005)

Marketing

FORMALE ANGABEN ZUM MODUL

MODULNUMMERVERORTUNG IM STUDIENVERLAUFMODULDAUER (SEMESTER)MODULVERANTWORTUNGSPRACHET3WIW20052. Studienjahr1Prof. Dr. Harald NicolaiDeutsch/Englisch

EINGESETZTE LEHRFORMEN

LEHRFORMENLEHRMETHODENVorlesung, ÜbungLehrvortrag, Diskussion, Fallstudien

EINGESETZTE PRÜFUNGSFORMEN

PRÜFUNGSLEISTUNGPRÜFUNGSUMFANG (IN MINUTEN)BENOTUNGKlausur90ja

WORKLOAD UND ECTS-LEISTUNGSPUNKTE

WORKLOAD INSGESAMT (IN H)DAVON PRÄSENZZEIT (IN H)DAVON SELBSTSTUDIUM (IN H)ECTS-LEISTUNGSPUNKTE15062885

QUALIFIKATIONSZIELE UND KOMPETENZEN

FACHKOMPETENZ

Die Studierenden kennen die Grundlagen des Marketings und verstehen Marketing als markt- und kundenorientierte Unternehmensführung. Sie verstehen die Bedürfnisse der Nachfrager als zentralen Bezugspunkt des Marketings.

Sie können markt- und kundenrelevante Komponenten im Unternehmen identifizieren und Gestaltungsempfehlungen geben. Sie kennen den Prozess des Marketingmanagements und der Marketingforschung. Sie kennen die Ausgestaltungsmöglichkeiten von Marketinginstrumenten und Marketingorganisation.

METHODENKOMPETENZ

Die Studierenden kennen mit Abschluss des Moduls die wesentlichen Methoden der Marktforschung, der Beschreibung und Analyse von Märkten und der Marketingstrategien und sie kennen die Stärken und Schwächen dieser Methoden.

Die Studierenden sind in der Lage, für Anwendungsfälle in der Praxis angemessene Methoden auszuwählen und anzuwenden.

PERSONALE UND SOZIALE KOMPETENZ

Für Fallstudie oder Planspiel: Den Studierenden gelingt es, das eigene Marketingwissen zu reflektieren und selbständig auf die jeweils bestehenden Anforderungen anzupassen. Die Studierenden können Ihre eigene Position und Meinung zu den Themenstellungen des Marketings durch eine fachadäquate Kommunikation argumentativ vertreten und gemeinsam mit Kollegen weiterentwickeln.

ÜBERGREIFENDE HANDLUNGSKOMPETENZ

Für Fallstudie oder Planspiel: Die Studierenden können erworbenes Marketingwissen auf Problemstellungen in der Praxis anwenden.

LERNEINHEITEN UND INHALTE

LEHR- UND LERNEINHEITENPRÄSENZZEITSELBSTSTUDIUMMarketing6288

- Grundbegriffe und Konzepte des Marketings
- Märkte und Umfeld
- Marketingziele und Marketingplanung
- Käuferverhalten und Marketingforschung
- Marketingstrategien
- Marketinginstrumente
- Marketingorganisation

Stand vom 01.10.2025 T3WIW2005 // Seite 23

BESONDERHEITEN

Zusätzlich kann eine Fallstudie oder ein Planspiel von bis zu 24 UE durchgeführt werden.

VORAUSSETZUNGEN

Keine

LITERATUR

- Backhaus, K. / Voeth, M.: Industriegütermarketing: Grundlagen des Business-to-Business-Marketing. Vahlen Verlag. Wiesbaden
- Bruhn, M.: Marketing: Grundlagen für Studium und Praxis. Springer Gabler. Wiesbaden Homburg, Chr.: Marketingmanagement: Strategie Instrumente Umsetzung Unternehmensführung. Springer Gabler. Wiesbaden
- Kotler, P.: Grundlagen des Marketing. Pearson Verlag München
- Kotler, P. u.a.: Marketing Management: Konzepte Instrumente Unternehmensfallstudien. Pearson Verlag. Hallbergmoos
- Kreutzer, R.: Praxisorientiertes Marketing: Grundlagen Instrumente Fallbeispiele. Springer Gabler. Wiesbaden
- Meffert, H. u.a.: Marketing. Springer Gabler. Wiesbaden

Stand vom 01.10.2025 T3WIW2005 // Seite 24

Qualitätsmanagement (T3WIW3001)

Quality Management

FORMALE ANGABEN ZUM MODUL

MODULNUMMERVERORTUNG IM STUDIENVERLAUFMODULDAUER (SEMESTER)MODULVERANTWORTUNGSPRACHET3WIW30013. Studienjahr1Prof. Dr.-Ing. Stefan DöttlingDeutsch/Englisch

EINGESETZTE LEHRFORMEN

LEHRFORMENLEHRMETHODENVorlesung, ÜbungLehrvortrag, Diskussion, Gruppenarbeit

EINGESETZTE PRÜFUNGSFORMEN

PRÜFUNGSLEISTUNGPRÜFUNGSUMFANG (IN MINUTEN)BENOTUNGKlausurarbeit oder Kombinierte Prüfung90ja

WORKLOAD UND ECTS-LEISTUNGSPUNKTE

WORKLOAD INSGESAMT (IN H)DAVON PRÄSENZZEIT (IN H)DAVON SELBSTSTUDIUM (IN H)ECTS-LEISTUNGSPUNKTE150501005

QUALIFIKATIONSZIELE UND KOMPETENZEN

FACHKOMPETENZ

Die Studierenden sind in der Lage fundiertes Basiswissen des prozessorientierten Qualitätsmanagement im praktischen Kontext des Unternehmens anzuwenden. Sie können Unternehmensprozesse hinsichtlich der Forderungen des normativen Qualitätsmanagements (insbesondere ISO 9000 ff) und dem Einsatz geeigneter Qualitätsmethoden zu analysieren und verbessern.

METHODENKOMPETENZ

Die Studierenden haben die Fähigkeit erworben, das Potential und die Anwendbarkeit von Prozesskonzepten und Qualitätsmethoden in konkreten betrieblichen Aufgabenstellung zu beurteilen, eine geeignete Methodenauswahl zu treffen und diese auf konkrete Unternehmenssituationen anzuwenden.

PERSONALE UND SOZIALE KOMPETENZ

ÜBERGREIFENDE HANDLUNGSKOMPETENZ

Die Studierenden können Qualitätsmanagement als interdisziplinäre Managementdisziplin zwischen Technik, Betriebswirtschaft und Organisation einordnen und im Unternehmen vertreten

LERNEINHEITEN UND INHALTE

LEHR- UND LERNEINHEITENPRÄSENZZEITSELBSTSTUDIUMQualitätsmanagement50100

- Qualität aus Kundensicht
- Qualitätsmanagement aus Unternehmenssicht: Q- Politik, Q-Ziele, Prozessorientierter Ansatz, Verantwortung
- Qualitätsmanagement-Normen: ISO 9000 ff, branchenneutrale, branchenspezifische Normen, rechtliche Aspekte
- Qualitätsmanagement in der Produktentwicklung: Entwicklungsprozess, QFD, FMEA
- Qualitätsmanagement in Beschaffung und Produktion: Lieferantenauswahl und -bewertung, Vermeidung von Verschwendung, Einführung Statistische Methoden,
- Prüfkonzepte, Prüfmittel
- Messung, Analyse, Kontinuierliche Verbesserung: Prozessmessung, Auditierung, Visualisierung von Qualitätsinformation, Managementbewertung, Umgang mit Chancen und Risiken
- Weiterentwicklung des Qualitätsmanagements: Benchmarking, Prozesskostenrechnung, Qualitätsregelkreise, TQM, Excellenz Modelle (EFQM), CAQ
- ggf. ergänzende Laborübungen (entsprechend der Möglichkeiten des Standortes)

Stand vom 01.10.2025 T3WIW3001 // Seite 25

LERNEINHEITEN UND INHALTE

LEHR- UND LERNEINHEITEN PRÄSENZZEIT SELBSTSTUDIUM

BESONDERHEITEN

Die Prüfungsdauer bezieht sich auf die Klausur.

VORAUSSETZUNGEN

LITERATUR

- Masing, Walter: Handbuch Qualitätsmanagement (Hrsg. T. Pfeifer, W. Schmitt), Hanser Verlag
- Linß, Gerhard: Qualitätsmanagement für Ingenieure, Hanser Verlag Schmitt, Robert und Pfeifer, Tilo: Qualitätsmanagement, Hanser Verlag
- Wagner, Karl W. und Käfer Roland: PQM-Prozessorientiertes Qualitätsmanagement, Hanser Verlag Zollondz, Hans-Dieter: Grundlagen Qualitätsmanagement, Oldenburg Verlag

Stand vom 01.10.2025 T3WIW3001 // Seite 26

Controlling (T3WIW3002)

Controlling

FORMALE ANGABEN ZUM MODUL

MODULNUMMERVERORTUNG IM STUDIENVERLAUFMODULDAUER (SEMESTER)MODULVERANTWORTUNGSPRACHET3WIW30023. Studienjahr1Prof. Dr. Georg FehlingDeutsch/Englisch

EINGESETZTE LEHRFORMEN

 LEHRFORMEN
 LEHRMETHODEN

 Vorlesung, Übung
 Lehrvortrag, Diskussion, Gruppenarbeit

EINGESETZTE PRÜFUNGSFORMEN

PRÜFUNGSLEISTUNGPRÜFUNGSUMFANG (IN MINUTEN)BENOTUNGKlausur90ja

WORKLOAD UND ECTS-LEISTUNGSPUNKTE

WORKLOAD INSGESAMT (IN H)DAVON PRÄSENZZEIT (IN H)DAVON SELBSTSTUDIUM (IN H)ECTS-LEISTUNGSPUNKTE150501005

QUALIFIKATIONSZIELE UND KOMPETENZEN

FACHKOMPETENZ

Die Studenten verstehen die einzelnen Bereiche der betrieblichen Leistungserstellung und ihre Zusammenhänge aus den Sichten des Controllings. Sie können die verschiedene Instrumente des Controllings zur Planung sowie zielorientierter Regelung der betrieblichen Leistungsbereiche und –prozesse anwenden. Die Studenten kennen die gängigen theoretischen und in der Praxis vorherrschenden Controllingauffassungen, sie verstehen wesentliche Beschränkungen der Rationalität, die in betrieblichen Entscheidungsprozessen gegeben sind und sind in der Lage, die dem Controlling zukommende Aufgabe der Rationalitätssicherung der Führung zu verstehen und fach- und situationsgerecht einzunehmen. Die Studenten können Controllingprozesse im Unternehmen zielorientiert, wirksam und nachhaltig gestalten.

METHODENKOMPETENZ

Dieses Modul stärkt die Studenten im Umgang mit betrieblicher Komplexität und Unbestimmtheit. Studenten erfahren die Notwendigkeit, Leistungsfähigkeit und Grenzen der betriebwirtschaftlichen Planung und Regelung und können Grundelemente davon für das betriebliche Tun adaptieren.

PERSONALE UND SOZIALE KOMPETENZ

Die Studenten verstehen die primäre Verpflichtung des Controlling als Unterstützung der Unternehmensführung. Die Studenten verstehen die Schnittstellenfunktion des Controllings und die daraus resultierende Kommunikations- und Kooperationsverantwortung. Die Studenten verstehen, wie Zielkonflikte im Unternehmen mit Hilfe von Controllingmethoden versachlicht und gehandhabt, ggf. auch gelöst werden können. Die Studenten sind in der Lage, verschiedene konfligierende Handlungs- und Entscheidungsebenen zu identifizieren, auseinanderzuhalten und in konkreten Entscheidungssituationen kommunikativ und nachvollziehbar im Sinn der Unternehmensziele aufeinander zu beziehen.

ÜBERGREIFENDE HANDLUNGSKOMPETENZ

Dieses Modul stärkt die Handlungsfähigkeit in anspruchsvollen, unbestimmten und konfliktären Situationen. Dabei spielt die Ausprägung einer emotionalen, fachlichen, methodischen und kommunikativen "awareness" für Komplexität eine wichtige Rolle. Damit bereitet dieses Modul das Modul "Unternehmensführung" vor.

LERNEINHEITEN LIND INHALTE

ELINEERICH OND HAINELE		
LEHR- UND LERNEINHEITEN	PRÄSENZZEIT	SELBSTSTUDIUM
Controlling	50	100

Stand vom 01.10.2025 T3WIW3002 // Seite 27

LERNEINHEITEN UND INHALTE

LEHR- UND LERNEINHEITEN PRÄSENZZEIT SELBSTSTUDIUM

- Controllingtheorie und -konzepte
- Controlling von Branchen und Unternehmensfunktionen
- operatives Controlling
- Aufstellen eines Business Case
- Strategisches Controlling
- Fallstudie / Planspiel / Übungen

(je nach Herkunft und Spezialisierung der Studierenden zu konkretisieren)

BESONDERHEITEN

_

VORAUSSETZUNGEN

ABWL

ReFi

LITERATUR

Primäre Literatur:

Jürgen Weber, Utz Schäffer: Einführung in das Controlling Zum Nachschlagen und Vertiefen: Péter Horváth: Controlling

Stand vom 01.10.2025 T3WIW3002 // Seite 28

Unternehmensführung (T3WIW3003)

Strategic Management

FORMALE ANGABEN ZUM MODUL

MODULNUMMER	VERORTUNG IM STUDIENVERLAUF	MODULDAUER (SEMESTER)	MODULVERANTWORTUNG	SPRACHE
T3WIW3003	3. Studienjahr	1	Prof. Dr. Georg Fehling	Deutsch/Englisch

EINGESETZTE LEHRFORMEN

LEHRFORMEN	LEHRMETHODEN
Vorlesung, Übung	Lehrvortrag, Diskussion, Fallstudien

EINGESETZTE PRÜFUNGSFORMEN

PRÜFUNGSLEISTUNG	PRÜFUNGSUMFANG (IN MINUTEN)	BENOTUNG
Klausurarbeit oder Kombinierte Prüfung	90	ja

WORKLOAD UND ECTS-LEISTUNGSPUNKTE

WORKLOAD INSGESAMT (IN H)	DAVON PRÄSENZZEIT (IN H)	DAVON SELBSTSTUDIUM (IN H)	ECTS-LEISTUNGSPUNKTE
150	62	88	5

QUALIFIKATIONSZIELE UND KOMPETENZEN

FACHKOMPETENZ

Die Studierenden verstehen die Grundprinzipien und –instrumente der operativen und strategischen Unternehmensführung. Sie können aus Unternehmenszielen situationsgerechte Strategien ableiten und diese wirkungsvoll implementieren. Sie handhaben die bei der Führung notwendigen Konflikte (bspw. zwischen Stakeholdergruppen oder kurz- vs. langfristige Zielen) bewusst und transparent und sind in der Lage, die ausgewählte Entscheidung mehrdimensional zu begründen und kritisch zu bewerten. Die Studierenden sind in der Lage, einen Business Case geringer bis mittlerer Komplexität aufzustellen und zu beurteilen.

METHODENKOMPETENZ

Die Studierenden lernen, sich anspruchsvolle Themengebiete bspw. durch Literaturarbeit selbst anzueignen. Dabei spielt der Überschritt vom "kennen" zum "können" eine wichtige Rolle sowie das aktive Selbstmanagement bei der Aneignung dieser Themenfelder. Durch verstärkten Einsatz von interaktiven, auf "echtem" Führungshandeln beruhenden Gruppenarbeiten (bspw. in der Aufstellung eines Business Case) werden die Führungsfähigkeit und die Kritikfähigkeit direkt gestärkt.

PERSONALE UND SOZIALE KOMPETENZ

Vor allem die Unternehmensführung trifft häufig Entscheidungen aufgrund von selbstgetroffenen bzw. nur noch den Eigentümern gegenüber zu rechtfertigenden Werturteilen. Die Studierenden lernen die Notwendigkeit kennen, derartige Werturteile zur "Verkürzung" von Entscheidungssituationen bewusst und aktiv zur Verfügung zu haben und werden in der Bildung eigener Werturteile gestärkt. Gleichzeitig werden die unaufhebbaren Entscheidungsdilemmata in der "echten" Unternehmensführung deutlich und erfahrbar.

ÜBERGREIFENDE HANDLUNGSKOMPETENZ

Das vernetzte, systemische oder "ganzheitliche" Denken, Handeln und Kommunizieren der Studierenden wird gestärkt. Dies dient insbesondere der Handlungsfähigkeit in "echten" Führungssituationen.

LERNEINHEITEN UND INHALTE

ELINEINIETEN OND MITTELE			
LEHR- UND LERNEINHEITEN	PRÄSENZZEIT	SELBSTSTUDIUM	
Unternehmensführung	62	88	

- Systemisches, vernetztes Denken und Handeln
- Wertorientierte Unternehmensführung
- Unternehmensbewertung
- Strategische Unternehmensführung
- Change Management
- Fallstudie / Übungen / Planspiel

Stand vom 01.10.2025 T3WIW3003 // Seite 29

BESONDERHEITEN

Die Prüfungsdauer bezieht sich auf die Klausur.

VORAUSSETZUNGEN

ABWL

Rechnungs- und Finanzwesen Controlling

LITERATUR

- Dillerup, Stoi: Unternehmensführung Kaplan, Norton: Strategy Maps Kotter: Leading Change

Stand vom 01.10.2025 T3WIW3003 // Seite 30

Studienarbeit (T3_3100)

Student Research Project

FORMALE ANGABEN ZUM MODUL

MODULNUMMERVERORTUNG IM STUDIENVERLAUFMODULDAUER (SEMESTER)MODULVERANTWORTUNGSPRACHET3_31003. Studienjahr1Prof. Dr.-Ing. Joachim FrechDeutsch

EINGESETZTE LEHRFORMEN

LEHRFORMENLEHRMETHODENIndividualbetreuungProjekt

EINGESETZTE PRÜFUNGSFORMEN

PRÜFUNGSLEISTUNGPRÜFUNGSUMFANG (IN MINUTEN)BENOTUNGStudienarbeitSiehe Pruefungsordnungja

WORKLOAD UND ECTS-LEISTUNGSPUNKTE

WORKLOAD INSGESAMT (IN H)DAVON PRÄSENZZEIT (IN H)DAVON SELBSTSTUDIUM (IN H)ECTS-LEISTUNGSPUNKTE15061445

QUALIFIKATIONSZIELE UND KOMPETENZEN

FACHKOMPETENZ

Die Studierenden können sich unter begrenzter Anleitung in ein recht komplexes, aber eng umgrenztes Gebiet vertiefend einarbeiten und den allgemeinen Stand des Wissens erwerben.

Sie können sich Lösungen entwickeln und Alternativen bewerten. Dazu nutzen sie bestehendes Fachwissen und bauen es selbständig im Thema der Studienarbeit aus.

Die Studierenden kennen und verstehen die Notwendigkeit des wissenschaftlichen Recherchierens und Arbeitens. Sie sind in der Lage eine wissenschaftliche Arbeit zu steuern und wissenschaftlich korrekt und verständlich zu dokumentieren.

METHODENKOMPETENZ

Die Studierenden haben die Kompetenz erworben, relevante Informationen mit wissenschaftlichen Methoden zu sammeln und unter der Berücksichtigung wissenschaftlicher Erkenntnisse zu interpretieren.

PERSONALE UND SOZIALE KOMPETENZ

Die Studierenden können ausdauernd und beharrlich auch größere Aufgaben selbstständig ausführen. Sie können sich selbst managen und Aufgaben zum vorgesehenen Termin erfüllen.

Sie können stichhaltig und sachangemessen argumentieren, Ergebnisse plausibel darstellen und auch komplexe Sachverhalte nachvollziehbar begründen.

ÜBERGREIFENDE HANDLUNGSKOMPETENZ

LERNEINHEITEN UND INHALTE

LEHR- UND LERNEINHEITEN	PRÄSENZZEIT	SELBSTSTUDIUM
Studienarbeit	6	144

BESONDERHEITEN

Es wird auf die "Leitlinien für die Bearbeitung und Dokumentation der Module Praxisprojekt I bis III, Studienarbeit und Bachelorarbeit" der Fachkommission Technik der Dualen Hochschule Baden-Württemberg hingewiesen.

