

Dieses Modulhandbuch gilt für Studierende die im Zeitraum vom 01.10.2017 – 30.09.2024 immatrikuliert wurden.

Modulhandbuch

Studienbereich Technik

School of Engineering

Studiengang

Mechatronik Trinational

Mechatronics Trinational

Studienakademie

LÖRRACH

Curriculum (Pflicht und Wahlmodule)

Aufgrund der Vielzahl unterschiedlicher Zusammenstellungen von Modulen können die spezifischen Angebote hier nicht im Detail abgebildet werden. Nicht jedes Modul ist beliebig kombinierbar und wird möglicherweise auch nicht in jedem Studienjahr angeboten. Die Summe der ECTS aller Module inklusive der Bachelorarbeit umfasst 210 Credits.

Die genauen Prüfungsleistungen und deren Anteil an der Gesamtnote (sofern die Prüfungsleistung im Modulhandbuch nicht eindeutig definiert ist oder aus mehreren Teilen besteht), die Dauer der Prüfung(en), eventuelle Einreichungsfristen und die Sprache der Prüfung(en) werden zu Beginn der jeweiligen Theoriephase bekannt gegeben.

	FESTGELEGTER MODULBEREICH		
NUMMER	MODULBEZEICHNUNG	VERORTUNG	ECTS
T3TRI1005	Mathematik	1. Studienjahr	5
T3TRI1010	Mechanik	1. Studienjahr	5
T3TRI1015	Engineering	1. Studienjahr	5
T3TRI1020	Elektrotechnik	1. Studienjahr	5
T3TRI1025	Informatik	1. Studienjahr	5
T3TRI1030	Kommunikation	1. Studienjahr	5
T3TRI1040	Mathematik II	1. Studienjahr	5
T3TRI1045	Physik	1. Studienjahr	5
T3TRI1050	Mechanik II	1. Studienjahr	5
T3TRI1055	Elektrotechnik II	1. Studienjahr	5
T3TRI1060	Kommunikation II	1. Studienjahr	5
T3TRI2005	Angewandte Mathematik	2. Studienjahr	5
T3TRI2010	Mechanik III	2. Studienjahr	5
T3TRI2015	Elektrotechnik III	2. Studienjahr	5
T3TRI2020	Informatik II	2. Studienjahr	5
T3TRI2025	Kommunikation III	2. Studienjahr	5
T3TRI2030	Engineering II	2. Studienjahr	5
T3TRI2035	Engineering III	2. Studienjahr	5
T3TRI2040	Mechatronik	2. Studienjahr	5
T3TRI2805	Mechatronik II	2. Studienjahr	5
T3TRI2810	Management	2. Studienjahr	5
T3TRI3005	Angewandte Mathematik II	3. Studienjahr	6
T3TRI3805	Mechatronik III	3. Studienjahr	6
T3TRI3810	Management II	3. Studienjahr	6
T3TRI9305	Management III	3. Studienjahr	6
T3TRI3010	Kommunikation IV	3. Studienjahr	6
T3TRI3015	Engineering IV	3. Studienjahr	5
T3TRI9310	Physik II	3. Studienjahr	5
T3TRI9315	Mechatronik IV	3. Studienjahr	5
T3TRI3815	Management IV	3. Studienjahr	5
T3TRI3820	Management V	3. Studienjahr	5

Stand vom 01.10.2025 Curriculum // Seite 2

	FESTGELEGTER MODULBEREICH		
NUMMER	MODULBEZEICHNUNG	VERORTUNG	ECTS
T3TRI1035	Praxisprojekt I	1. Studienjahr	5
T3TRI2045	Praxisprojekt II	2. Studienjahr	10
T3TRI4000	Praxis III - Vorstudie zur Bachelorarbeit	7. Semester	15
T3TRI3020	Semesterarbeit (Thema D und F)	3. Studienjahr	5
T3TRI4005	Bachelor Thesis	7. Semester	15

Stand vom 01.10.2025 Curriculum // Seite 3

Mathematik (T3TRI1005)

Basics Mathematics

FORMALE ANGABEN ZUM MODUL

MODULNUMMER	VERORTUNG IM STUDIENVERLAUF	MODULDAUER (SEMESTER)	MODULVERANTWORTUNG	SPRACHE
T3TRI1005	1. Studienjahr	1	Stephan Müller	Deutsch

EINGESETZTE LEHRFORMEN

LEHRFORMEN	LEHRMETHODEN
Vorlesung, Übung	Lehrvortrag, Diskussion, Gruppenarbeit

EINGESETZTE PRÜFUNGSFORMEN

PRÜFUNGSLEISTUNG	PRÜFUNGSUMFANG (IN MINUTEN)	BENOTUNG
Klausur	120	ja
Klausur	120	ja