Stand vom 01.10.2025 T3_3100 // Seite 31

LITERATUR

Kornmeier, M., Wissenschaftlich schreiben leicht gemacht für Bachelor, Master und Dissertation, Bern

Stand vom 01.10.2025 T3_3100 // Seite 32

Praxisprojekt I (T3_1000)

Work Integrated Project I

FORMALE ANGABEN ZUM MODUL

 MODULNUMMER
 VERORTUNG IM STUDIENVERLAUF
 MODULDAUER (SEMESTER)
 MODULVERANTWORTUNG
 SPRACHE

 T3_1000
 1. Studienjahr
 2
 Prof. Dr.-Ing. Joachim Frech
 Deutsch

EINGESETZTE LEHRFORMEN

LEHRFORMENLEHRMETHODENPraktikum, SeminarLehrvortrag, Diskussion, Projekt

EINGESETZTE PRÜFUNGSFORMEN

PRÖFUNGSLEISTUNGPRÖFUNGSUMFANG (IN MINUTEN)BENOTUNGProjektarbeitSiehe PruefungsordnungBestanden/ Nicht-BestandenAblauf- und ReflexionsberichtSiehe PruefungsordnungBestanden/ Nicht-Bestanden

WORKLOAD UND ECTS-LEISTUNGSPUNKTE

WORKLOAD INSGESAMT (IN H)DAVON PRÄSENZZEIT (IN H)DAVON SELBSTSTUDIUM (IN H)ECTS-LEISTUNGSPUNKTE600459620

QUALIFIKATIONSZIELE UND KOMPETENZEN

FACHKOMPETENZ

Die Absolventinnen und Absolventen erfassen industrielle Problemstellungen in ihrem Kontext und in angemessener Komplexität. Sie analysieren kritisch, welche Einflussfaktoren

zur Lösung des Problems beachtet werden müssen und beurteilen, inwiefern einzelne theoretische Modelle einen Beitrag zur Lösung des Problems leisten können.

Die Studierenden kennen die zentralen manuellen und maschinellen Grundfertigkeiten des jeweiligen Studiengangs, sie

können diese an praktischen Aufgaben anwenden und haben deren Bedeutung für die Prozesse im Unternehmen kennen gelernt.

Sie kennen die wichtigsten technischen und organisatorischen Prozesse in Teilbereichen ihres Ausbildungsunternehmens und können deren Funktion darlegen.

Die Studierenden können grundsätzlich fachliche Problemstellungen des jeweiligen Studiengangs beschreiben und fachbezogene Zusammenhänge erläutern.

METHODENKOMPETENZ

Absolventinnen und Absolventen kennen übliche Vorgehensweisen der industriellen Praxis und können diese selbstständig umsetzen. Dabei bauen sie auf ihr theoretisches Wissen sowie ihre Berufserfahrung auf.

PERSONALE UND SOZIALE KOMPETENZ

Die Relevanz von Personalen und Sozialen Kompetenz ist den Studierenden für den reibungslosen Ablauf von industriellen Prozessen bewusst und sie können eigene Stärken und Schwächen benennen. Den Studierenden gelingt es, aus Erfahrungen zu lernen, sie übernehmen Verantwortung für die übertragene Aufgaben, mit denen sie sich auch persönlich identifizieren. Die Studierenden übernehmen Verantwortung im Team, integrieren und tragen durch ihr Verhalten zur gemeinsamen Zielerreichung bei.

ÜBERGREIFENDE HANDLUNGSKOMPETENZ

Die Studierenden zeigen Handlungskompetenz, indem sie

ihr theoretisches Fachwissen nutzen, um in berufspraktischen Situationen angemessen, authentisch und erfolgreich zu agieren.

Dazu gehören auch das eigenständige kritische Beobachten, das systematische Suchen alternativer Lösungsansätze sowie eine erste Einschätzung der Anwendbarkeit von Theorien für Praxis.

LERNEINHEITEN UND INHALTE

LEHR- UND LERNEINHEITEN	PRÄSENZZEIT	SELBSTSTUDIUM
Projektarbeit 1	0	560

Stand vom 01.10.2025 T3_1000 // Seite 33

LERNEINHEITEN UND INHALTE

LEHR- UND LERNEINHEITEN	PRÄSENZZEIT	SELBSTSTUDIUM	
Es wird auf die jeweiligen Praxispläne der Studiengänge der Fakultät Technik verwiesen			
Wissenschaftliches Arbeiten 1	4	36	

Das Seminar "Wissenschaftliches Arbeiten I" findet während der Theoriephase statt. Eine Durchführung im gesamten Umfang in einem Semester oder die Aufteilung auf zwei Semester ist möglich. Für einige Grundlagen kann das WBT "Wissenschaftliches Arbeiten" der DHBW genutzt werden.

- Leitlinien des wissenschaftlichen Arbeitens
- Themenwahl und Themenfindung bei der T1000 Arbeit
- Typische Inhalte und Anforderungen an eine T1000 Arbeit
- Aufbau und Gliederung einer T1000 Arbeit
- Literatursuche, -beschaffung und -auswahl
- Nutzung des Bibliotheksangebots der DHBW
- Form einer wissenschaftlichen Arbeit (z.B. Zitierweise, Literaturverzeichnis)
- Hinweise zu DV-Tools (z.B. Literaturverwaltung und Generierung von Verzeichnissen in der Textverarbeitung)

BESONDERHEITEN

Es wird auf die "Leitlinien für die Bearbeitung und Dokumentation der Module Praxisprojekt I bis III, Studienarbeit und Bachelorarbeit" der Fachkommission Technik der Dualen Hochschule Baden-Württemberg hingewiesen.

Der Absatz "1.2 Abweichungen" aus Anlage 1 zur Studien- und Prüfungsordnung für die Bachelorstudiengänge im Studienbereich Technik der Dualen Hochschule Baden-Württemberg

(DHBW) bei den Prüfungsleistungen dieses Moduls keine Anwendung.

VORAUSSETZUNGEN

LITERATUR

- Web-based Training "Wissenschaftliches Arbeiten"
- Kornmeier, M., Wissenschaftlich schreiben leicht gemacht für Bachelor, Master und Dissertation, Bern

Stand vom 01.10.2025 T3_1000 // Seite 34

Praxisprojekt II (T3_2000)

Work Integrated Project II

FORMALE ANGABEN ZUM MODUL

 MODULNUMMER
 VERORTUNG IM STUDIENVERLAUF
 MODULDAUER (SEMESTER)
 MODULVERANTWORTUNG
 SPRACHE

 T3_2000
 2. Studienjahr
 2
 Prof. Dr.-Ing. Joachim Frech
 Deutsch

EINGESETZTE LEHRFORMEN

LEHRFORMENLEHRMETHODENPraktikum, VorlesungLehrvortrag, Diskussion, Gruppenarbeit, Projekt

EINGESETZTE PRÜFUNGSFORMEN

PRÜFUNGSLEISTUNGPRÜFUNGSUMFANG (IN MINUTEN)BENOTUNGProjektarbeitSiehe PruefungsordnungjaAblauf- und ReflexionsberichtSiehe PruefungsordnungBestanden/ Nicht-BestandenMündliche Prüfung30ja

WORKLOAD UND ECTS-LEISTUNGSPUNKTE

WORKLOAD INSGESAMT (IN H)	DAVON PRÄSENZZEIT (IN H)	DAVON SELBSTSTUDIUM (IN H)	ECTS-LEISTUNGSPUNKTE
600	5	595	20

QUALIFIKATIONSZIELE UND KOMPETENZEN

FACHKOMPETENZ

Die Studierenden erfassen industrielle Problemstellungen in einem angemessenen Kontext und in angemessener Komplexität. Sie analysieren kritisch, welche Einflussfaktoren zur Lösung des Problems beachtet werden müssen und können beurteilen, inwiefern theoretische Modelle einen Beitrag zur Lösung des Problems leisten können.

METHODENKOMPETENZ

Die Studierenden kennen die im betrieblichen Umfeld üblichen Methoden, Techniken und Fertigkeiten und können bei der Auswahl deren Stärken und Schwächen einschätzen, so dass sie die Methoden sachangemessen und situationsgerecht auswählen. Die ihnen übertragenen Aufgaben setzen die Studierenden durch durchdachte Konzepte, fundierte Planung und gutes Projektmanagement erfolgreich um. Dabei bauen sie auf ihr theoretisches Wissen sowie ihre wachsende Berufserfahrung auf.

PERSONALE UND SOZIALE KOMPETENZ

Den Studierenden ist die Relevanz von Personalen und Sozialen Kompetenz für den reibungslosen Ablauf von industriellen Prozessen sowie ihrer eigenen Karriere bewusst; sie können eigene Stärken und Schwächen benennen. Den Studierenden gelingt es, aus Erfahrungen zu lernen, sie übernehmen selbstständig Verantwortung für die übertragene Aufgaben, mit denen sie sich auch persönlich identifizieren. Die Studierenden übernehmen Verantwortung im Team, integrieren andere und tragen durch ihr überlegtes Verhalten zur gemeinsamen Zielerreichung bei.

ÜBERGREIFENDE HANDLUNGSKOMPETENZ

Die Studierenden zeigen wachsende Handlungskompetenz, indem sie ihr theoretisches Fachwissen und ihr wachsendes Erfahrungswissen nutzen, um in sozialen berufspraktischen Situationen angemessen und erfolgreich zu agieren.

Dazu gehören auch das eigenständige kritische Beobachten, das systematische Suchen alternativer Denk- und Lösungsansätze sowie das Hinterfragen von bisherigen Vorgehensweisen. Die Studierenden zeichnen sich durch Eigenverantwortung und Tatkraft aus, sie sind auch im Kontext einer globalisierten Arbeitswelt handlungsfähig.

LERNEINHEITEN UND INHALTE

LEHR- UND LERNEINHEITEN	PRÄSENZZEIT	SELBSTSTUDIUM
Projektarbeit 2	0	560

Es wird auf die jeweiligen Praxispläne der Studiengänge der Fakultät Technik verwiesen.

Stand vom 01.10.2025 T3_2000 // Seite 35

LERNEINHEITEN UND INHALTE

LEHR- UND LERNEINHEITEN	PRÄSENZZEIT	SELBSTSTUDIUM
Wissenschaftliches Arbeiten 2	4	26

Das Seminar "Wissenschaftliches Arbeiten II" findet während der Theoriephase statt. Eine Durchführung im gesamten Umfang in einem Semester oder die Aufteilung auf zwei Semester ist möglich. Für einige Grundlagen kann das WBT "Wissenschaftliches Arbeiten" der DHBW genutzt werden.

- Leitlinien des wissenschaftlichen Arbeitens
- Themenwahl und Themenfindung bei der T2000 Arbeit
- Typische Inhalte und Anforderungen an eine T2000 Arbeit
- Aufbau und Gliederung einer T2000 Arbeit
- Vorbereitung der Mündlichen T2000 Prüfung

Mündliche Prüfung	1	9

BESONDERHEITEN

Entsprechend der jeweils geltenden Studien- und Prüfungsordnung für die Bachelorstudiengänge im Studienbereich Technik der Dualen Hochschule Baden-Württemberg (DHBW) sind die mündliche Prüfung und die Projektarbeit separat zu bestehen. Die Modulnote wird aus diesen beiden Prüfungsleistungen mit der Gewichtung 50:50 berechnet.

Es wird auf die "Leitlinien für die Bearbeitung und Dokumentation der Module Praxisprojekt I bis III, Studienarbeit und Bachelorarbeit" der Fachkommission Technik der Dualen Hochschule Baden-Württemberg hingewiesen.

VORAUSSETZUNGEN			
-			
LITERATUR			

Stand vom 01.10.2025 T3_2000 // Seite 36

Praxisprojekt III (T3_3000)

Work Integrated Project III

FORMALE ANGABEN ZUM MODUL

MODULNUMMER	VERORTUNG IM STUDIENVERLAUF	MODULDAUER (SEMESTER)	MODULVERANTWORTUNG	SPRACHE
T3_3000	3. Studienjahr	1	Prof. DrIng. Joachim Frech	Deutsch

EINGESETZTE LEHRFORMEN

LEHRFORMEN	LEHRMETHODEN
Praktikum, Seminar	Lehrvortrag, Diskussion, Projekt

EINGESETZTE PRÜFUNGSFORMEN

PRÜFUNGSLEISTUNG	PRÜFUNGSUMFANG (IN MINUTEN)	BENOTUNG
Hausarbeit	Siehe Pruefungsordnung	Bestanden/ Nicht-Bestanden
Ablauf- und Reflexionsbericht	Siehe Pruefungsordnung	Bestanden/ Nicht-Bestanden

WORKLOAD UND ECTS-LEISTUNGSPUNKTE

WORKLOAD INSGESAMT (IN H)	DAVON PRÄSENZZEIT (IN H)	DAVON SELBSTSTUDIUM (IN H)	ECTS-LEISTUNGSPUNKTE
240	4	236	8

QUALIFIKATIONSZIELE UND KOMPETENZEN

FACHKOMPETENZ

Die Studierenden erfassen industrielle Problemstellungen in einem breiten Kontext und in moderater Komplexität. Sie haben ein gutes Verständnis von organisatorischen und inhaltlichen Zusammenhängen sowie von Organisationsstrukturen, Produkten, Verfahren, Maßnahmen, Prozessen, Anforderungen und gesetzlichen Grundlagen. Sie analysieren kritisch, welche Einflussfaktoren zur Lösung des Problems beachtet werden müssen und können beurteilen, inwiefern theoretische Modelle einen Beitrag zur Lösung des Problems leisten können.

METHODENKOMPETENZ

Die Studierenden kennen die im betrieblichen Umfeld üblichen Methoden, Techniken und Fertigkeiten und können bei der Auswahl deren Stärken und Schwächen einschätzen, so dass sie die Methoden sachangemessen, situationsgerecht und umsichtig auswählen. Die ihnen übertragenen Aufgaben setzen die Studierenden durch durchdachte Konzepte, fundierte Planung und gutes Projektmanagement auch bei sich häufig ändernden Anforderungen systematisch und erfolgreich um. Dabei bauen sie auf ihr theoretisches Wissen sowie ihre wachsende Berufserfahrung auf.

PERSONALE UND SOZIALE KOMPETENZ

Die Studierenden weisen auch im Hinblick auf ihre persönlichen personalen und sozialen Kompetenzen einen hohen Grad an Reflexivität auf, was als Grundlage für die selbstständige persönliche Weiterentwicklun genutzt wird.

Den Studierenden gelingt es, aus Erfahrungen zu lernen, sie übernehmen selbstständig Verantwortung für die übertragene Aufgaben, mit denen sie sich auch persönlich identifizieren.

Die Studierenden übernehmen Verantwortung für sich und andere. Sie sind konflikt und kritikfähig.

ÜBERGREIFENDE HANDLUNGSKOMPETENZ

Die Studierenden zeigen umfassende Handlungskompetenz, indem sie ihr theoretisches Fachwissen und ihr wachsendes Erfahrungswissen nutzen, um in berufspraktischen Situationen angemessen und erfolgreich zu agieren.

Dazu gehören auch das eigenständige kritische Beobachten, das systematische Suchen alternativer Denk- und Lösungsansätze sowie das Hinterfragen von bisherigen Vorgehensweisen. Die Studierenden zeichnen sich durch Eigenverantwortung und Tatkraft aus, sie sind auch im Kontext einer globalisierten Arbeitswelt handlungsfähig. Sie weisen eine reflektierte Haltung zu gesellschaftlichen, soziale und ökologischen Implikationen des eigenen Handelns auf.

LERNEINHEITEN UND INHALTE

LEHR- UND LERNEINHEITEN	PRÄSENZZEIT	SELBSTSTUDIUM
Projektarbeit 3	0	220

Es wird auf die jeweiligen Praxispläne der Studiengänge der Fakultät Technik verwiesen

Stand vom 01.10.2025 T3_3000 // Seite 37

LERNEINHEITEN UND INHALTE

LEHR- UND LERNEINHEITENPRÄSENZZEITSELBSTSTUDIUMWissenschaftliches Arbeiten 3416

Das Seminar "Wissenschaftliches Arbeiten III" findet während der Theoriephase statt. Eine Durchführung im gesamten Umfang in einem Semester oder die Aufteilung auf zwei Semester ist möglich. Für einige Grundlagen kann das WBT "Wissenschaftliches Arbeiten" der DHBW genutzt werden.

- Was ist Wissenschaft?
- Theorie und Theoriebildung
- Überblick über Forschungsmethoden (Interviews, etc.)
- Gütekriterien der Wissenschaft
- Wissenschaftliche Erkenntnisse sinnvoll nutzen (Bezugssystem, Stand der Forschung/Technik)
- Aufbau und Gliederung einer Bachelorarbeit
- Projektplanung im Rahmen der Bachelorarbeit
- Zusammenarbeit mit Betreuern und Beteiligten

BESONDERHEITEN

Es wird auf die "Leitlinien für die Bearbeitung und Dokumentation der Module Praxisprojekt I bis III, Studienarbeit und Bachelorarbeit" der Fachkommission Technik der Dualen Hochschule Baden-Württemberg hingewiesen.

VORAUSSETZUNGEN

LITERATUR

- Web-based Training "Wissenschaftliches Arbeiten"
- Kornmeier, M., Wissenschaftlich schreiben leicht gemacht für Bachelor, Master und Dissertation,, Bern
- Minto, B., The Pyramid Principle: Logic in Writing, Thinking and Problem Solving, London
- Zelazny, G., Say It With Charts: The Executives's Guide to Visual Communication, Mcgraw-Hill Professional.

Kornmeier, M., Wissenschaftlich schreiben leicht gemacht für Bachelor, Master und Dissertation, Bern

Stand vom 01.10.2025 T3_3000 // Seite 38

Werkstoffkunde (T3WIW1101)

Material Science

FORMALE ANGABEN ZUM MODUL

 MODULNUMMER
 VERORTUNG IM STUDIENVERLAUF
 MODULDAUER (SEMESTER)
 MODULVERANTWORTUNG
 SPRACHE

 T3WIW1101
 1. Studienjahr
 1
 Prof. Dr.-Ing. Andreas Zilly
 Deutsch/Englisch

EINGESETZTE LEHRFORMEN

LEHRFORMENLEHRMETHODENVorlesung, Übung, LaborLehrvortrag, Diskussion, Gruppenarbeit

EINGESETZTE PRÜFUNGSFORMEN

PRÜFUNGSLEISTUNGPRÜFUNGSUMFANG (IN MINUTEN)BENOTUNGKlausurarbeit oder Kombinierte Prüfung90ja

WORKLOAD UND ECTS-LEISTUNGSPUNKTE

WORKLOAD INSGESAMT (IN H)DAVON PRÄSENZZEIT (IN H)DAVON SELBSTSTUDIUM (IN H)ECTS-LEISTUNGSPUNKTE15062885

QUALIFIKATIONSZIELE UND KOMPETENZEN

FACHKOMPETENZ

Die Studierenden verstehen den Zusammenhang zwischen Werkstoffstruktur und Werkstoffeigenschaften.

Sie kennen das Werkstoffverhalten unter verschiedenen Beanspruchungsbedingungen.

Die Studierenden kennen die Verfahren der Werkstoffherstellung und die Werkstoffanwendungsmöglichkeiten.

Sie können Werkstoffkennwerte ermitteln und Werkstoffprüfungen durchführen.

METHODENKOMPETENZ

Die Studierenden beherrschen die fachadäquate Kommunikation mit Kolleginnen und Kollegen aus Forschung und Entwicklung sowie Fertigung und Konstruktion. Sie können anhand der vorgestellten Methoden geeignete Werkstoffe für bestimmte Anwendungen auswählen.

PERSONALE UND SOZIALE KOMPETENZ

_

ÜBERGREIFENDE HANDLUNGSKOMPETENZ

Die Studierenden können erworbenes Werkstoffkundewissen auf Problemstellungen in der Praxis anwenden und sind in der Lage, sich im Verlaufe ihrer beruflichen Tätigkeit in weiterführende Problemstellungen der Werkstoffkunde selbständig einzuarbeiten.

LERNEINHEITEN UND INHALTE

LEHR- UND LERNEINHEITENPRÄSENZZEITSELBSTSTUDIUMWerkstoffkunde6288

- Werkstofftechnologie in Industrie und Wirtschaft
- Atomaufbau, Bindungsarten und Ordnungszustände
- Grundlagen der Metall- und Legierungskunde
- Werkstoffkunde der Metalle Eisen- und Nichteisenmetalle
- Kunststoffe
- Anorganische nichtmetallische Werkstoffe
- Werkstoffprüfung und -analyse
- $\hbox{-} Werk stoff be zeich nungen$

BESONDERHEITEN

Ein Labor kann die Vorlesung ergänzen. Die Prüfungsdauer bezieht sich auf die Klausur.

Stand vom 01.10.2025 T3WIW1101 // Seite 39

VORAUSSETZUNGEN

keine

LITERATUR

- Bargel, H.-J., Schulze, G. (Hrsg.): Werkstoffkunde. Springer-Verlag, Berlin, Heidelberg Bergmann, W.: Werkstofftechnik, Teil 1: Grundlagen. Carl Hanser Verlag, München, Wien
- Bergmann, W.: Werkstofftechnik, Teil 2: Anwendung. Carl Hanser Verlag, München, Wien
 Drube, B. et al.: Werkstofftechnik Maschinenbau Theoretische Grundlagen und praktische Anwendungen. Europa Verlag, Haan-Gruiten
- Schwab, R.: Werkstoffkunde und Werkstoffprüfung für Dummies. Wiley-VCH Verlag, Weinheim Weißbach, W.: Werkstoffkunde. Vieweg Teubner Verlag, Springer Fachmedien Wiesbaden

Stand vom 01.10.2025 T3WIW1101 // Seite 40

Technische Mechanik (T3WIW1102)

Technical Mechanics

FORMALE ANGABEN ZUM MODUL

MODULNUMMERVERORTUNG IM STUDIENVERLAUFMODULDAUER (SEMESTER)MODULVERANTWORTUNGSPRACHET3WIW11021. Studienjahr1Prof. Dr.-Ing. Hansgert HascherDeutsch/Englisch

EINGESETZTE LEHRFORMEN

LEHRFORMENLEHRMETHODENVorlesung, ÜbungLehrvortrag, Diskussion

EINGESETZTE PRÜFUNGSFORMEN

PRÜFUNGSLEISTUNGPRÜFUNGSUMFANG (IN MINUTEN)BENOTUNGKlausur90ja

WORKLOAD UND ECTS-LEISTUNGSPUNKTE

WORKLOAD INSGESAMT (IN H)
DAVON PRÄSENZZEIT (IN H)
DAVON SELBSTSTUDIUM (IN H)
ECTS-LEISTUNGSPUNKTE

88
5

QUALIFIKATIONSZIELE UND KOMPETENZEN

FACHKOMPETENZ

Die Studierenden verstehen die physikalischen Grundprinzipien der Technischen Mechanik und können diese im Rahmen von Herausforderungen der Praxis bewerten.

METHODENKOMPETENZ

Die Studierenden sind mit Abschluss des Moduls in der Lage, für weitgehend standardisierte Anwendungsfälle in der Praxis die angemessene Methode auszuwählen und anzuwenden. Sie kennen die Stärken und Schwächen der Methode in ihrem beruflichen Anwendungsfeld und können diese in konkreten Handlungssituationen gegeneinander abwägen.

PERSONALE UND SOZIALE KOMPETENZ

Die Studierenden haben ihre eigene Sicht auf physikalische Phänomene im Alltag reflektiert. Sie sind sich bewusst über die Risiken und Möglichkeiten der Mechanik.

ÜBERGREIFENDE HANDLUNGSKOMPETENZ

Die Studierenden sind in der Lage, sich im Verlaufe ihrer beruflichen Tätigkeit in weiterführende Problemstellungen der Technischen Mechanik selbständig einzuarbeiten.

LERNEINHEITEN UND INHALTE

LEHR- UND LERNEINHEITENPRÄSENZZEITSELBSTSTUDIUMTechnische Mechanik 16288

Thema1: Grundlagen der Statik

- Methoden zur systematischen Modellbildung und Lösung statischer Probleme,
- Axiome der Mechanik, Gleichgewicht von Kräftesystemen und Schwerpunktberechnung,
- Innere Kräfte und Momente in Balken und Fachwerken,
- Systeme mit Reibung.

Thema2: Festigkeitslehre

- Spannungsbegriffe mit Hooke'schem Gesetz, Festigkeitsbedingungen,
- Anwendung auf Zug-/Druck-, Torsions-, Biege- und Knickprobleme,
- Allgemeiner Spannungs- und Verformungszustand, Festigkeitshypothesen.

BESONDERHEITEN

- Es können zusätzlich zu den oben aufgeführten Lehr- und Lerneinheiten entsprechende Labore und vertiefende Tuto-rien angeboten werden.

Stand vom 01.10.2025 T3WIW1102 // Seite 41

LITERATUR

- Böge, Technische Mechanik (incl. Festigkeitslehre und Fluidmechanik), Springer (div. Übungsbücher)
- Eller, Conrad, Holzmann, Meyer, Schumpich, Technische Mechanik Statik, Springer
- Altenbach, Holm, Holzmann, Meyer, Schumpich, Technische Mechanik Festigkeitslehre, Springer
- Gross, Hauger, Technische Mechanik Bd.1: Statik, Springer (Übungsbuch auch erhältlich) Gross,, Hauger, Technische Mechanik Bd.2: Elastostatik, Springer (Übungsbuch auch erhältlich)
- Herr, Mattheus, Technische Mechanik Lehr- und Aufgabenbuch, Europa (Studium),
- Hibbeler, Technische Mechanik Bd. 1: Statik, Pearson Study,
- Hibbeler, Technische Mechanik Bd. 2: Festigkeitslehre, Pearson Study.

Stand vom 01.10.2025 T3WIW1102 // Seite 42

Konstruktionslehre (T3WIW1103)

Engineering Design

FORMALE ANGABEN ZUM MODUL

MODULNUMMERVERORTUNG IM STUDIENVERLAUFMODULDAUER (SEMESTER)MODULVERANTWORTUNGSPRACHET3WIW11031. Studienjahr1Prof. Dr. Simon MöhringerDeutsch/Englisch

EINGESETZTE LEHRFORMEN

 LEHRFORMEN
 LEHRMETHODEN

 Vorlesung, Übung, Labor
 Lehrvortrag, Diskussion, Gruppenarbeit

EINGESETZTE PRÜFUNGSFORMEN

PRÜFUNGSLEISTUNGPRÜFUNGSUMFANG (IN MINUTEN)BENOTUNGKlausurarbeit oder Konstruktionsentwurf90ja

WORKLOAD UND ECTS-LEISTUNGSPUNKTE

WORKLOAD INSGESAMT (IN H)
DAVON PRÄSENZZEIT (IN H)
DAVON SELBSTSTUDIUM (IN H)
ECTS-LEISTUNGSPUNKTE
88
5

QUALIFIKATIONSZIELE UND KOMPETENZEN

FACHKOMPETENZ

Die Studierenden kennen die konstruktiven und physikalischen Grundlagen des Maschinenbaus und deren Anwendung. Sie verstehen die Funktion der Elemente des Maschinenbaus und kennen deren Darstellung. Sie können exemplarisch die Berechnung von Funktion und Festigkeit durchführen. Sie besitzen strukturiertes Basiswissen der Maschinenelemente und insbesondere deren Verbindungen.

METHODENKOMPETENZ

Die Studierenden kennen die in den Modulinhalten aufgeführten wissenschaftlichen Methoden. Sie sind in der Lage, unter Einsatz dieser Methoden relevante Informationen zu sammeln und unter Berücksichtigung wissenschaftlicher Erkenntnisse gemäß Fachstandards zu interpretieren.

PERSONALE UND SOZIALE KOMPETENZ

Die Studierenden können sowohl eigenständig als auch im Team zielorientiert und nachhaltig handeln.

ÜBERGREIFENDE HANDLUNGSKOMPETENZ

Sie sind in der Lage, sich im Verlaufe ihrer beruflichen Tätigkeit in weiterführende Problemstellungen des Maschinenbaus selbständig einzuarbeiten.

LERNEINHEITEN UND INHALTE

LEHR- UND LERNEINHEITENPRÄSENZZEITSELBSTSTUDIUMKonstruktionslehre6288

Technisches Zeichnen

- Ansichten, Bemaßung und isometrische Darstellung
- Passungen und Toleranzen

Maschinenelemente

- Verbindungstechniken
- Verbindungselemente
- Kennzeichnung, Gestaltung, Berechnung

Konstruktionssystematik

- Methodik
- Vorgehensweise

BESONDERHEITEN

Die Prüfungsdauer bezieht sich auf die Klausur.

Stand vom 01.10.2025 T3WIW1103 // Seite 43

LITERATUR

- Roloff, H./ Matek, W.: Maschinenelemente: Normung, Berechnung, Gestaltung Lehrbuch und Tabellenbuch, aktuelle Auflage, Vieweg Teubner Verlag
- Decker, K.-H.: Maschinenelemente: Funktion, Gestaltung und Berechnung, aktuelle Auflage, Hanser Verlag Grote, K.-H./ Feldhusen, J.: Dubbel, Taschenbuch für den Maschinenbau, aktuelle Auflage, Springer Vieweg Verlag
- Hoischen, H: Technisches Zeichnen: Grundlagen, Normen, Beispiele, Darstellende Geometrie, aktuelle Auflage, Cornelsen Verlag
- Alex, D. u.a. [Hrsg.] Klein: Einführung in die DIN-Normen, aktuelle Auflage, Teubner Beuth Verlag
- Gomeringer, R. u.a.: Tabellenbuch Metall mit Formelsammlung, aktuelle Auflage, Europa Lehrmittel Verlag

Stand vom 01.10.2025 T3WIW1103 // Seite 44

Ingenieurwissenschaftliche Grundlagen (T3WIW1119)

Basics of Engineering

FORMALE ANGABEN ZUM MODUL

MODULNUMMERVERORTUNG IM STUDIENVERLAUFMODULDAUER (SEMESTER)MODULVERANTWORTUNGSPRACHET3WIW11191. Studienjahr1Prof. Dr.-Ing. Florian SchleidgenDeutsch/Englisch

EINGESETZTE LEHRFORMEN

LEHRFORMENLEHRMETHODENVorlesung, Übung, Vorlesung, Übung, LaborLehrvortrag, Diskussion, Gruppenarbeit

EINGESETZTE PRÜFUNGSFORMEN

PRÜFUNGSLEISTUNGPRÜFUNGSUMFANG (IN MINUTEN)BENOTUNGKlausur90ja

WORKLOAD UND ECTS-LEISTUNGSPUNKTE

WORKLOAD INSGESAMT (IN H)DAVON PRÄSENZZEIT (IN H)DAVON SELBSTSTUDIUM (IN H)ECTS-LEISTUNGSPUNKTE15062885

QUALIFIKATIONSZIELE UND KOMPETENZEN

FACHKOMPETENZ

Die Studierenden lernen die Grundlagen, Praxisrelevanz und praktische Anwendungs- und Umsetzungsmöglichkeiten von ausgewählten ingenieurwissenschaftlichen Grundlagen. Die Studierenden sind mit Abschluss des Moduls in der Lage, zu den in den Modulinhalten aufgeführten Theorien, Modellen und Diskursen, praktische Anwendungsfälle zu definieren und diese in ihrer Komplexität zu erfassen, zu analysieren und die wesentlichen Einflussfaktoren zu definieren.

METHODENKOMPETENZ

Die Absolventen verfügen über das in den Modulinhalten aufgeführte Spektrum an Methoden und Techniken, aus denen sie angemessene Methoden auswählen und anwenden, um neue Lösungen zu erarbeiten.

PERSONALE UND SOZIALE KOMPETENZ

Die Studierenden können sowohl eigenständig als auch im Team zielorientiert, verantwortungsbewusst und nachhaltig handeln.

ÜBERGREIFENDE HANDLUNGSKOMPETENZ

I FRNFINHFITEN UND INHALTE

LEHR- UND LERNEINHEITENPRÄSENZZEITSELBSTSTUDIUMFertigungstechnik6288

Die Vorlesung orientiert sich in ihren Inhalten an der Fertigungsnorm DIN 8580 mit den Themenfeldern:

- Einführung und Bedeutung der Fertigungstechnik
- Urformen: ausgewählte Verfahren des Gießens, der Pulvermetallurgie, generative und additive Verfahren und der Kunststoffbearbeitung
- Umformen: ausgewählte Verfahren der Massiv- und Blechumformung sowie des Trennens und Fügens durch Umformen
- Trennen: insbesondere spanende und abtragende Verfahren sowie die Methoden des thermischen Schneidens und Wasserstrahlschneidens
- Fügen: ausgewählte Verfahren des stoffschlüssigen Fügens
- Beschichten: ausgewählte Verfahren der Schichtabscheidung sowie zur Herstellung von Konversionsschichten und strukturierten Oberflächen
- Stoffeigenschaft ändern (diese Verfahren werden im Rahmen des Moduls Werkstoffkunde behandelt)

Stand vom 01.10.2025 T3WIW1119 // Seite 45

LERNEINHEITEN UND INHALTE LEHR- UND LERNEINHEITEN	PRÄSENZZEIT	SELBSTSTUDIUM
Einführung in die Produktionstechnik	62	88
 Wertschöpfung mittels Produktionstechnik Vorstellung ausgewählter Verfahren der Additiven Fertigung Vorstellung ausgewählter Verfahren der Subtraktiven Fertigung Vorstellung ausgewählter Verfahren der Formativen Fertigung 		
Technische Physik	62	88
Technische Thermodynamik - Zustandsgleichung idealer Gase - Hauptsätze der Wärmelehre - Ausgewählte Kreisprozesse - Wärmetransport (kurz)		
Technische Optik		

- Einführung in die Wellenoptik (kurz)

Thermodynamik 62 88

- Grundbegriffe
- Hauptsätze der Thermodynamik
- Zustandsgleichungen idealer Gase
- Energiebilanzen
- Formulierungen des 2. Hauptsatzes, Entropie
- Kreisprozesse und Anwendungsbeispiele
- Einführung in den Wärmetransport
- Nach Möglichkeit zusätzlich eine geeignete Auswahl aus den folgenden Themengebieten:

Phasenübergänge, Kreisprozesse mit Dampf, feuchte Luft, Gasgemische, Thermodynamik

chemischer Reaktionen

BESONDERHEITEN

- In diesem Wahlpflichtmodul sind aktuelle und anwendungsbezogene ingenieurwissenschaftliche Grundlagen enthalten, die standortspezifisch ausgewählt und angeboten werden.
- Im Rahmen diese Moduls können verschiedene Dozenten lehren. Diese sind jeweils ausgewiesene Experten in ihrem Fachgebiet.
- Im Rahmen diese Moduls können Exkursionen/Unternehmensbesuche durchgeführt werden.
- Im Rahmen diese Moduls können Labore durchgeführt werden, falls diese am Standort vorhanden sind.
- Bis zu 16 SWS können im Rahmen eines vertiefenden Projektes mit oder ohne Laborbeteiligung durchgeführt werden. Die Veranstaltung kann mit begleitetem Selbststudium in Form von Übungen oder Projekten ergänzt werden.

VORAUSSETZUNGEN

LITERATUR

- Dietmaier, Ch.; Mändl, M.: Physik für Wirtschaftsingenieure Fachbuchverlag Leipzig (Carl Hanser Verlag)
- Hering, E.; Martin, R.; Stohrer, M: Physik für Ingenieure Springer Verlag
- Dobrinski, P.; Krakau, D.; Vogel, A.: Physik für Ingenieure, Teubner Verlag
- Fritz, H.; Schulze, G.: Fertigungstechnik; Springer Verlag.
- Westkämper, E., Warnecke, H.-J.: Einführung in die Fertigungstechnik.
- Klocke, F.: Fertigungstechnik Band 1 5; Springer Verlag. (Fertigungstechnisches Kompendium)
- Spur, G.: Handbuch der Fertigungstechnik; Hanser Verlag. (Fertigungstechnisches Kompendium)
- Fertigung, Fertigungsverfahren, Mess- und Prüftechnik; Europa Verlag; Haan-Gruiten (mit Bild-CD).
- Heidemann, Kompaktkurs Thermodynamik, Wiley
- Langheinecke, Jani, Thermodynamik für Ingenieure, Vieweg-Teubner
- Cerbe, Wilhelm, Technische Thermodynamik, Hanser (Übungsbuch auch erhältlich)
- Hahne, Technische Thermodynamik, Oldenbourg

Literatur wird aufgrund der Aktualität vor der Veranstaltung bekannt gegeben.

Stand vom 01.10.2025 T3WIW1119 // Seite 46

Ausgewählte Technische Grundlagen (T3WIW1120)

Selected Technical Topics

FORMALE ANGABEN ZUM MODUL

MODULNUMMERVERORTUNG IM STUDIENVERLAUFMODULDAUER (SEMESTER)MODULVERANTWORTUNGSPRACHET3WIW11201. Studienjahr1Prof. Dr.-Ing. Florian SchleidgenDeutsch/Englisch

EINGESETZTE LEHRFORMEN

LEHRFORMENLEHRMETHODENVorlesung, Übung, Vorlesung, Übung, LaborLehrvortrag, Diskussion, Lehrvortrag, Diskussion, Gruppenarbeit

EINGESETZTE PRÜFUNGSFORMEN

PRÜFUNGSLEISTUNGPRÜFUNGSUMFANG (IN MINUTEN)BENOTUNGKlausur90ja

WORKLOAD UND ECTS-LEISTUNGSPUNKTE

WORKLOAD INSGESAMT (IN H)DAVON PRÄSENZZEIT (IN H)DAVON SELBSTSTUDIUM (IN H)ECTS-LEISTUNGSPUNKTE15062885

QUALIFIKATIONSZIELE UND KOMPETENZEN

FACHKOMPETENZ

Die Studierenden lernen die Grundlagen, Praxisrelevanz und praktische Anwendungs- und Umsetzungsmöglichkeiten eines ausgewählten Technik-Themas. Die Studierenden sind mit Abschluss des Moduls in der Lage, zu den in den Modulinhalten aufgeführten Theorien, Modellen und Diskursen, praktische Anwendungsfälle zu definieren und diese in ihrer Komplexität zu erfassen, zu analysieren und die wesentlichen Einflussfaktoren zu definieren.

METHODENKOMPETENZ

Die Absolventen verfügen über das in den Modulinhalten aufgeführte Spektrum an Methoden und Techniken, aus denen sie angemessene Methoden auswählen und anwenden, um neue Lösungen zu erarbeiten.

PERSONALE UND SOZIALE KOMPETENZ

Die Studierenden können sowohl eigenständig als auch im Team zielorientiert, verantwortungsbewusst und nachhaltig handeln.

ÜBERGREIFENDE HANDLUNGSKOMPETENZ

I ERNEINHEITEN LIND INHALT

LERNEINHEITEN OND INHALTE		
LEHR- UND LERNEINHEITEN	PRÄSENZZEIT	SELBSTSTUDIUM
Technische Mechanik 2	62	88
Kinematik: - Bewegung eines Massenpunktes - Bewegung des starren Körpers - Translation, Rotation Kinetik: - Impulssatz - Drehimpulssatz - Energiesatz - Mechanische Schwingungen (kurz)		
CAD und Reverse Engineering	62	88

- Einführung CAD
- Anwenden von CAD-Systemen (verschiedene CAD-Systeme, wenn diese am Standort vorhanden sind)
- Scanntechnologien inkl. Labor, falls ein entsprechendes Labor am Standort vorhanden ist
- Datenaufbereitung und -anpassung
- Einführung in das Produktdatenmanagement

Stand vom 01.10.2025 T3WIW1120 // Seite 47

LERNEINHEITEN UND INHALTE

LEHR- UND LERNEINHEITEN	PRÄSENZZEIT	SELBSTSTUDIUM
Grundlagen der Elektrotechnik	62	88

Vorlesung

- Aktive Bauelemente und deren Grundschaltungen
- Bauelemente der Leistungselektronik
- Elementare Schaltungen (galv. Trennung, buck-boost Converter)
- Mikrocontroller in der Anwendung

Labor Elektronik (optional)

- Labor Grundlagen, Messen, Quellen, Sicherheit, Manuelle Grundfertigkeiten
- Elektronische Grundschaltungen (Verstärker, Filter, Koppler, Schutzbeschaltung)
- Experimente mit Mikrocontroller wie Arduino oder Raspberry Pi
- Vertiefung relationaler Datenbanksystem

BESONDERHEITEN

- In diesem Wahlpflichtmodul sind aktuelle und anwendungsbezogene technische Grundlagen enthalten, die standortspezifisch ausgewählt und angeboten werden.
- Im Rahmen diese Moduls können verschiedene Dozenten lehren. Diese sind jeweils ausgewiesene Experten in ihrem Fachgebiet.
- Im Rahmen diese Moduls können Exkursionen/Unternehmensbesuche durchgeführt werden.
- Im Rahmen diese Moduls können Labore durchgeführt werden, falls diese am Standort vorhanden sind.
- Bis zu 16 SWS können im Rahmen eines vertiefenden Projektes mit oder ohne Laborbeteiligung durchgeführt werden. Die Veranstaltung kann mit begleitetem Selbststudium in Form von Übungen oder Projekten ergänzt werden.