WORKLOAD UND ECTS-LEISTUNGSPUNKTE

WORKLOAD INSGESAMT (IN H)	DAVON PRÄSENZZEIT (IN H)	DAVON SELBSTSTUDIUM (IN H)	ECTS-LEISTUNGSPUNKTE
150	75	75	5

QUALIFIKATIONSZIELE UND KOMPETENZEN

FACHKOMPETENZ

Die Studierenden kennen und verstehen die Grundlagen der linearen Algebra (insbesondere der Matrizen- und Determinantenrechnung und der linearen Gleichungssysteme) und der Theorie der Funktionen und können diese auf mathematische und technische Fragestellungen anwenden.
Bei ausgewählten Problemen sind sie in der Lage, geeignete Lösungsverfahren zu bestimmen, diese durchzuführen und die Ergebnisse kritisch zu bewerten.

METHODENKOMPETENZ

Die Studierenden kennen grundlegende Methoden der linearen Algebra und der Theorie der Funktionen und können diese auf konkrete technische und wirtschaftliche Problemstellungen anwenden. Sie sind sich der Reichhaltigkeit der Anwendung dieser Methoden, aber auch ihrer Grenzen bewusst.

PERSONALE UND SOZIALE KOMPETENZ

Fähigkeit zur Bearbeitung mathematischer Fragestellungen in kleinen Teams

ÜBERGREIFENDE HANDLUNGSKOMPETENZ

Die Studierenden erlernen strukturierte und systematische Herangehensweisen an komplexe Sachverhalte und können mathematische Methoden und Algorithmen in den verschiedenen Gebieten der Mechatronik anwenden.

Die Studierenden können mathematische Grundkenntnisse auf die Lösung technischer Problemstellungen anwenden.

LERNEINHEITEN UND INHALTE

LEHR- UND LERNEINHEITEN	PRÄSENZZEIT	SELBSTSTUDIUM
Lineare Algebra	30	30

- Gleichungssysteme
- Matrizen
- Matrizenrechnung
- lin. Abbildungen
- komplexe Zahlen (Anwendung in der Wechselstromtechnik)

Stand vom 01.10.2025 T3TR[1005 // Seite 4

LEHR- UND LERNEINHEITEN PRÄSENZZEIT SELBSTSTUDIUM Analysis I 45 45

- Funktionen
- Grenzwerte
- Ableitung, mit ersten Anwendungen (Extremwertprobleme, Newton-Verfahren) Integration, mit ersten Anwendungen (Flächen)

BESONDERHEITEN

Gewichtung der Prüfungsleistungen für die Modulendnote T3TRI1005.1 Lineare Algebra (40%) T3TRI1005.2 Analysis (60%)

VORAUSSETZUNGEN

LITERATUR

- L. Papula: Mathematik für Ingenieure und Naturwissenschaftler. Bd. 1 und 2, Vieweg Verlag

Stand vom 01.10.2025 T3TRI1005 // Seite 5

Mechanik (T3TRI1010)

Applied Mechanics

FORMALE ANGABEN ZUM MODUL

MODULNUMMER	VERORTUNG IM STUDIENVERLAUF	MODULDAUER (SEMESTER)	MODULVERANTWORTUNG	SPRACHE
T3TRI1010	1. Studieniahr	1	Prof. Dr. Stefan Hess	Deutsch/Französisch

EINGESETZTE LEHRFORMEN

LEHRFORMEN	LEHRMETHODEN
Vorlesung, Übung	Lehrvortrag, Diskussion

EINGESETZTE PRÜFUNGSFORMEN

PRÜFUNGSLEISTUNG	PRÜFUNGSUMFANG (IN MINUTEN)	BENOTUNG
Konstruktionsentwurf	Siehe Pruefungsordnung	ja
Klausur	120	ja

WORKLOAD UND ECTS-LEISTUNGSPUNKTE

WORKLOAD INSGESAMT (IN H)	DAVON PRÄSENZZEIT (IN H)	DAVON SELBSTSTUDIUM (IN H)	ECTS-LEISTUNGSPUNKTE
150	75	75	5

QUALIFIKATIONSZIELE UND KOMPETENZEN

FACHKOMPETENZ

Technische Mechanik

Die Studierenden kennen die grundlegenden Methoden der Statik, basierend auf den Newtonschen Axiomen (Kräftezerlegung, Schnittprinzip, Reaktionen, Gleichgewicht, Schwerpunkt, Reibung) und können diese beschreiben und systematisch darstellen.

Die Studierenden sind in der Lage die Grundbeanspruchungsarten von statischen Konstruktionen und Verbindungselementen zu analysieren und selbstständig zu berechnen.

Konstruktion I

Die Studierenden kennen die konstruktiven und physikalischen Grundlagen des Maschinenbaus und deren Anwendung. Sie verstehen die Funktion der Elemente des Maschinenbaus und kennen deren Darstellung. Sie können exemplarisch die Berechnung von Funktion und Festigkeit durchführen. Sie besitzen strukturiertes Basiswissen der Maschinenelemente und insbesondere deren Verbindungen.

METHODENKOMPETENZ

Die Studierenden sind in der Lage, die erlernten naturwissenschaftlichen Methoden der Mechanik bei jeder statischen Beurteilung zielgerichtet anzuwenden. Sie besitzen die Fähigkeit, mathematische Berechnungen zuverlässig durchzuführen. Sie sind in der Lage, weitestgehend standardisierte konstruktive Methoden auszuwählen und umzusetzen.

PERSONALE UND SOZIALE KOMPETENZ

ÜBERGREIFENDE HANDLUNGSKOMPETENZ

Die Studierenden setzen zielführend fächerübergreifende Kompetenzen aus Mathematik, Fertigungstechnik, Physik und Konstruktion ein. Sie sind in der Lage, sich in einfache Problemstellungen des Maschinenbaus selbständig einzuarbeiten.

LERNEINHEITEN UND INHALTE

LEHR- UND LERNEINHEITEN	PRÄSENZZEIT	SELBSTSTUDIUM
Konstruktion 1	30	30

Stand vom 01.10.2025 T3TRI1010 // Seite 6

LEHR- UND LERNEINHEITEN - Grundlagen der Maschinenkonstruktionslehre: Normen, Ansichten, isometrische Darstellung, Romaßung

- Erstellen von Normzeichnungen mit CAD wie auch mit Zeichnungsbrett. Kennzeichnung und Gestaltung einfacher Maschinenelemente, Verbindungselemente und –techniken
- Kennzeichnung von Maschinenelementen Passungen und Toleranzen

Technische Mechanik 1 45 45

- Starrkörpermodellbildung (Kraft, Moment, Freischnitt)
- Zentrale und allgemeine Kraftsysteme
- Statische Gleichgewichtsbedingungen
- Lagertypen und Lagerreaktionen
- Coulombsche Reibung
- Kinematik von Punktmassen (Geschwindigkeit, Beschleunigung)

BESONDERHEITEN

Gewichtung der Prüfungsleistungen für die Modulendnote T3TRI1010.1 Konstruktion I (40%) T3TRI1010.2 Technische Mechanik I (60%)

VORAUSSETZUNGEN

LITERATUR

- H. Gross et al.: Technische Mechanik 1, Springer
- A. Böge: Technische Mechanik, Springer Vieweg
- R. Hibbeler: Technische Mechanik 1, Pearson Education GmbH
- R. Hibbeler: Technische Mechanik 3, Pearson Education GmbH
- J.L. Fanchon: Guide de mécanique, Nathan Paris
- P. Agati: Mécanique générale, Editions DUNOD
- H. Wittel et al.: Roloff/ Matek Maschinenelemente, Springer Verlag
- K.H. Decker: Maschinenelemente, Hanser-Verlag
- collection R. Quatremer, J.P. Trotignon: Précis de construction mécanique, Editions Nathan
- M. Aublin: Systèmes mécaniques Théorie et Dimensionnement, Editions DUNOD

Stand vom 01.10.2025 T3TRI1010 // Seite 7

Engineering (T3TRI1015)

Engineering

FORMALE ANGABEN ZUM MODUL

MODULNUMMER	VERORTUNG IM STUDIENVERLAUF	MODULDAUER (SEMESTER)	MODULVERANTWORTUNG	SPRACHE
T3TRI1015	1. Studienjahr	1	Prof. Dr. Guy Wennmacher	Deutsch/Französisch

EINGESETZTE LEHRFORMEN

LEHRFORMEN	LEHRMETHODEN
Vorlesung, Labor, Vorlesung, Übung, Labor	Lehrvortrag, Diskussion

EINGESETZTE PRÜFUNGSFORMEN

PRÜFUNGSLEISTUNG	PRÜFUNGSUMFANG (IN MINUTEN)	BENOTUNG
Klausur	Siehe Pruefungsordnung	ja
Laborarbeit	Siehe Pruefungsordnung	ja