VORAUSSETZUNGEN

LITERATUR

- Böge, Technische Mechanik (incl. Festigkeitslehre und Fluidmechanik), Springer (div. Übungsbücher)
 - Eller, Conrad, Holzmann, Meyer, Schumpich, Technische Mechanik Kinematik und Kinetik, Springer
 - Gross, Hauger, Technische Mechanik Bd.3: Kinetik, Springer (Übungsbuch auch erhältlich)
 - Herr, Mattheus, Technische Mechanik Lehr- und Aufgabenbuch, Europa (Studium),
 - Richard, Sander, Technische Mechanik Dynamik, Springer,
 - Hibbeler, Technische Mechanik Bd. 3: Dynamik, Pearson Study
- U.Tietze Ch Schenk Halbleiter-Schaltungstechnik Springer Berlin
- Ekbert Hering, Klaus Bressler, Jürgen Gutekunst Elektronik für Ingenieure und Naturwissenschaftler Springer Vieweg

Literatur wird aufgrund der Aktualität vor der Veranstaltung bekannt gegeben.

Stand vom 01.10.2025 T3WIW1120 // Seite 48

Einführung in die Elektrotechnik (T3WIW2103)

Basics of Electrical Engineering

FORMALE ANGABEN ZUM MODUL

MODULNUMMERVERORTUNG IM STUDIENVERLAUFMODULDAUER (SEMESTER)MODULVERANTWORTUNGSPRACHET3WIW21032. Studienjahr1Dr. Ing. Lothar BergenDeutsch/Englisch

EINGESETZTE LEHRFORMEN

LEHRFORMENLEHRMETHODENVorlesung, ÜbungLehrvortrag, Diskussion

EINGESETZTE PRÜFUNGSFORMEN

PRÜFUNGSLEISTUNGPRÜFUNGSUMFANG (IN MINUTEN)BENOTUNGKlausur90ja

WORKLOAD UND ECTS-LEISTUNGSPUNKTE

WORKLOAD INSGESAMT (IN H)DAVON PRÄSENZZEIT (IN H)DAVON SELBSTSTUDIUM (IN H)ECTS-LEISTUNGSPUNKTE15062885

QUALIFIKATIONSZIELE UND KOMPETENZEN

FACHKOMPETENZ

Die wichtigsten elektrischen Größen erörtern können. Einfache Gleichstromkreise mit ausgewählten Verfahren berechnen können.
Die wichtigsten elektrischen und magnetischen Feldgrößen erörtern können. Einfache Wechselstromkreise mit Hilfe der komplexen Rechnung berechnen können.
Kennenlernen der wichtigsten nichtlinearen Bauteile (Diode, Transistor, Operationsverstärker) und deren Anwendungsschaltungen.
Ausgewählte Beispiele aus dem Bereich der Sensorik und Aktorik erfassen und funktional verstehen können.

METHODENKOMPETENZ

Die gelernten Methoden / Berechnungsverfahren abstrahieren können und auch in anderen Disziplinen anwenden können.

PERSONALE UND SOZIALE KOMPETENZ

Mit den erworbenen Sachkompetenzen sind die Studierenden in der Lage mit Fachleuten zu kommunizieren und allgemeine grundlegende Problemstellungen der Elektrotechnik in Bezug auf ihre Problematik im Team zu diskutieren und zu verstehen.

ÜBERGREIFENDE HANDLUNGSKOMPETENZ

LERNEINHEITEN UND INHALTE

LEHR- UND LERNEINHEITEN	PRÄSENZZEIT	SELBSTSTUDIUM
Einführung in die Elektrotechnik	62	88

Stand vom 01.10.2025 T3WIW2103 // Seite 49

LEHR- UND LERNEINHEITEN PRÄSENZZEIT SELBSTSTUDIUM

Gleichstromlehre

- Grundbegriffe (Strom, Spannung, Widerstand, Spannungs- und Stromquelle, etc.)
- Berechnung von Gleichstromkreisen mit ausgewählten Verfahren (Kirchhoff,

Maschenstromanalyse etc.)

- Behandlung nichtlinearer Gleichstromkreise

Elektrisches Feld

- Grundbegriffe des elektrischen Feldes
- Berechnung einfacher elektrostatischer Felder

Einschwingvorgänge am Kondensator und der Spule

Magnetisches Feld

- Grundbegriffe (Magnetfeld, Induktion, Magnetischer Fluss etc.)
- Durchflutungsgesetz
- Berechnung einfacher magnetischer Felder
- Induktionsgesetz, Selbstinduktivität

Wechselstromtechnik (sinusförmige Wechselgrößen)

- Komplexe Wechselstromrechnung, Zeigerdarstellung
- Berechnung einfacher Wechselstromkreise
- Spule und Transformator
- Leistung im Wechselstromkreis
- Tiefpass, Hochpass, Schwingkreis

Baudelemente und deren Anwendungsschaltungen

- Diode, Transistor, Operationsverstärker

Ausgewählte Beispiele aus dem Gebiet der Sensorik und Aktorik

Ergänzend können optional nachfolgende Laborübungen durchgeführt werden:

- Einführung und Umgang mit den Standardgeräten im Elektroniklabor: Multimeter,

Labornetzteil, Funktionsgenerator, Oszilloskop

- Experimenteller Umgang mit einfachen linearen Schaltungen
- Grundlagen der Strom- und Spannungsmessung

BESONDERHEITEN

VORAUSSETZUNGEN

LITERATUR

- Hagmann Gert: Grundlagen der Elektrotechnik; Aula Verlag
- Weißgerber, Wilfried: Elektrotechnik für Ingenieure, Band 1: Gleichstromtechnik und Elektromagnetisches Feld; Vieweg
- Hering, Bressler, Gutekunst: Elektronik für Ingenieure; VDI Verlag
- Goßner Stefan: Grundlagen der Elektronik; Shaker Verlag

Stand vom 01.10.2025 T3WIW2103 // Seite 50

Ausgewählte Managementmethoden (T3WIW2111)

Selected Management Topics

FORMALE ANGABEN ZUM MODUL

MODULNUMMERVERORTUNG IM STUDIENVERLAUFMODULDAUER (SEMESTER)MODULVERANTWORTUNGSPRACHET3WIW21112. Studienjahr1Prof. Dr. Dirk EidamDeutsch/Englisch

EINGESETZTE LEHRFORMEN

LEHRFORMENLEHRMETHODENVorlesung, Übung, LaborLehrvortrag, Diskussion, Gruppenarbeit

EINGESETZTE PRÜFUNGSFORMEN

PRÜFUNGSLEISTUNGPRÜFUNGSUMFANG (IN MINUTEN)BENOTUNGKombinierte Prüfung - Referat und Klausurarbeit (< 50 %)</td>90ja

WORKLOAD UND ECTS-LEISTUNGSPUNKTE

WORKLOAD INSGESAMT (IN H)DAVON PRÄSENZZEIT (IN H)DAVON SELBSTSTUDIUM (IN H)ECTS-LEISTUNGSPUNKTE3001361645

QUALIFIKATIONSZIELE UND KOMPETENZEN

FACHKOMPETENZ

Die Studierenden lernen die Grundlagen, Praxisrelevanz und praktische Anwendungs- und Umsetzungsmöglichkeiten eines ausgewählten Management Themas. Die Studierenden sind mit Abschluss des Moduls in der Lage, zu den in den Modulinhalten aufgeführten Theorien, Modellen und Diskursen, praktische Anwendungsfälle zu definieren und diese in ihrer Komplexität zu erfassen, zu analysieren und die wesentlichen Einflussfaktoren zu definieren.

METHODENKOMPETENZ

Die Absolventen verfügen über das in den Modulinhalten aufgeführte Spektrum an Methoden und Techniken, aus denen sie angemessene Methoden auswählen und anwenden, um neue Lösungen zu erarbeiten.

PERSONALE UND SOZIALE KOMPETENZ

Die Studierenden können sowohl eigenständig, aber auch im Team zielorientiert, verantwortungsbewusst und nachhaltig handeln.

ÜBERGREIFENDE HANDLUNGSKOMPETENZ

Die Studierenden haben mit Abschluss des Moduls die Kompetenzen erworben, ausgewählte Themen und korrespondierende Techniken (je nach Inhalt der gewählten Units) in der Managementpraxis zu bewerten, anzuwenden und durchzuführen.

LERNEINHEITEN UND INHALTE

LEHR- UND LERNEINHEITEN	PRÄSENZZEIT	SELBSTSTUDIUM
Innovationsprojekt	62	88

Innovationsprojekt

- Bedeutung von Innovationen für Unternehmen deren Wettbewerbsfähigkeit
- Faktoren für den Erfolg und Misserfolg von Innovationen
- Quellen für Innovationen
- Methoden der Ideengenerierung und deren Bewertung
- Gestaltung des Innovationsprozesses für das Innovationsprojekt
- Erstellung Innovationsprojektes nach Projektmanagementrichtlinien bzgl. Meilensteinplans...
- Abschlussdokumentation und Präsentation des Innovationsprojektes

Stand vom 01.10.2025 T3WIW2111 // Seite 51

LERNEINHEITEN UND INHALTE

LEHR- UND LERNEINHEITEN	PRÄSENZZEIT	SELBSTSTUDIUM
Management Techniken	74	76

Operations Research

- Begriffe und Modelle
- Teilgebiete und Anwendungen bei Unternehmensentscheidungen
- Methoden u.a. Optimierung, Simplex, Spieltheorie, Grafentheorie, Netzplantechnik
- Optimale Auswahl (Branch and Bound, Risikoanalyse, Wertanalyse, Nutzwertanalyse, Mapi Methode)

Intercultural Communication

- Kommunikationsmuster
- Konfliktmanagement
- Produktive Meetings
- Verhandlungstechniken
- Interkulturelle Kooperation"

Montageplanung und Industrie 4.0

88

62

Montageplanung

- Manuelle Montage und deren Planung
- Mechanisierte Montage und deren Planung
- Automatisiere Montage und deren Planung

Industrie 4.0

- Einführung Industrie 4.0, insbesondere Automatisierung inkl. Labor, falls ein entsprechendes

Labor am Standort vorhanden ist

- Datenmagement
- Unterstützung (AR-Brillen, Kollaborierende Roboter)

BESONDERHEITEN

- In diesem Wahlpflichtmodul sind aktuelle und anwendungsbezogene Management-Themen enthalten, die standortspezifisch ausgewählt und angeboten werden.
- Im Rahmen diese Moduls können verschiedene Dozenten lehren. Diese sind jeweils ausgewiesene Experten in ihrem Fachgebiet.
- Im Rahmen diese Moduls können Exkursionen/Unternehmensbesuche durchgeführt werden.
- Im Rahmen diese Moduls können Labore durchgeführt werden, falls diese am Standort vorhanden sind.

Das Modul besteht aus mehreren Wahlunits. Von diesen ist eine zu wählen.

VORAUSSETZUNGEN

LITERATUR

Bertsimas, D; Tsitsiklis, J.N.: Introduction to Linear Optimization, Athena Scientific

Wolsey, L.: Integer Programming Wiley Interscience Publishing

Neumann, K.; Morlock K.: Operations Research, Carl Hanser

Hamacher, H.; Klamroth, K.: Linear and Network Optimization, Vieweg

Dennett M.: Basic Concepts of Intercultural Communication, N. Breadle International Press

Hofstede, G.; Minkov, M.: Cultures and Organization, McGraw Hill

Kotthoff, H.; Spencer-Oatey, H.: Handbook of Intercultural Communication, de Gruyter

Laroche, L.: Managing Cultural Diversity in Technical Professions, Butterworth Heinemann

Literatur wird aufgrund der Aktualität vor der Veranstaltung bekannt gegeben.

Stand vom 01.10.2025 T3WIW2111 // Seite 52

Ausgewählte Supply Chain Management (SCM) Themen (T3WIW2112)

Selected Supply Chain Management (SCM) Topics

FORMALE ANGABEN ZUM MODUL

MODULNUMMERVERORTUNG IM STUDIENVERLAUFMODULDAUER (SEMESTER)MODULVERANTWORTUNGSPRACHET3WIW21122. Studienjahr1Prof. Dr. Stephan HähreDeutsch/Englisch

EINGESETZTE LEHRFORMEN

LEHRFORMENLEHRMETHODENVorlesung, Übung, Vorlesung, Übung, LaborLehrvortrag, Diskussion, Lehrvortrag, Diskussion, Fallstudien, Lehrvortrag, Diskussion, Gruppenarbeit

EINGESETZTE PRÜFUNGSFORMEN

PRÜFUNGSLEISTUNGPRÜFUNGSUMFANG (IN MINUTEN)BENOTUNGKlausur90ja

WORKLOAD UND ECTS-LEISTUNGSPUNKTE

WORKLOAD INSGESAMT (IN H)DAVON PRÄSENZZEIT (IN H)DAVON SELBSTSTUDIUM (IN H)ECTS-LEISTUNGSPUNKTE3001121885

QUALIFIKATIONSZIELE UND KOMPETENZEN

FACHKOMPETENZ

Die Studierenden lernen die Grundlagen, Praxisrelevanz und praktische Anwendungs- und Umsetzungsmöglichkeiten des jeweiligen SCM-Themas kennen. Die Studierenden sind mit Abschluss des Moduls in der Lage, zu den in den Modulinhalten aufgeführten Theorien, Modellen und Diskursen, praktische Anwendungsfälle zu definieren und diese in ihrer Komplexität zu erfassen, zu analysieren und die wesentlichen Einflussfaktoren zu definieren.

METHODENKOMPETENZ

Die Studierenden verfügen nach Abschluss des Moduls über das in den Modulinhalten aufgeführte Spektrum an Methoden und Techniken, aus denen sie angemessene Methoden auswählen und anwenden, um neue Lösungen in den verschiedenen SCM-Bereichen zu erarbeiten.

PERSONALE UND SOZIALE KOMPETENZ

Die Studierenden können sowohl eigenständig, aber auch im Team zielorientiert, verantwortungsbewusst und nachhaltig handeln.

ÜBERGREIFENDE HANDLUNGSKOMPETENZ

LERNEINHEITEN UND INHALTE

LEHR- UND LERNEINHEITENPRÄSENZZEITSELBSTSTUDIUMProduktion und Logistik50100

- Gundlagen und Erfolgsfaktoren von Produktions- und Logistiksystemen
- Organisation der Produktion
- Stammdaten
- Produktionsprogrammplanung
- Materialbedarfsplanung
- -Losgrößenbildung und Lagerhaltung
- Termin- und Kapazitätsplanung

Stand vom 01.10.2025 T3WIW2112 // Seite 53

LERNEINHEITEN UND INHALTE

LEHR- UND LERNEINHEITENPRÄSENZZEITSELBSTSTUDIUMTechnischer Einkauf50100

Operative Beschaffung:

- Bedarfsermittlung
- Leistungsbeschreibungen
- Beschaffungsprozess
- Lieferantenqualifizierung
- Vertragsverhandlungen
- Qualitätsrichtlinien/-methoden
- Supplier-Performance-Programme
- Optimierung des Beschaffungsprozesses incl. E-Procurement

Strategische Beschaffung:

- Beschaffungskonzepte und Einkaufsstrategien
- Strategische Einkaufsplanung
- Beschaffungsoptimierung
- Analyse und Beobachtung des Beschaffungsmarktes
- Weltweite, strategische Einkaufsinitiativen (Global Sourcing)
- Mittel- und langfristige Bezugsverträge
- Erschließung neuer Lieferquellen
- Target Costing Kalkulation

Produktionssysteme 62 88

Produktionssysteme

- Fertigungstechnologien, falls noch nicht in einem anderen Modul behandelt
- Inhalte zur Montage nur, falls noch nicht in einem anderen Modul behandelt
- Produktionssysteme für Fertigung und Montage (Einführung und Auswahl)
- Werkzeugmaschinen mit Handhabungseinrichtungen
- Montageanlagen mit Industrierobotern und Fördertechnik
- Automatisierung in produktionsnahen Bereichen mittels Industrie 4.0
- Auslegung und Optimierung von Produktionssystemen (Methoden der Digitalen Fabrik,

CNC/CAM, MTM, Wertstromanalyse)

Labor Produktionssysteme (Falls am Standort ein entsprechendes Labor vorhanden ist)

- Grundlagen der Werkzeugmaschinenprogrammierung mit der Laborübung "CNC und CAM"
- Grundlagen der Erstellung von Sonderspannmitteln mit der Laborübung
- "Spannmittelerstellung mittels 3D-Druck"

BESONDERHEITEN

- In diesem Modul sind SCM-Themen enthalten, die standortspezifisch ausgewählt und angeboten werden.
- Im Rahmen diese Moduls können verschiedene Dozenten lehren. Diese sind jeweils ausgewiesene Experten in ihrem Fachgebiet.
- Im Rahmen diese Moduls können Exkursionen/Unternehmensbesuche durchgeführt werden.
- Im Rahmen diese Moduls können Labore durchgeführt werden, falls diese am Standort vorhanden sind.

VORAUSSETZUNGEN

Stand vom 01.10.2025 T3WIW2112 // Seite 54

LITERATUR

- Boutellier, R.: Handbuch Beschaffung, Hanser
- Büsch, M.: Praxishandbuch Strategischer Einkauf, Springer Gabler
- Hofbauer, G.: Technisches Beschaffungsmanagement, Springer Gabler
- Krokowski, W., Sander, E.: Global Sourcing und Qualitätsmanagement, dbv
- Sorge, G.: Verhandeln im Einkauf: Praxiswissen für Einsteiger und Profis, Springer Gabler
- Weigel, U.; Rücker, M.: Praxisguide Strategischer Einkauf, Springer Gabler

Artikal.

- Fisher, M.: What Is the Right Supply Chain for Your Product? Harvard Business Review.
- Feitzinger, E. / Lee, H.: Mass Customization at Hewlett-Packard: The Power of Postponement, Harvard Business Review.
- Slone, R.: Leading a Supply Chain Turnaround, Harvard Business Review.
- Ferdows: Rapid-Fire Fulfillment, Harvard Business Review (Zara Case Study).

Literatur:

- Tempelmeier, H; Günther, H.-O.: Produktion und Logistik, Springer Verlag
- Simchi-Levi, D.; Kaminsky, P.: Designing And Managing the Supply Chain / Managing the Supply Chain
- Cachon, G. / Terwiesch, C.: Matching Supply with Demand: An Introduction to Operations Management
- Gudehus, T.: Logistik. Grundlagen, Strategien, Anwendungen. Springer Verlag Berlin Heidelberg
- Heizer, J.: Operations Management, Prentice Hall
- Krajewski, L.; Ritzman, L. and Malhotra M.: Operations Management, Prentice Hall

Literatur wird aufgrund der Aktualität vor der Veranstaltung bekannt gegeben.

Stand vom 01.10.2025 T3WIW2112 // Seite 55

Technische Physik (T3WIW9005)

Engineering Physics

FORMALE ANGABEN ZUM MODUL

MODULNUMMERVERORTUNG IM STUDIENVERLAUFMODULDAUER (SEMESTER)MODULVERANTWORTUNGSPRACHET3WIW90052. Studienjahr1Prof . Dr. Christian WachtenDeutsch/Englisch

EINGESETZTE LEHRFORMEN

 LEHRFORMEN
 LEHRMETHODEN

 Vorlesung, Übung
 Lehrvortrag, Diskussion, Gruppenarbeit

EINGESETZTE PRÜFUNGSFORMEN

PRÜFUNGSLEISTUNGPRÜFUNGSUMFANG (IN MINUTEN)BENOTUNGKlausur oder Kombinierte Prüfung90ja

WORKLOAD UND ECTS-LEISTUNGSPUNKTE

WORKLOAD INSGESAMT (IN H)
DAVON PRÄSENZZEIT (IN H)
DAVON SELBSTSTUDIUM (IN H)
ECTS-LEISTUNGSPUNKTE
88
5

QUALIFIKATIONSZIELE UND KOMPETENZEN

FACHKOMPETENZ

Die Studierenden verstehen die physikalischen Grundprinzipien der Technischen Optik und können diese im Rahmen von zugehörigen Bauelementen bewerten. Sie verstehen die Grundlagen der Strömungslehre und der Technischen Mechanik und können diese auf einfache technische Systeme anwenden. Sie verstehen die Grundprinzipien der Thermodynamik und können diese zur rechneri-schen Bewertung von technischen Problemstellungen bewerten und ggf.

METHODENKOMPETENZ

Die Studierenden sind mit Abschluss des Moduls in der Lage, für weitgehend standardisierte Anwendungsfälle in der Praxis die angemessene Methode auszuwählen und anzuwenden. Sie kennen die Stärken und Schwächen der Methode in ihrem beruflichen Anwendungsfeld und können diese in konkreten Handlungssituationen gegeneinander abwägen.

PERSONALE UND SOZIALE KOMPETENZ

Die Studierenden haben ihre eigene Sicht auf physikalische Phänomene im Alltag reflektiert. Sie sind sich bewusst über die Risiken und Möglichkeiten der Physik.

Die Studierenden reflektieren die in den Modulinhalten angesprochenen Theorien und Modelle in Hinblick auf die damit verbundene soziale, ethische und ökologische Verantwortung.

ÜBERGREIFENDE HANDLUNGSKOMPETENZ

Die Studierenden sind in der Lage, sich im Verlaufe ihrer beruflichen Tätigkeit in weiterführende Problemstellungen der Thermodynamik, Technischen Mechanik, Technischen Optik und Strömungslehre selbstständig einzuarbeiten.

LERNEINHEITEN UND INHALTE

LEHR- UND LERNEINHEITEN	PRÄSENZZEIT	SELBSTSTUDIUM
Technische Physik	62	88

Stand vom 01.10.2025 T3WIW9005 // Seite 56

LEHR- UND LERNEINHEITEN PRÄSENZZEIT SELBSTSTUDIUM

Thema 1: Technische Thermodynamik

Grundzüge der Technischen Thermodynamik

- Grundbegriffe, Hauptsätze der Thermodynamik
- Zustandsgleichungen idealer Gase, Energiebilanzen
- Formulierungen des 2. Hauptsatzes, Entropie
- Kreisprozesse und Anwendungsbeispiele
- Einführung in den Wärmetransport

Thema 2: Technische Mechanik (kann optional angeboten werden!)

Grundzüge der Technischen Mechanik

- Grundbegriffe der Technischen Mechanik
- Einführung in die Statik
- Einführung in die Dynamik
- Einführung in die Festigkeitslehre

Thema 3: Technische Optik (kann optional angeboten werden!)

Grundbegriffe der Technischen Optik

- Einführung in die geometrische Optik
- Einführung in die Wellenoptik und Schwingungen

Thema 4: Technische Strömungslehre (kann optional angeboten werden!)

Grundbegriffe der Technischen Strömungslehre

- Einführung in die grundlegenden Begriffe (Druck, Viskosität) und Einheiten
- Kurze Einführung in die Hydrostatik
- Einführung in die Kontinuitätsströmungen
- Energetische Strömungsansätze (Bernoulli) und ihre Beschränkungen
- Verwendung von Kennzahlen

BESONDERHEITEN

- Referate aus den oben angeführten Themen (10-15 Minuten) können die Vorlesung und das Selbststudium ergänzen.
- Es können zusätzlich zu den aufgeführten Lehr- und Lerneinheiten entsprechende Labore und vertiefende Tutorien angeboten werden.

VORAUSSETZUNGEN

Mathematik

LITERATUR

- Harten, U.: Physik Eine Einführung für Ingenieure und Naturwissenschaftler, Springer Vieweg
- Böge, A., Eichler, J.: Physik für technische Berufe, Vieweg + Teubner
- Schröder, G., Treiber, H.: Technische Optik: Grundlagen und Anwendungen, Vogel Fachbuch
- Heidemann, W.: Technische Thermodynamik: Kompaktkurs für das Bachelorstudium, Wiley
- Langeheinecke, K. et al.: Thermodynamik für Ingenieure: Ein Lehr- und Arbeitsbuch für das Studium, Springer Vieweg
- Cerbe, G., Wilhelms, G.: Technische Thermodynamik: Theoretische Grundlagen und praktische Anwendungen, Hanser
- Becker, E., Piltz, E.: Technische Strömungslehre, Springer Teubner
- Bschorer, S.: Technische Strömungslehre: Lehr- und Übungsbuch, Springer Vieweg
- Gross, D. et al.: Technische Mechanik, Band 1-4, Springer Vieweg

Stand vom 01.10.2025 T3WIW9005 // Seite 57

Vernetzte Systeme (T3WIW9012)

Intelligent Networked Systems

FORMALE ANGABEN ZUM MODUL

MODULNUMMERVERORTUNG IM STUDIENVERLAUFMODULDAUER (SEMESTER)MODULVERANTWORTUNGSPRACHET3WIW90122. Studienjahr1Prof. Dr.-lng. Hansgert HascherDeutsch/Englisch

EINGESETZTE LEHRFORMEN

 LEHRFORMEN
 LEHRMETHODEN

 Vorlesung
 Lehrvortrag, Diskussion, Gruppenarbeit

EINGESETZTE PRÜFUNGSFORMEN

PRÜFUNGSLEISTUNGPRÜFUNGSUMFANG (IN MINUTEN)BENOTUNGHausarbeit oder Kombinierte Prüfung (Klausur <50%)</td>90ja

WORKLOAD UND ECTS-LEISTUNGSPUNKTE

WORKLOAD INSGESAMT (IN H)DAVON PRÄSENZZEIT (IN H)DAVON SELBSTSTUDIUM (IN H)ECTS-LEISTUNGSPUNKTE15062885

QUALIFIKATIONSZIELE UND KOMPETENZEN

FACHKOMPETENZ

Die Studierenden verstehen die Grundprinzipien der vernetzten digitalen Systeme und können diese, unter Berücksichtigung der zugehörigen Bauelemente bewerten und ggf. anwenden.

Die Studierenden können mit ihren erworbenen Kenntnissen über die Entwicklung und das Management von heterogenen Kommunikations- und Datennetzwerken aus Aufgabenstellungen effektive Rechner-Netzlösungen erzeugen und diese für einen konkreten Anwendungsfall optimieren.

METHODENKOMPETENZ

Die Studierenden sind in der Lage, sich im Verlaufe ihrer beruflichen Tätigkeit in weiterführende Problemstellungen der vernetzten Systeme selbständig einzuarbeiten. Sie sind in der Lage, sich im Verlaufe ihrer beruflichen Tätigkeit in weiterführende Problemstellungen der vernetzten digitalen Systeme selbständig einzuarbeiten. Die Vorlesungsinhalte sind durch Übungen im Selbststudium zu festigen und zu vertiefen.

PERSONALE UND SOZIALE KOMPETENZ

Sie können ein Problem eigenständig aufbereiten und dokumentierte Lösungen erarbeiten. Sie erkennen wichtige gesellschaftliche Bedeutungen im Anwendungsbereich digitaler Systeme und können soziale und gesellschafts-politische Auswirkungen bewerten und diskutieren.

ÜBERGREIFENDE HANDLUNGSKOMPETENZ

Die Studierenden haben durch die Vertiefung einzelner Sachgebiete und die Verknüpfung mit bisherigen Wissensbereichen erweiterte Handlungskompetenzen aufgebaut, welches z.B. in qualifizierter Projektverantwortung genutzt werden kann. Sie können qualifiziert selbstständig Problemlösungen im Bereich der vernetzten digitalen Systeme entwickeln, begründen und umsetzen. Die Studierenden sind in der Lage aktuelle Wertschöpfungsprozesse zu bewerten und zukünftige gewinnbringende Anwendungen zu erkennen und zu bewerten.

LERNEINHEITEN UND INHALTE

LEHR- UND LERNEINHEITEN	PRÄSENZZEIT	SELBSTSTUDIUM
Vernetzte Systeme	62	88

Stand vom 01.10.2025 T3WIW9012 // Seite 58

LEHR- UND LERNEINHEITEN PRÄSENZZEIT SELBSTSTUDIUM

Grundlagen des Netzwerkengineerings und -managements

- Protokolle und IP-Konfiguration,
- physikalisches Design und strukturierter Verkabelungsaufbau
- NWE und NWM-Tools

Grundlagen mobiler Kommunikation

- Multiplex- und Medienzugriffsverfahren
- Mobilfunkstandards: 2G, 3G, 4G, 5G
- lokale, statische und Piko-Netze
- SatelliTen-basierte Netze
- Schichten und Dienste
- (Message-Queuing, mobile DB, Methoden spontaner Vernetzung)

New Generation Networks, Quality-of-Service-Methoden und neue Techniken in IP-Netzwerken

- fortschrittliche Dienste und Protokolle
- Multimediale und hochleistungs Netzanwendungen
- fortgeschritten Routing- und Switching-Techologien, iPv6
- Internet Security

Embedded Intelligent Systems

- Arten von Berechnungsmodellen (Bewegungs –und Aktionsmodelle)
- Zustandsschätzungen und Mechanismen zur Datenassoziation
- Übersicht über Programmiermethoden und –techniken
- Beispielmethoden und ausführungen

Grundzüge autonomer Systeme

- Weltmodell und Objekt- und Lageerkennung
- Bahnplanung und Lösungsverfahren
- Anwendungen und technische Ausführungen

BESONDERHEITEN

Referate aus den oben angeführten Bereichen (10-15 Minuten) können die Vorlesung und das Selbststudium ergänzen. Ebenso kann ein Teil der Vorlesung als Labor oder im Unternehmen absolviert werden.

VORAUSSETZUNGEN

LITERATUR

- Frisch, Hölzl, Lintermann, Schäfer: Vernetzte IT-Systeme (Übersicht über einf. Basiswissen)
- Johanning, Car IT kompakt: Das Auto der Zukunft Vernetzt und autonom fahren, Springer
- Lehnhoff, Dezentrales vernetztes Energiemanagement, Vieweg
- Jung, Kraft, Digital vernetzt. Transformation der Wertschöpfung. (Geschäftsmodell-Bezug).
- Manzel, Schleupner, Industrie 4.0 im intern. Kontext. Konzepte, Trends. VDE

Stand vom 01.10.2025 T3WIW9012 // Seite 59

IT-gestützte Modellbildung (T3WIW9016)

IT-Based Modeling

FORMALE ANGABEN ZUM MODUL

MODULNUMMERVERORTUNG IM STUDIENVERLAUFMODULDAUER (SEMESTER)MODULVERANTWORTUNGSPRACHET3WIW90162. Studienjahr2Prof. Dr.-Ing. Michael SchneiderDeutsch/Englisch

EINGESETZTE LEHRFORMEN

LEHRFORMEN LEHRMETHODEN

Vorlesung, Übung Lehrvortrag, Diskussion, Fallstudien

EINGESETZTE PRÜFUNGSFORMEN

PRÜFUNGSLEISTUNGPRÜFUNGSUMFANG (IN MINUTEN)BENOTUNGKlausur oder Kombinierte Prüfung90ja

WORKLOAD UND ECTS-LEISTUNGSPUNKTE

WORKLOAD INSGESAMT (IN H)DAVON PRÄSENZZEIT (IN H)DAVON SELBSTSTUDIUM (IN H)ECTS-LEISTUNGSPUNKTE15064865

QUALIFIKATIONSZIELE UND KOMPETENZEN

FACHKOMPETENZ

Grundlegendes Verständnis der Prinzipien zur Modellierung geometrischer, zeitlicher und technischer Probleme aus verschiedenen Bereichen von Unternehmen.

Kenntnisse über CAD/CAE-Systeme zur Modellierung und Lösung entsprechender Problemstellungen.

Geschäftsprozesse identifizieren, geeignete Systeme und Methoden zur Modellierung kennen bzw. bestimmen.

Möglichkeiten und Grenzen von CAE-Systemen erkennen und die Einsatzmöglichkeiten für Unternehmen identifizieren.

Geschäftsprozesse identifizieren, abbilden und analysieren.

Möglichkeiten und Grenzen der Unterstützung und Automatisierung von Geschäftsprozessen

Datenbedarf und Parametrisierung von ERP-Systemen.

Leistungsfähigkeit hierarchischer, deterministischer Planungssysteme.

Aufbau und Datenbasis eines MRP II-Systems

METHODENKOMPETENZ

Verständnis der planmäßigen Vorgehensweise beim Umgang, Generierung und Veränderungen von Modellen in den entsprechenden IT gestützten Systemen, die im Handlungsfeld des Wirtschaftsingenieurwesens von Relevanz sind.

PERSONALE UND SOZIALE KOMPETENZ

Beurteilung der persönlichen, gesellschaftlichen und unternehmerischen Relevanz von Daten, Informationen und Wissen. Kompetenz in der Kommunikation mit Experten aus dem entsprechenden Bereich.

ÜBERGREIFENDE HANDLUNGSKOMPETENZ

Erstellen von Modellen auf Basis der betriebswirtschaftlichen und ingenieurmäßigen Grundlagen aus verschiedenen Fachdisziplinen in den entsprechenden IT Plattformen. Umgang und Übertrag der entsprechenden fachlichen Sachverhalte in die IT gestützten Modelle.

LERNEINHEITEN UND INHALTE

LEHR- UND LERNEINHEITEN	PRÄSENZZEIT	SELBSTSTUDIUM
ERP Systeme	38	52

Stand vom 01.10.2025 T3WIW9016 // Seite 60

LERNEINHEITEN UND INHALTE

LEHR- UND LERNEINHEITEN PRÄSENZZEIT SELBSTSTUDIUM

- Bedeutung des Geschäftsprozessmanagements
- Methodik des Geschäftsprozessmanagements (Identifikation, Dokumentation und systematische Verbesserung)
- Geschäftsprozesse planen, steuern und optimieren.
- Basis des Modellbildung von Geschäftsprozessen in ERP Systmen
- Integrierte Unternehmenssoftware: Konzeption der hierarchischen deterministischen Planung
- Abbildung des Informations-, Material- und Finanzflusses in ERP-Systemen

Modellbildung mit CAD Systemen

26

34

Einführung in die Benutzung eines CAD-Tools und die rechnergestützte geometrische Modellbildung:

- Vorgehensweise zur Erstellung von Einzelteil-Volumenmodellen
- Erstellung von Normteilen
- Anwendung und Konstruktion; Normteil-Bibliotheken
- Erstellen von Baugruppe
- Grundlagen des Datenmanagements
- Darstellung von Einzelteilzeichnungen: Bemaßung, Toleranzen, Kantenzustände, technische Oberflächen, etc.
- Anwendung der Gestaltungslehre: verfahrensspezifische Detaillierung von Bauteilen an ausgewählten technischen Systemen

Modellbildung in Matlab

26

34

- Grundlagen der Modellbildung in Matlab
- Einführung in die Simlationssprache Matlab
- Grundzüge von Simulink
- Simulationskonzepte, Simulationsmethodik
- Beispiele z.B. aus der numerischen Mathematik, der Elektrotechnik, der technischen Mechanik
- Simulation dynamischer Systeme

BESONDERHEITEN

-

VORAUSSETZUNGEN

LITERATUR

- Benz, Jochen und Höflinger, Markus: Logistikprozesse mit SAP®: Eine anwendungsbezogene Einführung - Mit durchgehendem Fallbeispiel - Geeignet für SAP Version 4.6A

bis ERP 2005. Vieweg+Teubner Verlag.

- Gronau, Norbert: Architektur, Funktionen und Management von ERP-Systemen. Oldenbourg.
- Magal, Simha R. / Word, Jeffrey Integrated Business Processes with ERP Systems. Wiley VCH.
- Kramer, U.; Neculau, M.: Simulationstechnik. Fachbuchverlag Leipzig
- Acker, B.; Bartz, W. J.; Mesenholl, H.-J.; Wippler, E.: Simulationstechnik: Grundlagen und praktische Anwendungen. Expert Verlag Renningen
- Pietruszka, W. D.: MATLAB und SIMULINK. Pearson Studium München
- Angermann, A.; Beuschel, M.; Rau, M.; Wohlfahrt, U.: Matlab -

Simulink – Stateflow. Oldenbourg Verlag München, Wien.

- Schweizer, W.: Matlab kompakt. Oldenbourg Verlag München, Wien.

Onstott, Kommer; AutoCAD 2015 und AutoCAD LT 2015: Das offizielle Trainingsbuch

Engelken, Wagner; Unigraphics -Praktikum mit NX5: Modellieren mit durchgängigem Projektbeispiel

Stand vom 01.10.2025 T3WIW9016 // Seite 61

Fallstudie Businessplan (T3WIW9045)

Case Study Businessplan

FORMALE ANGABEN ZUM MODUL

MODULNUMMERVERORTUNG IM STUDIENVERLAUFMODULDAUER (SEMESTER)MODULVERANTWORTUNGSPRACHET3WIW90453. Studienjahr2Prof. Dr. Andreas FöhrenbachDeutsch/Englisch

EINGESETZTE LEHRFORMEN

LEHRFORMENLEHRMETHODENVorlesung, Übungblended-learning, Fallstudien

EINGESETZTE PRÜFUNGSFORMEN

PRÜFUNGSLEISTUNGPRÜFUNGSUMFANG (IN MINUTEN)BENOTUNGHausarbeit oder Kombinierte Prüfung (Klausur <50%)</td>120ja

WORKLOAD UND ECTS-LEISTUNGSPUNKTE

WORKLOAD INSGESAMT (IN H)DAVON PRÄSENZZEIT (IN H)DAVON SELBSTSTUDIUM (IN H)ECTS-LEISTUNGSPUNKTE150501005

QUALIFIKATIONSZIELE UND KOMPETENZEN

FACHKOMPETENZ

Die Studierenden sind mit Abschluss des Moduls in der Lage, für komplexe Praxisanwendungen eine angemessene Methode auszuwählen und anzuwenden. So können die Möglichkeiten, Praktikabilität und Grenzen der eingesetzten Methode einschätzen und sind in der Lage, Handlungsalternativen aufzuzeigen.

METHODENKOMPETENZ

Ideenfindung und -beurteilung bzgl. neuer Herausforderungen und Geschäftsideen - Ausarbeitung eines kompletten Businessplans incl. Dokumentation, Erfolgsrechnung und Präsentation - Der Weg von der Idee über die Geschäftsidee zum Unternehmen

PERSONALE UND SOZIALE KOMPETENZ

Aufbau und Präsentation eines Gründerteams incl. Selbstpräsentation

ÜBERGREIFENDE HANDLUNGSKOMPETENZ

Der Student erfährt die Zusammenhänge der Marktwirtschaft und des Unternehmertums in seiner Gesamtheit anhand des eigenen Projektes. Er lernt Projekte und wirtschaftliche Betrachtungen in seiner Umgebung ganzheitlicher und reflektierter zu beurteilen.

LERNEINHEITEN UND INHALTE

LEHR- UND LERNEINHEITEN	PRÄSENZZEIT	SELBSTSTUDIUM
Fallstudie Businessplan 1	30	60
Entwicklung einer neuen Geschäftsidee - Ausarbeitung eines Businessplans incl. Dokumentation und Präsentation. Idee, Produkt, Markt, Marketing, Unternehmensorganisation, Chancen-Risiken		
Fallstudie Businessplan 2	20	40
Mallindation sizes Divisional Law Enfolsons become in all Fündans a distriction and Figure 2		

Kalkulation eines Businessplans, Erfolgsrechnung incl. Fördermöglichkeiten und Finanzierung

BESONDERHEITEN

VORAUSSETZUNGEN

Stand vom 01.10.2025 T3WIW9045 // Seite 62

LITERATUR

Stand vom 01.10.2025 T3WIW9045 // Seite 63

⁻ P. Willer: Businessplan und Markterfolg eines Geschäftskonzepts, Deutscher Universitätsverlag - Gründerleitfaden, VDI/VDE Innovation und Technik GmbH - A. Nagel: Der Businessplan, Gabler - Paxmann , Stephan A. / Fuchs , Gerhard: Der unternehmensinterne

Grundlagen Digitaler Transformation (T3WIW9137)

Foundation in Digital Transformation

FORMALE ANGABEN ZUM MODUL

MODULNUMMERVERORTUNG IM STUDIENVERLAUFMODULDAUER (SEMESTER)MODULVERANTWORTUNGSPRACHET3WIW91373. Studienjahr1Prof. Dr. Clemens HeiligDeutsch/Englisch

EINGESETZTE LEHRFORMEN

LEHRFORMENLEHRMETHODENVorlesung, ÜbungLehrvortrag, Diskussion, Lehrvortrag, Diskussion, Fallstudien

EINGESETZTE PRÜFUNGSFORMEN

PRÜFUNGSLEISTUNGPRÜFUNGSUMFANG (IN MINUTEN)BENOTUNGKlausur120ja

WORKLOAD UND ECTS-LEISTUNGSPUNKTE

WORKLOAD INSGESAMT (IN H)DAVON PRÄSENZZEIT (IN H)DAVON SELBSTSTUDIUM (IN H)ECTS-LEISTUNGSPUNKTE15072785

QUALIFIKATIONSZIELE UND KOMPETENZEN

FACHKOMPETENZ

Nach Abschluss des Modul kennen die Studierenden die Begriffe "Internet of Things" und "Big Data". Sie können diese Begriffe in den Gesamtkontext von Industrie 4.0 einordnen.