WORKLOAD UND ECTS-LEISTUNGSPUNKTE

WORKLOAD INSGESAMT (IN H)	DAVON PRÄSENZZEIT (IN H)	DAVON SELBSTSTUDIUM (IN H)	ECTS-LEISTUNGSPUNKTE
150	60	90	5

QUALIFIKATIONSZIELE UND KOMPETENZEN

FACHKOMPETENZ

Die Studierenden lernen die grundlegenden heutigen Fertigungsverfahren kennen (Spanen, Umformen). Sie können die technische und wirtschaftliche Eignung der Verfahren im Hinblick auf Konstruktion, Produkteigenschaften und Maschinen bzw. Anlagen beurteilen.

METHODENKOMPETENZ

Die Studierenden sind mit Abschluss des Moduls in der Lage, die für Anwendungsfälle in der Praxis angemessenen Methoden auszuwählen und anzuwenden. Sie kennen die Stärken und Schwächen der Methoden und können diese gegenüberstellen und gegeneinander abwägen.

PERSONALE UND SOZIALE KOMPETENZ

-

ÜBERGREIFENDE HANDLUNGSKOMPETENZ

_

LERNEINHEITEN UND INHALTE

LEHR- UND LERNEINHEITEN	PRÄSENZZEIT	SELBSTSTUDIUM
Fertigungsprozesse	30	30
- Allgemeine Grundlagen der Fertigungstechnologie und Fertigungsvorgänge - Grundlagen und Systematisierung der Fertigungsprozesse		
Fertigungstechnik 1	30	60

- Fertigungstechnologie und Fertigungsvorgänge
- Werkzeuge und Auswahl der Schnittbedingungen
- Bearbeitungsvorgänge und Fertigungsreihenfolge
- Konventionelle Bearbeitung: Drehen, Fräsen, Bohren

Stand vom 01.10.2025 T3TRI1015 // Seite 8

BESONDERHEITEN

Gewichtung der Prüfungsleistungen für die Modulendnote T3TRI1015.1 Fertigungsprozesse (30%) T3TRI1015.2 Fertigungstechnik I (70%)

Der praktische Teil der Veranstaltungen findet in einer eingerichteten Lehrwerkstatt statt

VORAUSSETZUNGEN

LITERATUR

- A. Chevalier: Guide du technicien en productique, Editions Hachette A.H. Fritz et al.: Fertigungstechnik, Springer Verlag
- E. Westkämper, H.J. Warnecke: Einführung in die Fertigungstechnik, Teubner Verlag
- collection R. Quatremer, JP Trotignon: Précis Méthodes d'Usinage, Editions Nathan
- W. König et al.: Fertigungsverfahren (Band 1) Drehen, Fräsen, Bohren, Springer Verlag

Stand vom 01.10.2025 T3TRI1015 // Seite 9

Elektrotechnik (T3TRI1020)

Electrical Engineering

FORMALE ANGABEN ZUM MODUL

MODULNUMMER	VERORTUNG IM STUDIENVERLAUF	MODULDAUER (SEMESTER)	MODULVERANTWORTUNG	SPRACHE
T3TRI1020	1. Studienjahr	1	Stephan Müller	Deutsch/Französisch

EINGESETZTE LEHRFORMEN

LEHRFORMEN	LEHRMETHODEN
Vorlesung, Übung	Lehrvortrag, Diskussion

EINGESETZTE PRÜFUNGSFORMEN

PRÜFUNGSLEISTUNG	PRÜFUNGSUMFANG (IN MINUTEN)	BENOTUNG
Klausur	120	ja
Klausur	120	ja

WORKLOAD UND ECTS-LEISTUNGSPUNKTE

WORKLOAD INSGESAMT (IN H)	DAVON PRÄSENZZEIT (IN H)	DAVON SELBSTSTUDIUM (IN H)	ECTS-LEISTUNGSPUNKTE
150	75	75	5

QUALIFIKATIONSZIELE UND KOMPETENZEN

FACHKOMPETENZ

Elektrotechnik I / Elektronik I

Die Studierenden beherrschen die theoretischen Grundlagen der Gleichstromtechnik und kennen die Funktion der wichtigsten Elektronikbauelemente.

Die Studierenden sind in der Lage einfache Netzwerke mit linearen Bauelementen bei Gleichspannung im stationären Zustand zu berechnen und können das erworbene Wissen auch auf Schaltungen mit mehreren Strom- oder Spannungsquellen anwenden

Die Studierenden besitzen grundlegende Kenntnisse zu Schaltvorgängen in RC-Schaltungen sind in der Lage zielgerichtete Berechnungen des nicht-stationären Zustandes durchzuführen.