METHODENKOMPETENZ

Die Studierenden kennen die wesentlichen Methoden und Verfahren der Digitalen Transformation. Sie können darüberhinaus wesentliche Methoden und Verfahren der Digitalen Transformation auf übliche Problemstellungen anwenden.

PERSONALE UND SOZIALE KOMPETENZ

-

ÜBERGREIFENDE HANDLUNGSKOMPETENZ

_

LERNEINHEITEN UND INHALTE

LEHR- UND LERNEINHEITEN	PRÄSENZZEIT	SELBSTSTUDIUM
Big Data	36	39

Stand vom 01.10.2025 T3WIW9137 // Seite 64

LEHR- UND LERNEINHEITEN PRÄSENZZEIT SELBSTSTUDIUM

Big Data Programming

- Einführung in das Themengebiet Big Data-Programmierung
- Erläuterung der horizontalen Skalierung von Systemen bei der Verarbeitung digitaler

Massendaten

- Einführung in die verteilte Verarbeitung digitaler Massendaten
- Einführung in Batch- und Stromverarbeitung
- Vorstellung aktueller Frameworks, Bibliotheken, Programmiersprachen, etc.
- Umsetzung von Praxisbeispielen

Big Data Storage

- Einführung in das Themengebiet Big Data-Storage
- Erläuterung der horizontalen Skalierung von Systemen bei der Speicherung digitaler

Massendater

- Einführung in die Speicherung digitaler Massendaten unter Nutzung verschiedener Speicherund Zugriffsarten (Dateisysteme, Datenbanken, etc.)
- Vorstellung aktueller Frameworks, Bibliotheken, Programmier- und Abfragesprachen, etc.
- Umsetzung von Praxisbeispielen

Internet of Things 36 39

- Einführung in IoT
- Anwendungsgebiete
- Technologien (auf einer aktuellen IoT-Plattform)
- Kommunikationsprotokolle
- Sensorik und Datenerfassung
- Plattformen

ES					

VORAUSSETZUNGEN

LITERATUR

- Engelhardt, E.: Internet of Things Manifest: Das Handbuch zur digitalen Weltrevolution: 50+ Projekte für Arduino™, ESP8266 und Raspberry Pi, Franzis Verlag
- Sprenger, F.; Engemann, C.: Internet der Dinge: Über smarte Objekte, intelligente Umgebungen und die technische Durchdringung der Welt, transcript
- Ruppert, S.: IoT für Java-Entwickler, entwickler.press
- Marz, N.; Warren, J.: Big Data: Principles and best practices of scalable realtime data systems, Manning
- Provost, F.; Fawcett, T.: Data Science for Business: What you need to know about data mining and data-analytic thinking, O'Reilly and Associates
- Mayer-Schönberger, M.: Big Data: A Revolution That Will Transform How We Live, Work and Think, Hodder and Stoughton Ltd.
- Marr, B.: Big Data: Using Smart Big Data, Analytics and Metrics To Make Better Decisions and Improve Performance, John Wiley & Sons

Stand vom 01.10.2025 T3WIW9137 // Seite 65

Digitalisierung in Produktion und Logistik (T3WIW9165)

Digitisation in Production and Logistics

FORMALE ANGABEN ZUM MODUL

MODULNUMMERVERORTUNG IM STUDIENVERLAUFMODULDAUER (SEMESTER)MODULVERANTWORTUNGSPRACHET3WIW91653. Studienjahr1Prof. Dr.-lng. Dirk OstermayerDeutsch

EINGESETZTE LEHRFORMEN

LEHRFORMENLEHRMETHODENVorlesung, ÜbungLehrvortrag, Diskussion, Gruppenarbeit

EINGESETZTE PRÜFUNGSFORMEN

PRÜFUNGSLEISTUNGPRÜFUNGSUMFANG (IN MINUTEN)BENOTUNGKlausur oder Kombinierte Prüfung90ja

WORKLOAD UND ECTS-LEISTUNGSPUNKTE

WORKLOAD INSGESAMT (IN H)

DAVON PRÄSENZZEIT (IN H)

DAVON SELBSTSTUDIUM (IN H)

ECTS-LEISTUNGSPUNKTE

88

5

QUALIFIKATIONSZIELE UND KOMPETENZEN

FACHKOMPETENZ

Die Studierenden kennen mit Abschluss des Moduls Grundlagen der Digitalisierung von Produktions- und Logistikprozessen und können diese im betrieblichen Umfeld anwenden. Sie können Lösungen zur Digitalisierung von Arbeits- und Produktionssystemen sowie zur Digitalisierung von Logistiksystemen beschreiben, einordnen, mitgestalten und bewerten. Sie sind in der Lage, Zusammenhänge von Sicherheit und Digitalisierung zu interpretieren und können diese zuordnen.

METHODENKOMPETENZ

Die Studierenden sind mit Abschluss des Moduls in der Lage, für weitgehend standardisierte Anwendungsfälle in der Praxis die angemessene Methode auszuwählen und anzuwenden. Sie kennen die Stärken und Schwächen der Methode in ihrem beruflichen Anwendungsfeld und können diese in konkreten Handlungssituationen gegeneinander abwägen.

PERSONALE UND SOZIALE KOMPETENZ

ÜBERGREIFENDE HANDLUNGSKOMPETENZ

LERNEINHEITEN UND INHALTE

LEHR- UND LERNEINHEITENPRÄSENZZEITSELBSTSTUDIUMDigitalisierung in Produktion und Logistik6288

- Grundlagen der Digitalisierung (bspw. Cyberphysische Systeme, Identifikationssysteme)
- Digitalisierung von Arbeits- und Produktionssystemen (bspw. Mensch-Roboter-Arbeitsplätze, visuelle Assistenzen, Cyberphysische Produktionssysteme, Digitale Fabrik)
- Digitalisierung von Logistiksystemen (bspw. (autonome) Materialflusssysteme, digitalisierte Lagertechnik
- Sicherheit und Digitalisierung

BESONDERHEITEN

Die Prüfungsdauer gilt für die Klausur.

Stand vom 01.10.2025 T3WIW9165 // Seite 66

LITERATUR

- Bousonville, T.: Logistik 4.0, Wiesbaden: Springer Schenk, M. (Hrsg.): Produktion und Logistik mit Zukunft, Berlin: Springer Vogel-Heuser, B./Bauernhansl, T./ten Hompel, M. (Hrsg.) Handbuch Industrie 4.0, Band 1 bis 4, Berlin: Springer Vieweg Westkämper, E./Spath, D./Constantinescu, C./Lentes, J.: Digitale Produktion, Berlin: Springer Vieweg

Stand vom 01.10.2025 T3WIW9165 // Seite 67

Bachelorarbeit (T3_3300)

Bachelor Thesis

EORM	$\Lambda I = \Lambda$	NCAR	ENI 711N	I MODIII

 MODULNUMMER
 VERORTUNG IM STUDIENVERLAUF
 MODULDAUER (SEMESTER)
 MODULVERANTWORTUNG
 SPRACHE

 T3_3300
 3. Studienjahr
 1
 Prof. Dr.-lng, Joachim Frech

EINGESETZTE LEHRFORMEN

LEHRFORMEN LEHRMETHODEN
Individualbetreuung Projekt

EINGESETZTE PRÜFUNGSFORMEN

PRÜFUNGSLEISTUNGPRÜFUNGSUMFANG (IN MINUTEN)BENOTUNGBachelor-ArbeitSiehe Pruefungsordnungja

WORKLOAD UND ECTS-LEISTUNGSPUNKTE

WORKLOAD INSGESAMT (IN H)DAVON PRÄSENZZEIT (IN H)DAVON SELBSTSTUDIUM (IN H)ECTS-LEISTUNGSPUNKTE360635412

QUALIFIKATIONSZIELE UND KOMPETENZEN

FACHKOMPETENZ

METHODENKOMPETENZ

PERSONALE UND SOZIALE KOMPETENZ

ÜBERGREIFENDE HANDLUNGSKOMPETENZ

Die Studierenden erfassen industrielle Problemstellungen in einem breiten Kontext und in realistischer Komplexität. Sie haben ein gutes Verständnis von organisatorischen und inhaltlichen Zusammenhängen sowie von Organisationsstrukturen, Produkten, Verfahren, Maßnahmen, Prozessen, Anforderungen und gesetzlichen Grundlagen. Sie analysieren kritisch, welche Einflussfaktoren zur Lösung des Problems beachtet werden müssen und können beurteilen, inwiefern theoretische Modelle einen Beitrag zur Lösung des Problems leisten können. Die Studierenden können sich selbstständig, nur mit geringer Anleitung in theoretische Grundlagen eines Themengebiets vertiefend einarbeiten und den allgemeinen Stand des Wissens erwerben. Sie können auf der Grundlage von Theorie und Praxis selbstständig Lösungen entwickeln und Alternativen bewerten. Sie sind in der Lage eine wissenschaftliche Arbeit als Teil eines Praxisprojektes effizient zu steuern und wissenschaftlich korrekt und verständlich zu dokumentieren.

Die Studierenden zeichnen sich durch Eigenverantwortung und Tatkraft aus, sie sind auch im Kontext einer globalisierten Arbeitswelt handlungsfähig. Sie weisen eine reflektierte Haltung zu gesellschaftlichen, soziale und ökologischen Implikationen des eigenen Handelns auf.

LERNEINHEITEN UND INHALTE

	SEEDSTSTODION	
Bachelorarbeit 6	354	

BESONDERHEITEN

Es wird auf die "Leitlinien für die Bearbeitung und Dokumentation der Module Praxisprojekt I bis III, Studienarbeit und Bachelorarbeit" der Fachkommission Technik der DHBW hingewiesen.

Stand vom 01.10.2025 T3_3300 // Seite 68

LITERATUR

Kornmeier, M., Wissenschaftlich schreiben leicht gemacht für Bachelor, Master und Dissertation, Bern

Stand vom 01.10.2025 T3_3300 // Seite 69

Höhere Mathematik (T3WIW9001)

Higher Mathematics

FORMALE ANGABEN ZUM MODUL

MODULNUMMERVERORTUNG IM STUDIENVERLAUFMODULDAUER (SEMESTER)MODULVERANTWORTUNGSPRACHET3WIW90013. Studienjahr1Prof. Dr. rer. nat. Gerrit NandiDeutsch/Englisch

EINGESETZTE LEHRFORMEN

LEHRFORMENLEHRMETHODENVorlesung, Übung, LaborLehrvortrag, Diskussion, Gruppenarbeit

EINGESETZTE PRÜFUNGSFORMEN

PRÜFUNGSLEISTUNGPRÜFUNGSUMFANG (IN MINUTEN)BENOTUNGKlausur oder Kombinierte Prüfung90ja

WORKLOAD UND ECTS-LEISTUNGSPUNKTE

WORKLOAD INSGESAMT (IN H)DAVON PRÄSENZZEIT (IN H)DAVON SELBSTSTUDIUM (IN H)ECTS-LEISTUNGSPUNKTE15062885

QUALIFIKATIONSZIELE UND KOMPETENZEN

FACHKOMPETENZ

Die Studierenden kennen und verstehen ausgewählte Teilgebiete der Höheren Mathematik und können diese auf technische und wirtschaftliche Fragestellungen anwenden.

METHODENKOMPETENZ

Die erlernten Methoden der Höheren Mathematik ermöglichen es den Studierenden, komplexe Problemstellungen strukturiert und systematisch anzugehen.

PERSONALE UND SOZIALE KOMPETENZ

ÜBERGREIFENDE HANDLUNGSKOMPETENZ

Durch Einüben abstrakter Denkweisen sind die Studierenden in der Lage, komplexe Probleme zu analysieren und zielgerichtete Schlussfolgerungen zu ziehen.

LERNEINHEITEN UND INHALTE

LEHR- UND LERNEINHEITEN	PRÄSENZZEIT	SELBSTSTUDIUM
Höhere Mathematik	62	88

Didaktisch sinnvolle Auswahl, aus den folgenden Themengebieten (wird auf die Vorkenntnisse und Bedürfnisse der Studierenden abgestimmt):

- Vertiefung lineare Algebra
- Vektoranalysis und Anwendungen
- Vertiefung Integralrechnung (z.B. Mehrfachintegrale, Kurvenintegrale, Anwendungen)
- Funktionalanalysis, Hilbert-Räume, Fourierreihen und Fouriertransformation, Anwendungen
- Vertiefung gewöhnliche Differentialgleichungen (z.B. weitere Typen, Zustandsraum,

Stabilität, Anwendungen)

- Partielle Differentialgleichungen (auch am Computer) und Anwendungen
- Komplexe Funktionen und Anwendungen
- Numerische Methoden
- Modellbildung und Simulation technischer Systeme (auch am Computer)

BESONDERHEITEN

Als Teil der Präsenzzeit können Computerlabore, z.B. für praktische Übungen, eingeplant werden. Tutorien und Übungen runden die Veranstaltung ab.

Stand vom 01.10.2025 T3WIW9001 // Seite 70

VORAUSSETZUNGEN

Mathematik I, Mathematik II, Mathematik III

LITERATUR

- Papula, Lothar:

Mathematik für Ingenieure und Naturwissenschaftler, Band 2 und 3; Vieweg.

- Papula, Lothar:
- Mathematik für Ingenieure und Naturwissenschaftler, Klausur- und Übungsaufgaben; Vieweg.

 Burg, K., H. Haf, F. Wille und A.Meister: Höhere Mathematik für Ingenieure, Band II bis V, Springer Vieweg.

 -Meyberg, Kurt und Peter Vachenauer:

 Höhere Mathematik 1 und 2; Springer-Lehrbuch.

Stand vom 01.10.2025 T3WIW9001 // Seite 71

Nachhaltige Energieversorgung (T3WIW9009)

Sustainable Energy Supply

FORMALE ANGABEN ZUM MODUL

MODULNUMMER	VERORTUNG IM STUDIENVERLAUF	MODULDAUER (SEMESTER)	MODULVERANTWORTUNG	SPRACHE
T3WIW9009	3. Studienjahr	1	Prof. DrIng. Bertold Bunten	Deutsch

EINGESETZTE LEHRFORMEN

LEHRFORMEN	LEHRMETHODEN
Vorlesung	Lehrvortrag, Diskussion, Fallstudien

EINGESETZTE PRÜFUNGSFORMEN

PRÜFUNGSLEISTUNG	PRÜFUNGSUMFANG (IN MINUTEN)	BENOTUNG
Klausur oder Kombinierte Prüfung	90	ja

WORKLOAD UND ECTS-LEISTUNGSPUNKTE

WORKLOAD INSGESAMT (IN H)	DAVON PRÄSENZZEIT (IN H)	DAVON SELBSTSTUDIUM (IN H)	ECTS-LEISTUNGSPUNKTE
150	62	88	5

QUALIFIKATIONSZIELE UND KOMPETENZEN

FACHKOMPETENZ

Die Studierenden kennen die theoretischen Grundlagen der wichtigsten nachhaltigen Energiesysteme, verstehen deren Aufbau und Funktionsweise und können die Einsatzmöglichkeiten sowie die Wirtschaftlichkeit beurteilen. Sie kennen die Grundlagen des konventionellen Kraftwerksprozesses und der Kraftwerksleittechnik.

METHODENKOMPETENZ

Die Studierenden können Problemstellungen auf dem Gebiet der Kraftwerktechnik und der erneuerbaren Energien nach technischen und betriebswirtschaftlichen Gesichtspunkten analysieren und bewerten. Insbesondere sind sie in der Lage, sowohl die technischen, die wirtschaftlichen sowie die gesellschaftlichen Aspekte der erneuerbaren Energien im Vergleich zur herkömmlichen Energieerzeugung zu berücksichtigen.

PERSONALE UND SOZIALE KOMPETENZ

Die Studierenden sind in der Lage, die Herausforderungen einer nachhaltigen Versorgung mit Nutz- / Endenergie zu verstehen und zu bewerten.

ÜBERGREIFENDE HANDLUNGSKOMPETENZ

Die Studierenden können interdisziplinäre (technische und wirtschaftliche) Problemstellungen erkennen, analysieren und eigenständig lösen.

LERNEINHEITEN UND INHALTE

LEHR- UND LERNEINHEITEN	PRÄSENZZEIT	SELBSTSTUDIUM
Erneuerbare Energien	36	52

- Einführung in die Technik und Wirtschaft der erneuerbaren Energien;
- Theoretische Grundlagen der erneuerbaren Energien (Photovoltaik, Solarthermie, Windkraft, Wasserkraft, Bioenergie, Brennstoffzellen)
- Einführung in den Energietransport / intelligente Netze
- Aktueller Stand von Forschung, Entwicklung und politischer Regulierung

Stand vom 01.10.2025 T3WIW9009 // Seite 72

LEHR- UND LERNEINHEITEN	PRÄSENZZEIT	SELBSTSTUDIUM
Kraftwerktechnik	18	26

- Wasser-Dampf-Kreislauf
- Zustände von Wasser
- Speisewasser
- Gasturbine
- Dampfturbine
- Generator
- Feuerungsarten
- Rauchgasreinigung
- Dokumentation & Kennzeichnung (RI Fliesbilder und KKS)
- Vor- und Nachteile verschiedener Kraftwerkstypen

Kraftwerkleittechnik 8 10

- Kraftwerkkennzeichensystem
- Grundlagen der Kraftwerks-Leittechnik

BESONDERHEITEN

Die Veranstaltung kann durch qualifizierende Exkursionen - z.B. Windenergieanlage, Holzkraftwerk, Kohlekraftwerk, etc. - sowie durch Laborversuche ergänzt werden.

VORAUSSETZUNGEN

Grundkenntnisse Mathematik;

Allgemeine technische Grundkenntnisse (Mechanik, Elektrotechnik, Thermodynamik);

Allgemeine betriebswirtschaftliche Grundkenntnisse

LITERATUR

- Zahoransky, Richard A.: Energietechnik, Springer Vieweg
- Quaschning, Volker: Regenerative Energiesysteme, Hanser
- Kaltschmitt, Martin e.al.: Erneuerbare Energien, Springer Vieweg

David Halliday e.al. - Physik Europa Lehrmittel - Chemietechnik Karl Strauß — Kraftwerkstechnik Richard A. Zahoransky e.al. — Energietechnik

Henry Winter – Prozessleittechnik in Chemieanlagen

Stand vom 01.10.2025 T3WIW9009 // Seite 73

Mikrocontroller Systeme (T3WIW9013)

Microcontroller Systems

FORMALE ANGABEN ZUM MODUL

 MODULNUMMER
 VERORTUNG IM STUDIENVERLAUF
 MODULDAUER (SEMESTER)
 MODULVERANTWORTUNG
 SPRACHE

 T3WIW9013
 3. Studienjahr
 1
 Prof. Dr.-Ing. Michael Schlegel
 Deutsch/Englisch

EINGESETZTE LEHRFORMEN

LEHRFORMENLEHRMETHODENLabor, VorlesungLaborarbeit, Lehrvortrag, Diskussion

EINGESETZTE PRÜFUNGSFORMEN

PRÜFUNGSLEISTUNGPRÜFUNGSUMFANG (IN MINUTEN)BENOTUNGKlausur oder Kombinierte Prüfung90ja

WORKLOAD UND ECTS-LEISTUNGSPUNKTE

WORKLOAD INSGESAMT (IN H)DAVON PRÄSENZZEIT (IN H)DAVON SELBSTSTUDIUM (IN H)ECTS-LEISTUNGSPUNKTE15062885

QUALIFIKATIONSZIELE UND KOMPETENZEN

FACHKOMPETENZ

Studierende kennen den prinzipiellen Aufbau von Digitalrechnern und lernen die externen und internen Hardwarekomponenten und Hardwarestrukturen von Mikroprozessorsystemen kennen und verstehen. Die Systematik mit Befehlssatz und entsprechender Programmierung eines Mikroprozessors wird durchdrungen und erlaubt das Verstehen der allgemeinen Abläufe bei Digitalrechnern. Programmieraufgaben einfacher und mittlerer Komplexität in der Sprache C lösen.