Digitaltechnik

Die Studierenden kennen die Darstellungsarten digitaler Signale und können die grundlegenden digitalen Schaltungsfamilien einordnen.

Die Studierenden sind mit Abschluss des Moduls in der Lage logische Verknüpfungen in Gleichungsform zu beschreiben und können unter Berücksichtigung der Booleschen Algebra logische Beschreibungen verstehen und optimieren.

METHODENKOMPETENZ

Umgehen mit abstrakten, auf Modellen basierenden Lösungsverfahren. Mit den erlernten Sachkompetenzen ist der Studierende in der Lage, mit Fachleuten zu kommunizieren und allgemeine grundlegende Problemstellungen der Gleichstromtechnik im Team zu vertreten.

Die Studierenden können die Stärken und Schwächen der Digitaltechnik einordnen und können die Vor- und Nachteile der Digitaltechnik gegenüber alternativen Technologien/Lösungsansätzen im Unternehmen zielgerichtet vertreten.

PERSONALE UND SOZIALE KOMPETENZ

ÜBERGREIFENDE HANDLUNGSKOMPETENZ

LERNEINHEITEN UND INHALTE

LEHR- UND LERNEINHEITEN	PRÄSENZZEIT	SELBSTSTUDIUM
Elektrotechnik 1 / Elektronik 1	45	45

Stand vom 01.10.2025 T3TRI1020 // Seite 10

LEHR- UND LERNEINHEITEN PRÄSENZZEIT SELBSTSTUD	NUI
 Elektrische Grundgrößen Gleichstromnetzwerke Zeitkonstante Felder Elektronische Bauelemente 	

30

30

- Grundlagen der Automatisierungstechnik: Funktionen, Komponenten, Schnittstellen und Datenverbindungen
- Kodierungsschemata und Nummerierung
- Logische Funktionen (binär und kombiniert)
- Boolesche Algebra

Digitaltechnik 1

- Karnaugh-Tabellen
- Variablen (Typ, Deklaration, Adressierung)
- Programmiersprachen nach IEC 61131
- Umsetzung und Einsatz von logischen Systemen mit SPS-Steuerung und

Mensch-Maschine-Schnittstelle

BESONDERHEITEN

Gewichtung der Prüfungsleistungen für die Modulendnote T3TRI1020.1 Elektrotechnik I / Elektronik I (60%) T3TRI1020.2 Digitaltechnik I (40%)

VORAUSSETZUNGEN

LITERATUR

- E. Hering et al.: Elektronik für Ingenieure und Naturwissenschaftler, Springer Verlag
- H. Frohne et al.: Grundlagen der Elektrotechnik, Teubner Verlag
- E. Hering et al.: Handbuch der praktischen und technischen Informatik, Springer Verlag
- G. Hagmann: Grundlagen der Elektrotechnik, Aula Verlag
- K. Urbanski et al.: Digitaltechnik, Springer Verlag
- E. Prochaska: Digitaltechnik für Ingenieure, Oldenbourg Verlag K. Fricke: Digitaltechnik, Vieweg Verlag
- B. Reeb: Automatismes Développement des Grafcets (B), Ellipses Marketing

T3TRI1020 // Seite 11 Stand vom 01.10.2025

Informatik (T3TRI1025)

Informatics

FORMALE ANGABEN ZUM MODUL

MODULNUMMER	VERORTUNG IM STUDIENVERLAUF	MODULDAUER (SEMESTER)	MODULVERANTWORTUNG	SPRACHE
T3TRI1025	1. Studienjahr	1	Dr. Raymond Stoffel	Deutsch/Französisch

EINGESETZTE LEHRFORMEN

LEHRFORMEN	LEHRMETHODEN
Vorlesung, Übung, Vorlesung, Übung, Labor	Lehrvortrag, Diskussion, Lehrvortrag, Diskussion, Gruppenarbeit

EINGESETZTE PRÜFUNGSFORMEN

PRÜFUNGSLEISTUNG	PRÜFUNGSUMFANG (IN MINUTEN)	BENOTUNG
Programmentwurf	Siehe Pruefungsordnung	ja
Klausur	Siehe Pruefungsordnung	ja

WORKLOAD UND ECTS-LEISTUNGSPUNKTE

WORKLOAD INSGESAMT (IN H)	DAVON PRÄSENZZEIT (IN H)	DAVON SELBSTSTUDIUM (IN H)	ECTS-LEISTUNGSPUNKTE
150	60	90	5

QUALIFIKATIONSZIELE UND KOMPETENZEN

FACHKOMPETENZ

Programmieren I

Die Studierenden sind in der Lage mit vorgegebenen Programmierwerkzeugen einfachere Computerprogramme in einer höheren Programmiersprache zu entwickeln. Sie analysieren einfache textuelle Aufgabenstellungen und wenden die Konzepte einer Programmiersprache zielgerichtet an

Verteilte Systeme I

Die Studierenden verstehen die grundlegende Funktionsweise eines Digitalrechners und die interne Datenverarbeitung.

Die Studierenden kennen die Aufgaben der - Installation, Administration und Wartung von Betriebssystemen und können diese Aufgaben für Standardfälle selbstständig durchführen.

METHODENKOMPETENZ

Programmieren I

Die Studierenden haben gelernt, eine Problemstellung zu analysieren und die Problemlösung in Form eines Algorithmus zu formulieren und in geeigneter Notation zu dokumentieren

Verteilte Systeme I

Die Studierenden sind in der Lage, für weitestgehend standardisierte Anwendungsfälle die angemessenen informationstechnischen Mittel auszuwählen und einzusetzen. Sie erkennen die Stärken und die Schwächen verschiedener informationstechnischer Systeme.

PERSONALE UND SOZIALE KOMPETENZ

Die Studierenden sind in der Lage, Einsatzmöglichkeiten und -grenzen des Rechnereinsatzes im betrieblichen Umfeld abzuschätzen

ÜBERGREIFENDE HANDLUNGSKOMPETENZ

Einordnung aktueller Themen der Informationstechnik in den Unternehmenskontext Fähigkeit zur Kommunikation über Themen der Informationstechnik im Unternehmensumfeld

LERNEINHEITEN UND INHALTE

LEHR- UND LERNEINHEITEN	PRÄSENZZEIT	SELBSTSTUDIUM
Programmieren 1	30	45

Stand vom 01.10.2025 T3TRI1025 // Seite 12

LEHR- UND LERNEINHEITEN PRÄSENZZEIT SELBSTSTUDIUM

- Einführung in der Begriffswelt der Informatik (Umfeld Programmieren).
- Struktur eines Programms
- Aufbau einer Entwicklungsumgebung (NetBeans oder Eclipse) inkl. Debugging.
- Variablen (Lokale Variablen, Globale Variablen, Argumente).
- Datentypen. Verschiedene Codierungen.
- Logische Funktionen: Verzweigungen und Schleifen
- Funktionen und Prozeduren.

Verteilte Systeme 1 30 45

- Grundlagen Betriebssysteme (Aufbau, Funktion, preemptive und non-preemptive Multitasking, Warteschlangenmanagement, Zustandautomaten)
- Grundlagen: Prozesse, Scheduling, Speicherverwaltung, Eingabe/Ausgabe und Dateisysteme.
- Unix/Linux: Konzepte, Startup und Shutdown, Netzwerkintegration, Verwaltung von Dateisystemen, Benutzerverwaltung und Rechtemanagement, Verzeichnisdienste, Serverdienste, Systemüberwachung und Ressourcenmanagement, Automatisierung von Administrationsaufgaben.
- Windows: Konzepte, Startup und Shutdown, Netzwerkintegration, Verwaltung von Dateisystemen, Benutzerverwaltung und Rechtemanagement, Verzeichnisdienste, Serverdienste, Systemüberwachung und Ressourcenmanagement, Automatisierung von Administrationsaufgaben.
- Praktika: Installation und Konfiguration eines Betriebssystems, Administrationstools, Serverund Verzeichnisdienste.

BESONDERHEITEN

Gewichtung der Prüfungsleistungen für die Modulendnote T3TRI1025.1 Programmieren I (50%) T3TRI1025.2 Verteilte Systeme I (50%)

VORAUSSETZUNGEN

LITERATUR

- E. Hering et al.: Handbuch der praktischen und technischen Informatik, Springer Verlag

Abhängig von der gewählten Programmiersprache (C/C++/Java)

- M. Kofler: Linux, Installation, Konfiguration, Anwendung, Addison Wesley
- K. Loudon et al.: C++ kurz & gut, O'Reilly Verlag GmbH & Co. KG
- C. Dellanoy: Programmer en langage C++, Editions Eyrolles

Stand vom 01.10.2025 T3TRI1025 // Seite 13

Kommunikation (T3TRI1030)

Communication

FORMALE ANGABEN ZUM MODUL

MODULNUMMER	VERORTUNG IM STUDIENVERLAUF	MODULDAUER (SEMESTER)	MODULVERANTWORTUNG	SPRACHE
T3TRI1030	1. Studienjahr	1	Stephan Müller	Deutsch/Französisch