METHODENKOMPETENZ

Geeignete Mikrocontroller für ein gegebenes Problem aus dem Gebiet der Mechatronik recherchieren und bewerten.

Datenblätter der verwendeten Mikrocontroller und typischer peripherer elektronischer Komponenten lesen und interpretieren. Wissen aus der Vorlesung Elektronik und Sensorik zur Nutzung mit einem Mikrocontroller kombinieren.

Gegebene Lösungskonzepte von Embedded Control Anwendungen bewerten.

PERSONALE UND SOZIALE KOMPETENZ

-

ÜBERGREIFENDE HANDLUNGSKOMPETENZ

LERNEINHEITEN UND INHALTE

LEHR- UND LERNEINHEITENPRÄSENZZEITSELBSTSTUDIUMMikrocontroller Systeme3852

- Externe und interne Hardwarekomponenten sowie Hardwarestrukturen von Mikrocontrollersystemen kennen und verstehen.
- Befehlssatz und Programmierung eines Mikrocontrollers exemplarisch kennen, verstehen und anwenden.
- Hardwarenahe Beispiele in einer Hochsprache (C) kennen, programmieren und verstehen.
- Integrierte Entwicklungsumgebungen kennen lernen und bedienen können.
- Programmierbare Interface-Einheiten exemplarisch kennen und verstehen.

Stand vom 01.10.2025 T3WIW9013 // Seite 74

LEHR- UND LERNEINHEITENPRÄSENZZEITSELBSTSTUDIUMMikrocontroller Systeme Labor2436

Eine Veranschaulichung des Faches soll im Rahmen des parallel verlaufenden Microcontroller Labors durchgeführt werden. Im Rahmen dieses Mikrocontroller Labors werden die Studenten ein eigenes Trainingsboard auf Basis eines Microcontrollers der ARM CORTEX M Cores aufbauen, in Betrieb nehmen und anhand von mehreren Applikationsbeispielen die Programmierung mit der Programmiersprache C kennenlernen. Es werden Applikationen aus folgenden Anwendungen bearbeitet:

- DC-Motoransteuerung
- A/D-Wandlung
- Ampelsteuerung digitale I/O
- Entfernungsmessung mit Ultraschallsensoren
- I2C Ansteuerung
- etc.

BESONDERHEITEN

_

VORAUSSETZUNGEN

- Elektrotechnik I, II
- Elektronik I, II, III
- Digitaltechnik

LITERATUR

- Urbanek, Peter; Mikrocomputertechnik; B.G. Teubner Verlag
- Beierlein, Th. / Hagenbruch O.; Taschenbuch Mikroprozessortechnik; Fachbuchverlag Leipzig
- Bähring; Mikrorechner-Technik I und II; Springer Verlag
- Definitive Guide to ARM Cortex-M3 and Cortex-M4 Processors, Joseph Yiu, Newnes
- Urbanek, Peter; Mikrocomputertechnik; B.G. Teubner Verlag
- Beierlein, Th. / Hagenbruch O.; Taschenbuch Mikroprozessortechnik; Fachbuchverlag Leipzig
- Bähring; Mikrorechner-Technik I und II; Springer Verlag

Stand vom 01.10.2025 T3WIW9013 // Seite 75

IoT - Mechatronische Anwendungen (T3WIW9015)

IoT - Mechatronic Applications

FORMALE ANGABEN ZUM MODUL

VERORTUNG IM STUDIENVERLAUF MODULDAUER (SEMESTER) MODULVERANTWORTUNG SPRACHE MODULNUMMER T3WIW9015 3. Studienjahr Prof. Dr.-Ing. Michael Schlegel Deutsch/Englisch

EINGESETZTE LEHRFORMEN

LEHRMETHODEN LEHRFORMEN

Vorlesung, Übung, Vorlesung, Übung, Labor Lehrvortrag, Diskussion, Projekt

EINGESETZTE PRÜFUNGSFORMEN

PRÜFUNGSLEISTUNG PRÜFUNGSUMFANG (IN MINUTEN) BENOTUNG Hausarbeit oder Kombinierte Prüfung (Klausur <50%) ia

WORKLOAD UND ECTS-LEISTUNGSPUNKTE

WORKLOAD INSGESAMT (IN H) DAVON PRÄSENZZEIT (IN H) DAVON SELBSTSTUDIUM (IN H) **ECTS-LEISTUNGSPUNKTE** 90 150 60

QUALIFIKATIONSZIELE UND KOMPETENZEN

FACHKOMPETENZ

Die Studierenden setzen sich im Rahmen dieses Moduls mit der Interaktion mit "intelligenten Dingen" und deren Anbindung an IP-basierte Kommunikationsnetze auseinander. Dafür steht den Studierenden ein HW-Pool mit verschiedenen Modulen (z. B. Arduino, Raspberry, Sensoren, Aktoren, etc.) zur Verfügung. Die Sutdierenden entwerfen selbstständig neue Anwendungen und setzen diese in Teamarbeit um. Dabei beschäftigen Sie sich mit den typischen Interaktions- und Steuerungsproblemen in "intelligenten Umgebungen" und entwerfen anwendungsabhängige Lösungen für gewählte Projektideen. Eine Präsentation und Dokumentation der Ergebnisse schließt die Veranstaltung ab.

Die Studierenden kennen die physikalischen Funktionsprinzipien ausgewählter Sensoren sowie ihre praktischen Einsatzgrenzen. Der Aufbau und die Funktionsweise der wichtigsten intelligenten Sensoren und Sensorsysteme ist bekannt. Darüber hinaus haben die Studierenden einen Überblick über Anpassungsschaltungen zur Vorverstärkung von Sensorsignalen erhalten und beherrschen mindestens ein ausgewähltes Messwerterfassungssystem.

METHODENKOMPETENZ

Erlangen von theoretischen Kenntnissen über Sensornetzwerk-Umgebungen und die Anbindung von "intelligenten Dingen" ans Internet, Fähigkeit, anwendungsspezifische Konzepte für den Netzwerkeinsatz zu entwerfen,

Erfahrungen in der Nutzung bzw. Programmierung von Geräten und Anwendungen in IP-Netzen,

Vertiefung von Teamarbeit und Kooperation bei der Software-Entwicklung.

Die Studierenden können einfache Applikationen im Sinne von Data Mining (Bsp. MS Azure, ClowdFlows, etc.) programmieren.

Die Studenten haben nachgewiesen, dass sie mit Sensoren und Messwerterfassungssystemen konzeptionell arbeiten können. Sensorkenngrößen anhand von Datenblättern ermitteln und nach Vorgaben auswählen können. Schaltungen zur Signalanpassung auswählen können und Schnittstellen der Antriebe zu den Regelsystemen spezifizieren können.

PERSONALE UND SOZIALE KOMPETENZ

ÜBERGREIFENDE HANDLUNGSKOMPETENZ

LERNEINHEITEN LIND INHALTE

LEHR- UND LERNEINHEITEN	PRÄSENZZEIT	SELBSTSTUDIUM
Sensorik	30	45

Stand vom 01.10.2025 T3WIW9015 // Seite 76

LEHR- UND LERNEINHEITEN **PRÄSENZZEIT SELBSTSTUDIUM**

- Strukturen von Sensoren
- Sensorprinzipien
- Sensorkenngrößen
- Ausgewählte Sensoren (analoge & digitale)
- Intelligente Sensoren und deren Schnittstellen mit Fokus auf IoT Anwendungen
- Sensorsysteme
- Messsignalvorverarbeitung
- Passive und aktive Anpassungsschaltungen
- Messwertübertragung

IoT (Internet of Things) - Mechatronische Anwendungen

45

30

Grundlagen des Internet of Things:

- Gesellschaftliche und wirtschaftliche Bedeutung
- Kommunikationsstandards und -technologien
- Datenspeicherung und -verarbeitung

Design und Entwicklung:

Lehrmethoden:

Im Rahmen der Vorlesung werden ausgesuchte Technologien für die Realisierung der

Projektaufgaben vorgestellt und erläutert.

Umgang und Entwicklung von mobilen Produkten in Zusammenspiel von Netzwerktechnologie,

uControllertechnik, Sensorik und Aktorik

Plattformen: Raspberry, Arduino, ausgewählte Sensor und Aktortechnologien.

Verknüpfung dieser Technologien mit Web-Servern (Bsp. Xively) und einfache Applikationen im

Sinne von Data Mining (Bsp. MS Azure, ClowdFlows, etc.)

App Programmierung (Bsp. Altova Mobile together)

Die Studierenden erstellen eigene Applikationen in Projektteams.

Inhalte des Kurses:

- Grundlagen des Internet of Things
- Vernetzung von Rechnern, Menschen, Daten, Gegenständen
- Kommunikationsstandards und -technologien
- Netzwerktopologien
- Netzwerkprotokolle (TCP/IP, IPv6, 802.15.4, 6LoWPAN)
- Technologien (RFID, NFC, QR-Codes, ZigBee, Bluetooth LE)
- Datenspeicherung und -verarbeitung
- Vernetztes Speichern mit Linked Data und RDF(S)
- Sensoren und Aktuatoren in IoT-Netzen
- Plattformen: Mikrocontroller, Einplatinenrechner, Ein-Chip-Systeme

Anwendungsbereiche:

- Smart Home/Smart Living
- Ambient Assisted Living
- Smart Energy/Smart Grid

BESONDERHEITEN

Die Studierenden erstellen eigene IoT-Applikationen in Projektteams.

VORAUSSETZUNGEN

Interesse an IoT Anwendungen.

Grundlagen Know-How auf den Gebieten der Programmierung, Rechnernetzen und Netzwerktechnologien.

Grundlagen der Elektrotechnik.

LITERATUR

- Tränkler, Hans-Rolf / Obermaeier, Ernst: Sensortechnik; Springer Schiessle, Edmund: Sensortechnik und Messwertaufnahme; Vogel Fachbuch-Verlag
- Schanz, Günther W.: Sensoren; Hüthig-Verlag

Internet of Things Manifest: Das Handbuch zur digitalen Weltrevolution, E.F. Engelhardt, Franzis Verlag

The Internet of Things, Samuel Greengard, (MIT Press Essential Knowledge)

Internet of Things: Principles and Paradigms, Rajkumar Buyya (Herausgeber), Amir Vahid Dastjerdi (Series Editor)

Internet of Things, Dogan Ibrahim, elektor

Stand vom 01.10.2025 T3WIW9015 // Seite 77

Mechatronische Systeme (T3WIW9020)

Mechatronic Systems

FORMALE ANGABEN ZUM MODUL

MODULNUMMERVERORTUNG IM STUDIENVERLAUFMODULDAUER (SEMESTER)MODULVERANTWORTUNGSPRACHET3WIW90203. Studienjahr1Prof. Dr.-Ing. Klaus-Dieter RuppDeutsch/Englisch

EINGESETZTE LEHRFORMEN

LEHRFORMENLEHRMETHODENVorlesung, Übung, Vorlesung, Übung, LaborLaborarbeit, Lehrvortrag, Diskussion, Fallstudien

EINGESETZTE PRÜFUNGSFORMEN

PRÜFUNGSLEISTUNGPRÜFUNGSUMFANG (IN MINUTEN)BENOTUNGKlausur oder Kombinierte Prüfung90ja

WORKLOAD UND ECTS-LEISTUNGSPUNKTE

WORKLOAD INSGESAMT (IN H)DAVON PRÄSENZZEIT (IN H)DAVON SELBSTSTUDIUM (IN H)ECTS-LEISTUNGSPUNKTE15072785

QUALIFIKATIONSZIELE UND KOMPETENZEN

FACHKOMPETENZ

Die Studierenden erhalten vertiefte Kenntnisse Mechatronischer Systeme und können die Wechselwirkungen in diesen System disziplinübergreifend modellieren und analysieren. Die Studierenden haben detailliertes Wissen aus Anwendungsbereichen der Mechatronik, z.B. in der Fahrzeugtechnik, Der industriellen Automatisierung oder der Robotertechnik.

METHODENKOMPETENZ

Die Studierenden kennen systematische Entwurfsmethoden der Mechatronik und können diese anwenden und auf andere Gebiete übertragen.

PERSONALE UND SOZIALE KOMPETENZ

Sie können mechatronische Problemstellungen interdisziplinär diskutieren und Lösungen im Team entwickeln sowie deren Auswirkungen beurteilen.

ÜBERGREIFENDE HANDLUNGSKOMPETENZ

Die Studierenden wenden wissenschaftliche Analyse- und Entwurfsmethoden für mechatronische oder allgemein interdisziplinäre Systeme an.

LERNEINHEITEN UND INHALTE

LEHR- UND LERNEINHEITEN	PRÄSENZZEIT	SELBSTSTUDIUM
Mechatronische Systeme	36	39

Stand vom 01.10.2025 T3WIW9020 // Seite 78

LERNEINHEITEN UND INHALTE SELBSTSTUDIUM LEHR- UND LERNEINHEITEN PRÄSENZZEIT - Grundlagen, Begriffe, Analyse und Entwurfsmethodik - Modellbildung (Mehrkörpersysteme, Leistungselektronik) - Smart Sensorik und Aktorik mit modellgestützten Verfahren oder statistischer Analyse (Kalman Filter, HMM) - Regelung (Simulation und Versuch, HIL, SIL,MIL) - Autonome Systeme - Anwendungsbeispiele - Elektrische Antriebe - Mobile Robotersysteme - 3-D Bildverarbeitung - Simulation und Versuch Mechatronische Systeme Labor 36 39 - Elektrische Antriebe - Mobile Robotersysteme - 3-D Bildverarbeitung - Mikroprozessor Anwendungen (z.B. Raspberry Py, Ardruino) - Simulation und Versuch

BESONDERHEITEN

-

VORAUSSETZUNGEN

-

LITERATUR

- Isermann, Rolf: Mechatronische Systeme Grundlagen, Springer Isermann, Rolf: Mechatronische Systeme Grundlagen, Springer

Stand vom 01.10.2025 T3WIW9020 // Seite 79

Anlagen- und Sicherheitstechnik (T3WIW9021)

Plant Engineering and Safety

FORMALE ANGABEN ZUM MODUL

MODULNUMMERVERORTUNG IM STUDIENVERLAUFMODULDAUER (SEMESTER)MODULVERANTWORTUNGSPRACHET3WIW90213. Studienjahr1Prof. Dr.-Ing. Bernd MahnDeutsch/Englisch

EINGESETZTE LEHRFORMEN

LEHRFORMENLEHRMETHODENVorlesung, ÜbungLehrvortrag, Diskussion

EINGESETZTE PRÜFUNGSFORMEN

PRÜFUNGSLEISTUNGPRÜFUNGSUMFANG (IN MINUTEN)BENOTUNGKlausur oder Kombinierte Prüfung90ja

WORKLOAD UND ECTS-LEISTUNGSPUNKTE

WORKLOAD INSGESAMT (IN H)DAVON PRÄSENZZEIT (IN H)DAVON SELBSTSTUDIUM (IN H)ECTS-LEISTUNGSPUNKTE15062885

QUALIFIKATIONSZIELE UND KOMPETENZEN

FACHKOMPETENZ

Die Studierenden können die grundlegenden Maschinen, Apparate und Sicherheitseinrichtungen verfahrenstechnischer Anlagen beschreiben und deren Funktionsweise und Kostenstrukturen verstehen. Des Weiteren können Sie gemäß Aufgabenstellung verfahrenstechnische Anlagen unter technischen und wirtschaftlichen Gesichtspunkten entwickeln.

METHODENKOMPETENZ

Die Studierenden kennen die in den Modulinhalten aufgeführten wissenschaftlichen Methoden. Sie sind in der Lage, unter Einsatz dieser Methoden relevante Informationen zu sammeln und unter Berücksichtigung wissenschaftlicher Erkenntnisse gemäß Fachstandards zu interpretieren

PERSONALE UND SOZIALE KOMPETENZ

Die Studierenden können sowohl eigenständig als auch im Team zielorientiert und nachhaltig handeln.

ÜBERGREIFENDE HANDLUNGSKOMPETENZ

Sie sind in der Lage, sich im Verlaufe ihrer beruflichen Tätigkeit in weiterführende Problemstellungen des Maschinenbaus selbständig einzuarbeiten.

LERNEINHEITEN UND INHALTE

LEHR- UND LERNEINHEITENPRÄSENZZEITSELBSTSTUDIUMAnlagen- und Sicherheitstechnik6288

 $- Einsatzgebiete \ und \ Spezifikationen \ von \ Sicherheitseinrichtungen \ (z.B. \ Sicherheitsventil,$

Absperreinrichtungen, Fackel, Berstscheiben)

- Lösungsansätze zur Auswahl von Sicherheitseinrichtungen
- $\hbox{-} Grundlagen \ der \ Sicherheitstechnik \ (Explosionsgrenzen, \ Messmethoden, \ Risikoanalyse, \ etc.)$
- Anforderungen aufgrund von Gesetzen, Verordnungen, Vorschriften, Normen und Richtlinien
- Einführung in die Verfahrensentwicklung z.B. Transportsysteme (z.B. Pumpen, Verdichter) sowie Umwandlungs- und Aufbereitungsverfahren.
- Kostenschätzverfahren für Investitionsprojekte
- Verfahrensfließbilder, R&I Fließbilder
- Abwicklungskonzepte

BESONDERHEITEN

Stand vom 01.10.2025 T3WIW9021 // Seite 80

VORAUSSETZUNGEN

LITERATUR

- Rolf Herz: Grundlagen der Rohrleitungs- und Apparatetechnik, Vulkan Verlag Eberhard Klapp: Apparate und Anlagentechnik, Springer Verlag -Henrikus Steen: Handbuch des Explosionsschutzes, Wiley-VCH Verlag

Stand vom 01.10.2025 T3WIW9021 // Seite 81

Procurement and Supply Chain Management (T3WIW9033)

Procurement and Supply Chain Management

FORMALE ANGABEN ZUM MODUL

MODULNUMMERVERORTUNG IM STUDIENVERLAUFMODULDAUER (SEMESTER)MODULVERANTWORTUNGSPRACHET3WIW90333. Studienjahr1Prof. Dr. Thomas SeemannDeutsch/Englisch

EINGESETZTE LEHRFORMEN

 LEHRFORMEN
 LEHRMETHODEN

 Vorlesung, Übung
 Lehrvortrag, Diskussion, Fallstudien

EINGESETZTE PRÜFUNGSFORMEN

PRÜFUNGSLEISTUNGPRÜFUNGSUMFANG (IN MINUTEN)BENOTUNGHausarbeit oder Kombinierte Prüfung (Klausur <50%)</td>90ja

WORKLOAD UND ECTS-LEISTUNGSPUNKTE

WORKLOAD INSGESAMT (IN H)DAVON PRÄSENZZEIT (IN H)DAVON SELBSTSTUDIUM (IN H)ECTS-LEISTUNGSPUNKTE150501005

QUALIFIKATIONSZIELE UND KOMPETENZEN

FACHKOMPETENZ

Die Studierenden verstehen die Rahmenbedingungen des strategischen und operativen Einkaufs. Sie kennen die jeweiligen Gestaltungsmöglichkeiten und Entscheidungshorizonte und können darauf aufbauend konkrete Aufgabenstellungen der Beschaffung systematisch lösen.

Die Studierenden verstehen die grundlegenden Herausforderungen und Zusammenhänge in Supply Chains. Auf dieser Basis sind Sie in der Lage, Optimierungsmöglichkeiten aufzuzeigen.

METHODENKOMPETENZ

Die Studierenden sind in der Lage geeignete Instrumente des Einkaufsmanagement (z.B. Einkaufshebel) auszuwählen und anzuwenden.

Sie verfügen über Methoden, um fundierte Entscheidungen im Zusammenhang mit der Planung und Optimierung von Supply Chains treffen und umsetzen zu können.

PERSONALE UND SOZIALE KOMPETENZ

Die Studierenden werden für die Herausforderungen von partnerschaftlicher Supply-Chain-Beziehungen im internationalen Kontext sensibilisiert.

ÜBERGREIFENDE HANDLUNGSKOMPETENZ

LERNEINHEITEN LIND INHALTE

EERICEINIEN OND INITIALIE		
LEHR- UND LERNEINHEITEN	PRÄSENZZEIT	SELBSTSTUDIUM
Procurement and Supply Chain Management	50	100

Stand vom 01.10.2025 T3WIW9033 // Seite 82

LEHR- UND LERNEINHEITEN PRÄSENZZEIT SELBSTSTUDIUM

Procurement

- Procurement and sourcing strategies
- Supplier relationships
- Procureent levers
- The sourcing process

Supply Chain Management

- Supply chain segmentation and configuration
- Demand and supply uncertainty (e.g. Bullwhip effect)
- Managing inventory (e.g. newsvendor model)
- Managing product variant (e.g. postponement; mass customization)
- Risk pooling strategies
- Aligning incentives in supply chains (e.g. buy-back contracts)
- Managing supply chain performance

BESONDERHEITEN

Modul umfasst umfangreiche Fallstudienarbeit.

VORAUSSETZUNGEN

_

LITERATUR

Literatur:

- Cachon, G. / Terwiesch, C.: Matching Supply with Demand: An Introduction to Operations Management
- Simchi-Levi, D./Kaminsky, P.: Designing And Managing the Supply Chain / Managing the Supply Chain
- Alicke K.: Planung und Betrieb von Logistiknetzwerken. Unternehmensübergreifendes Supply Chain Management, Springer Verlag
- Winston, W.; Albright, C.: Practical Management Science; Southwestern Cengage Learning.
- Large, R.: Strategisches Beschaffungsmanagement: eine praxisorientierte Einführung mit Fallstudien, Gabler.
- Kreuzpointner, A.: Praxishandbuch Beschaffungsmanagement, Gable.
- Büsch, M.: Praxishandbuch Strategischer Einkauf, Springer Gabler.

Fallartikel und Fallstudien ergänzen die Vorlesung.

Stand vom 01.10.2025 T3WIW9033 // Seite 83

Prozessmanagement (T3WIW9076)

Process Management

FORMALE ANGABEN ZUM MODUL

MODULNUMMER	VERORTUNG IM STUDIENVERLAUF	MODULDAUER (SEMESTER)	MODULVERANTWORTUNG	SPRACHE
T3WIW9076	3. Studienjahr	1	Prof. Dr. Matthias Wunsch	Deutsch/Englisch

EINGESETZTE LEHRFORMEN

LEHRFORMEN	LEHRMETHODEN
Vorlesung, Übung	Lehrvortrag, Diskussion, Fallstudien

EINGESETZTE PRÜFUNGSFORMEN

PRÜFUNGSLEISTUNG	PRÜFUNGSUMFANG (IN MINUTEN)	BENOTUNG
Klausur oder Kombinierte Prüfung	90	ja

WORKLOAD UND ECTS-LEISTUNGSPUNKTE

WORKLOAD INSGESAMT (IN H)	DAVON PRÄSENZZEIT (IN H)	DAVON SELBSTSTUDIUM (IN H)	ECTS-LEISTUNGSPUNKTE
150	62	88	5

QUALIFIKATIONSZIELE UND KOMPETENZEN

FACHKOMPETENZ

Die Studierenden kennen die bedeutenden Fragestellungen und Methoden des Prozessmanagements und können diese gezielt anwenden. Sie können aus den Methoden des Prozessmanagements geeignete Instrumente und Werkzeuge auswählen und diese zur Analyse und Prozessgestaltung gezielt einsetzen. Die Studierenden können innovative Führungs- und Organisationsformen aus der Prozesslandschaft ableiten und aufzeigen.

METHODENKOMPETENZ

Die Studierenden sind in der Lage, die dargestellten Methoden auf konkrete Problemstellungen in Unternehmen selbstständig anzuwenden. Die Studierenden können die benötigten Informationen und Prozesse aus diversen internen und externen Quellen methodisch sammeln, kritisch analysieren und nach zielorientierten Kriterien aufbereiten und nutzen.

PERSONALE UND SOZIALE KOMPETENZ

Der Studierende kann die unternehmerische Bedeutung des Prozessmanagements im ökonomischen und gesellschaftlichen Gesamtzusammenhang erkennen und die zugundliegenden technologischen, organisatorischen und wirtschaftlichen Prozesse und Aspekte wertschätzen. Sie können Maßnahmen zur Optimierung des Unternehmens initiieren und umsetzen.

Die Studierenden sind in der Lage, deduktive und induktive Herangehensweisen bei der Problemlösung, beim fallbasierten Lernen, bei der kooperativen Zusammenarbeit mit den beteiligten Stakeholdern anzuwenden und unternehmerisch zu denken und zu handeln.

ÜBERGREIFENDE HANDLUNGSKOMPETENZ

Die Studierenden können branchenunabhängig für Problemstellungen des Prozessmanagements Lösungen entwickeln und optimieren. Sie können deren technische, ökonomische und gesellschaftliche Dimension bestimmen, kritisch bewerten und ihre Entscheidung zur gewählten Handlungsalternative plausibel begründen und umsetzen.

LERNEINHEITEN UND INHALTE

LEHR- UND LERNEINHEITEN	PRÄSENZZEIT	SELBSTSTUDIUM
Prozessmanagement	62	88

- Grundlagen der Prozessorganisation/-analyse
- Vorgehensmodelle
- Instrumente der Prozessoptimierung
- Modellierungsmethoden
- Einsatz von Softwarewerkzeugen und -tools
- Aufnahme und Gestaltung von Geschäftsprozessen (Ist-/Soll-Prozess) anhand von Fallbeispielen

Stand vom 01.10.2025 T3WIW9076 // Seite 84

LEHR- UND LERNEINHEITEN PRÄSENZZEIT SELBSTSTUDIUM

BESONDERHEITEN

Bis zu 24 Stunden können im Rahmen einer Fallstudie, eines Planspiels oder eines Workshops durchgeführt werden.

VORAUSSETZUNGEN

LITERATUR

- Jochen, R.; Mertis, K.; Knothe, T.: Prozessmanagement: Strategien, Methoden, Umsetzung, Symposion
- Knuppertz, T.; Feddern, U.: Prozessorientierte Unternehmensführung: Prozessmanagement ganzheitlich einführen und verankern, Schäffer-Poeschel
- Ruth, T.: Prozessmanagement, Theoretische Grundlagen und praktische Umsetzung, VDM
- Schmelzer, H.; Sesselmann, W.: Geschäftsprozessmanagement in der Praxis, Hanser
- Stöger, R.: Prozessmangement, Schäffer-Poeschel

Stand vom 01.10.2025 T3WIW9076 // Seite 85

IT-Management und Simulation von Produktionssystemen (T3WIW9081)

IT Management and Simulation of Production Systems

FORMALE ANGABEN ZUM MODUL

 MODULNUMMER
 VERORTUNG IM STUDIENVERLAUF
 MODULDAUER (SEMESTER)
 MODULVERANTWORTUNG
 SPRACHE

 T3WIW9081
 3. Studienjahr
 1
 Prof. Dr. Clemens Heilig
 Deutsch/Englisch

EINGESETZTE LEHRFORMEN

LEHRFORMENLEHRMETHODENVorlesung, Übung, LaborLehrvortrag, Diskussion

EINGESETZTE PRÜFUNGSFORMEN

PRÜFUNGSLEISTUNGPRÜFUNGSUMFANG (IN MINUTEN)BENOTUNGHausarbeit oder Kombinierte Prüfung (Klausur <50%)</td>90ja

WORKLOAD UND ECTS-LEISTUNGSPUNKTE

WORKLOAD INSGESAMT (IN H)DAVON PRÄSENZZEIT (IN H)DAVON SELBSTSTUDIUM (IN H)ECTS-LEISTUNGSPUNKTE15062885

QUALIFIKATIONSZIELE UND KOMPETENZEN

FACHKOMPETENZ

Methoden der Planung, Durchführung sowie überwachung umfangreicher IT Projekte.

Erfolgreiche Anwendung von Modellierungswerkzeugen zur Systemanalyse. Sowohl für die technische Systementwicklung als auch im Bereich der Geschäftsprozessmodellierung - Anwendung von Simulationstechniken und -werkzeugen in den Bereichen Produktion und Logistik

METHODENKOMPETENZ

Systematische Vorgehensweise bei der Strukturierung komplexer Projekte bzw., Produktionsvorgänge.

PERSONALE UND SOZIALE KOMPETENZ

ÜBERGREIFENDE HANDLUNGSKOMPETENZ

LERNEINHEITEN UND INHALTE

LEHR- UND LERNEINHEITENPRÄSENZZEITSELBSTSTUDIUMIT-Management und Simulation von Produktionssystemen6288

- Planung, Organisation und Beschaffung von IT-Systemen
- IT-Compliance / IT-Governance
- IT-Betrieb (z.B. ITIL, COBIT)
- IT-Projektmanagement
- Rechtliche Grundlagen, Verträge, Lizenzen
- Versuchsdesign und Ergebnisanalyse
- Anwendungsgebiete der Simulation.
- Simulation in der Produktionswirtschaft zur Produktionsplanung und -steuerung.
- Praktische Anwendung eines rechnergestützten Simulationssystems
- Versuchsdesign und Ergebnisanalyse

BESONDERHEITEN

Stand vom 01.10.2025 T3WIW9081 // Seite 86

LITERATUR

- Grupp: Der professionelle IT-Berater. MITP-Verlag, Bonn
- Kitz: IT-Projektmanagement. Galileo Computing, Bonn
- Tiemeyer: Handbuch IT-Management. Hanser, München
- Feldmann, K., Reinhart, G.: Simulationsbasierte Planungssysteme für Organisation und Produktion, Berlin, Heidelberg, New York: Springer.
- Kosturiak, J., Gregor, M.: Simulation von Produktionssystemen, Berlin u.a.: Springer. Scherf Helmut E.: Modellbildung und Simulation dynamischer Systeme; Oldenbourg
- Engelhardt-Nowitzki Corinna: Management komplexer Materialflüsse mittels Simulation; Deutscher Universitäts-Verlag

Stand vom 01.10.2025 T3WIW9081 // Seite 87

Innovationsmanagement (T3WIW9082)

Innovation Management

FORMALE ANGABEN ZUM MODUL

MODULNUMMERVERORTUNG IM STUDIENVERLAUFMODULDAUER (SEMESTER)MODULVERANTWORTUNGSPRACHET3WIW90823. Studienjahr1Prof. Dr.-Ing. Klaus-Dieter RuppDeutsch/Englisch

EINGESETZTE LEHRFORMEN

 LEHRFORMEN
 LEHRMETHODEN

 Vorlesung, Übung
 Lehrvortrag, Diskussion, Gruppenarbeit

EINGESETZTE PRÜFUNGSFORMEN

PRÜFUNGSLEISTUNGPRÜFUNGSUMFANG (IN MINUTEN)BENOTUNGKlausur oder Kombinierte Prüfung90ja

WORKLOAD UND ECTS-LEISTUNGSPUNKTE

WORKLOAD INSGESAMT (IN H)DAVON PRÄSENZZEIT (IN H)DAVON SELBSTSTUDIUM (IN H)ECTS-LEISTUNGSPUNKTE150501005

QUALIFIKATIONSZIELE UND KOMPETENZEN

FACHKOMPETENZ

Die Studierenden sind mit Abschluss des Moduls in der Lage, das Innovationsmanagement in Unternehmen bezüglich der organisatorischen Einordnung, notwendiger Prozesse und geeigneter Methoden ganzheitlich zu analysieren und zu gestalten. Sie können wesentlichen Treiber für Innovationen identifizieren und geeignete Innovationsstrategien ableiten.

METHODENKOMPETENZ

Die Studierenden sind mit Abschluss des Moduls in der Lage, für Fragestellungen des Innovationsmanagements, geeignete Vorgehensweisen, Konzepte und Methoden auszuwählen und in Projekten abzubilden.

PERSONALE UND SOZIALE KOMPETENZ

Die Studierenden können in Fragestellungen des Innovationsmanagements sowohl eigenständig, also auch im Team zielorientiert und nachhaltig handeln

ÜBERGREIFENDE HANDLUNGSKOMPETENZ

I FRNFINHFITEN UND INHALTE

LEHR- UND LERNEINHEITENPRÄSENZZEITSELBSTSTUDIUMInnovationsmanagement50100

- Grundbegriffe
- von der Idee zur Innovation
- Invention & Diffusion
- Innovationsstrategien
- Organsiation des Innovationsmanagements,
- Einordnung ins Unternehmen,
- Innovationsförderliche Unternehmenskultur
- Management von Innovationen
- Innovationsprozesse
- Impulse, Ideenfindung und -bewertung
- Management von Wissen
- Kreativitätstechniken und Problemlösetechniken
- Open Innovation
- Schutzrechte

Stand vom 01.10.2025 T3WIW9082 // Seite 88

LEHR- UND LERNEINHEITEN PRÄSENZZEIT SELBSTSTUDIUM

BESONDERHEITEN

VORAUSSETZUNGEN

LITERATUR

- Dietmar Vahs/Alexander Brem: Innovationsmanagement, Schäffer Pöschel Verlag John Besset/Joe Tidd: Innovation and Entrepreneurship, Wiley

- Müller-Prothmann/Dörr: Innovationsmanagement, Hanser Verlag Bernd X. Weis: Praxishandbuch Innovation, Springer Gabler Verlag

Stand vom 01.10.2025 T3WIW9082 // Seite 89

Gebäudetechnik (T3WIW9131)

Facility Engineering

FORMALE ANGABEN ZUM MODUL

MODULNUMMERVERORTUNG IM STUDIENVERLAUFMODULDAUER (SEMESTER)MODULVERANTWORTUNGSPRACHET3WIW91313. Studienjahr1Prof. Dr. Clemens HeiligDeutsch/Englisch

EINGESETZTE LEHRFORMEN

 LEHRFORMEN
 LEHRMETHODEN

 Vorlesung, Übung
 Lehrvortrag, Diskussion, Fallstudien

EINGESETZTE PRÜFUNGSFORMEN

PRÜFUNGSLEISTUNGPRÜFUNGSUMFANG (IN MINUTEN)BENOTUNGKlausur oder Kombinierte Prüfung90ja

WORKLOAD UND ECTS-LEISTUNGSPUNKTE

WORKLOAD INSGESAMT (IN H)DAVON PRÄSENZZEIT (IN H)DAVON SELBSTSTUDIUM (IN H)ECTS-LEISTUNGSPUNKTE15062885

QUALIFIKATIONSZIELE UND KOMPETENZEN

FACHKOMPETENZ

Die Studierenden verfügen über die Kenntnisse der Bau-/Gebäudetechnik, die für das technisch-physikalische Verständnis von Gebäuden notwendig sind. Die Leistungsbilder des kaufmännischen, technischen und infrastrukturellen

Gebäudemanagements sind bekannt und können erklärt und hinsichtlich des Kundennutzens beurteilt werden.

METHODENKOMPETENZ

Die Studierenden können die erarbeiteten technischen Grundkenntnisse auf praxisnahe Problemstellungen anwenden sowie die erarbeiteten Ergebnisse analysieren und beurteilen

PERSONALE UND SOZIALE KOMPETENZ

ÜBERGREIFENDE HANDLUNGSKOMPETENZ

LERNEINHEITEN UND INHALTE

LEHR- UND LERNEINHEITEN PRÄSENZZEIT SELBSTSTUDIUM
Gebäudetechnik 62 88

- Wärme- und Heizungstechnik
- Wasserversorgungssysteme
- Klima- und Lüftungstechnik
- Nachrichtentechnische Komponenten im Gebäude
- Mess-, Zähl- und Überprüfungsverfahren
- Einsatz effizienter Energietechniken
- Automatisierungstechnik in Gebäuden
- Elektrotechnik: Stromerzeugung/Verteilnetze/Beleuchtungstechnik/Notstromerzeugung

BESONDERHEITEN

Stand vom 01.10.2025 T3WIW9131 // Seite 90

LITERATUR

- Daniels: Gebäudetechnik. Oldenbourg Verlag Pistohl: Handbuch der Gebäudetechnik Werner Verlag Usemann: Gebäudetechnik. Springer Verlag

Stand vom 01.10.2025 T3WIW9131 // Seite 91

Nachhaltige Energiesysteme (T3_9007)

Sustainable Energy Systems

FORMALE ANGABEN ZUM MODUL

MODULNUMMERVERORTUNG IM STUDIENVERLAUFMODULDAUER (SEMESTER)MODULVERANTWORTUNGSPRACHET3_90073. Studienjahr1Prof. Dr.-Ing. Alexandra DunzDeutsch

EINGESETZTE LEHRFORMEN

LEHRFORMEN LEHRMETHODEN

Vorlesung, Labor Lehrvortrag, Diskussion, Gruppenarbeit

EINGESETZTE PRÜFUNGSFORMEN

PRÜFUNGSLEISTUNGPRÜFUNGSUMFANG (IN MINUTEN)BENOTUNGKlausurt oder Kombinierte Prüfung120ja

WORKLOAD UND ECTS-LEISTUNGSPUNKTE

WORKLOAD INSGESAMT (IN H)DAVON PRÄSENZZEIT (IN H)DAVON SELBSTSTUDIUM (IN H)ECTS-LEISTUNGSPUNKTE15060905

QUALIFIKATIONSZIELE UND KOMPETENZEN

FACHKOMPETENZ

Die Studierenden sind in der Lage, mit den in den Modulinhalten genannten Techniken ingenieurmäßige Fragestellungen in ihrem Arbeitsumfeld zu diesem Thema zu erkennen, sie methodisch grundlagenorientiert zu analysieren und zu lösen.

METHODENKOMPETENZ

Die Studierenden sind mit Abschluss des Moduls in der Lage, für weitgehend standardisierte Anwendungsfälle in der Praxis die angemessene Methode auszuwählen und anzuwenden. Sie kennen die Stärken und Schwächen der Methode in ihrem beruflichen Anwendungsfeld und können diese in konkreten Handlungssituationen gegeneinander abwägen.

PERSONALE UND SOZIALE KOMPETENZ

-

ÜBERGREIFENDE HANDLUNGSKOMPETENZ

-

LERNEINHEITEN UND INHALTE

LEHR- UND LERNEINHEITENPRÄSENZZEITSELBSTSTUDIUMNachhaltige Energiesysteme6090

- Einführung in die nachhaltige Energietechnik und -wirtschaft
- Grundlagen der erneuerbaren Energien wie Photovoltaik, Solarthermie, Windkraft, Wasserkraft, Brennstoffzellen und Biomasse; aufgebaut auf vorhandenem Wissen der

Thermodynamik, Strömungslehre und Elektronik

- Energieeffiziente Gebäudetechnik
- Energiewirtschaftliche Prozesse

BESONDERHEITEN

Die Prüfungsdauer bezieht sich auf die Klausur.

VORAUSSETZUNGEN

-

Stand vom 01.10.2025 T3_9007 // Seite 92

LITERATUR

- Kaltschmitt, M; Streicher, W; Wiese, A: Erneuerbare Energien, Springer Vieweg
- Quaschning, V: Regenerative Energiesysteme, Hanser-Verlag
- Wastter, H: Nachhaltige Energiesysteme, Vieweg + Teubner
 Zahoransky, Richard A.: Energietechnik Systeme zur Energieumwandlung. Vieweg+Teubner
 Hadamovsky, Jonas: Solarstrom Solarthermie. Vogel-Verlag
 Cerbe; Hoffmann: Einführung in die Wärmelehre. Carl Hanser Verlag München Wien

- Baehr, H.D.: Thermodynamik. Springer Verlag Hau, Erich: Windkraftanlagen Grundlagen, Technik, Einsatz, Wirtschaftlichkeit. Springer Verlag
- Recknagel; Sprenger: Taschenbuch für Heizungs- und Klimatechnik. Oldenbourg-Verlag München Tiator; Schenker: Wärmepumpen und Wärmepumpenanlagen. Vogel-Verlag

Stand vom 01.10.2025 T3_9007 // Seite 93