EINGESETZTE LEHRFORMEN

LEHRFORMEN	LEHRMETHODEN
Seminar Vorlesung Ühung Lahor	Gruppenarheit Lehrvortrag Diskussion Gruppenarheit

EINGESETZTE PRÜFUNGSFORMEN

PRÜFUNGSLEISTUNG	PRÜFUNGSUMFANG (IN MINUTEN)	BENOTUNG
Kombinierte Prüfung - Kombinierte Prüfung	Siehe Pruefungsordnung	ja
Unbenotete Prüfungsleistung	Siehe Pruefungsordnung	Bestanden/ Nicht-Bestanden

WORKLOAD UND ECTS-LEISTUNGSPUNKTE

WORKLOAD INSGESAMT (IN H)	DAVON PRÄSENZZEIT (IN H)	DAVON SELBSTSTUDIUM (IN H)	ECTS-LEISTUNGSPUNKTE
150	60	90	5

QUALIFIKATIONSZIELE UND KOMPETENZEN

FACHKOMPETENZ

Die Studierenden erlernen die Grundlagen der mündlichen und schriftlichen Kommunikation in der Fremdsprache in beruflichen Handlungsfeldern. Sie beherrschen einfache schriftliche Kommunikation in der Fremdsprache (technische Berichte, E-Mails und einfache administrative und berufliche Korrespondenz) und sind in der Lage einfache mündliche Präsentationen vor einer Gruppe in der Fremdsprache durchzuführen.

METHODENKOMPETENZ

Die Studierenden erwerben Fähigkeiten und Techniken zum selbständigen Ausbau ihrer Fremdsprachenkompetenz. Sie üben Argumentation und Strukturierung von Konzepten in einer Fremdsprache.

PERSONALE UND SOZIALE KOMPETENZ

Die Studierenden agieren bewusst in verschiedenen zwischenmenschlichen Situationen und sind sich ihrer Rolle in interkulturell besetzten Teams bewusst. Die Studierenden reflektieren alleine und in der Gruppe die interkulturellen Unterschiede im Hinblick auf die damit verbundene Verantwortung und Implikation. Die Studierenden kooperieren im Team und weisen Kritikfähigkeit und Konfliktfähigkeit auf. Die Studierenden übernehmen Verantwortung in der Gruppe, integrieren alle Mitglieder in den Arbeitsprozess und tragen durch ihr kooperatives Verhalten dazu bei, dass die Gruppe das gemeinsame Ziel erreicht.

ÜBERGREIFENDE HANDLUNGSKOMPETENZ

Die Studierenden sind in der Lage, sich schnell in neuen Situationen zurechtzufinden und sich in neue Teams, Aufgaben und Kulturen zu integrieren

LERNEINHEITEN UND INHALTE

LEHR- UND LERNEINHEITEN	PRÄSENZZEIT	SELBSTSTUDIUM
Sprache (D/F/E) 1	45	90

- Alltagskonversation (Emails, Telefonieren, Small-Talk).
- Einfache fachbezogene Konversation (Präsentieren, Vorstellungsgespräche, einfache Referate).
- Berufsleben und Mobilität (fachbezogener technischer Wortschatz, Geschäftsreisen, Kenntnisse des Gastlandes)
- Schriftlich: Lebenslauf, Bewerbungsschreiben, einfache Texte schreiben, Praktikumsberichte
- Grammatik: Grundlagen und Regeln

Stand vom 01.10.2025 T3TRI1030 // Seite 14

LEHR- UND LERNEINHEITENPRÄSENZZEITSELBSTSTUDIUMKommunikationswoche (Todtmoos)150

- Kommunikationsformen
- Teambildung
- Erste Erfahrungen in der Konfliktbewältigung
- Grundlagen des interkulturellen Managements
- Erste Erfahrungen mit Projektmanagement

BESONDERHEITEN

Gewichtung der Prüfungsleistungen für die Modulendnote T3TRI1030.1 Sprache I (D/F) (100%) T3TRI1030.2 Kommunikationswoche (0%), Teilnahme obligatorisch

Die Kommunikationswoche findet am Anfang des Studiums als mehrtägiges Integrationsseminar statt.

VORAUSSETZUNGEN

_

LITERATUR

- Bescherelle poche La conjugaison Hatier
- Bescherelle La grammaire Hatier
- Bescherelle Orthographe Hatier
- E. Froget-Seeger: Verben Französische auf einen Blick, PONS
- K. Jambon: Grammtik Französisch auf einen Blick, PONS
- I. Langenbach: Zeiten Französisch auf einen Blick, PONS
- D. Lübke et al.: Französisch Grammatik 2 in 1, Schroedel
- R. Rösch et al.: La France au quotidien, PUG

Weitere Literaturhinweise zu den Sprachen werden zu Semesterbeginn bekannt gegeben.

- F. Schulz von Thun: Miteinander Reden 1: Störungen und Klärungen, Reinbek Verlag (1981).
- B. Langmaack et al.: Wie die Gruppe laufen lernt. Anregungen zum Planen und Leiten von Gruppen, Beltz Verlag.
- T. Senninger: Abenteuer leiten in Abenteuern lernen, Ökotopia Verlag

Stand vom 01.10.2025 T3TRI1030 // Seite 15

Mathematik II (T3TRI1040)

Basics Mathematics II

FORMALE ANGABEN ZUM MODUL

MODULNUMMER	VERORTUNG IM STUDIENVERLAUF	MODULDAUER (SEMESTER)	MODULVERANTWORTUNG	SPRACHE
T3TRI1040	1. Studienjahr	1	Stephan Müller	Deutsch

EINGESETZTE LEHRFORMEN

LEHRFORMEN	LEHRMETHODEN
Vorlesung, Übung	Lehrvortrag, Diskussion, Gruppenarbeit

EINGESETZTE PRÜFUNGSFORMEN

PRÜFUNGSLEISTUNG	PRÜFUNGSUMFANG (IN MINUTEN)	BENOTUNG
Klausur	120	ja
Klausur	120	ja

WORKLOAD UND ECTS-LEISTUNGSPUNKTE

WORKLOAD INSGESAMT (IN H)	DAVON PRÄSENZZEIT (IN H)	DAVON SELBSTSTUDIUM (IN H)	ECTS-LEISTUNGSPUNKTE
150	75	75	5

QUALIFIKATIONSZIELE UND KOMPETENZEN

FACHKOMPETENZ

Die Studierenden kennen und verstehen grundlegende Eigenschaften elementarer Funktionen und können diese auf mathematische und technische Fragestellungen anwenden.

Die Studierenden kennen und verstehen die Grundlagen der Differential- und Integralrechnung von Funktionen einer und mehrerer Variablen und können diese auf mathematische und technische sowie ggf. wirtschaftliche Fragestellungen anwenden.

METHODENKOMPETENZ

Die Studierenden kennen grundlegende Methoden der Analysis und können diese auf konkrete technische und wirtschaftliche Problemstellungen anwenden. Sie sind sich der Reichhaltigkeit der Anwendung dieser Methoden, aber auch ihrer Grenzen bewusst.

PERSONALE UND SOZIALE KOMPETENZ

Mathematik als abstrakte Sprache für die Beschreibung von Natur und Technik begreifen. Fähigkeit zur Bearbeitung mathematischer Fragestellungen in kleinen Teams.

ÜBERGREIFENDE HANDLUNGSKOMPETENZ

Die Studierenden erlernen strukturierte und systematische Herangehensweisen an komplexe Sachverhalte.

Die Studierenden können mathematische Grundkenntnisse auf die Lösung technischer bzw. wirtschaftlicher Problemstellungen anwenden.

Die Studierenden können mathematische Methoden und Algorithmen in den verschiedenen Gebieten der Mechatronik anwenden

Kenntnis verschiedener analytischer, numerischer und graphischer Verfahren zur Beschreibung und Lösung mathematisch-technischer Probleme.

LERNEINHEITEN UND INHALTE

LEHR- UND LERNEINHEITEN	PRÄSENZZEIT	SELBSTSTUDIUM
Analysis II	45	45

- weitere elementare Funktionen
- Potenzreihen
- elementare Integrationstechniken
- Anwendungen der Differential/Integralrechnung (Krümmung, Bogenlängen, Rotationsvolumen,

Flächenträgheitsmomente, Schwerpunkte)

Stand vom 01.10.2025 T3TRI1040 // Seite 16

LEHR- UND LERNEINHEITEN	PRÄSENZZEIT	SELBSTSTUDIUM
Analysis III	30	30

- Differential- und Integralrechnung von Funktionen mit mehreren Veränderlichen Anwendungen (mehrdimensionale Optimierung, Regressions- und Fehlerrechnung, Volumen, Schwerpunkt, Trägheitsmomente)

BESONDERHEITEN

Gewichtung der Prüfungsleistungen für die Modulendnote T3TRI1040.1 Analysis II (60%) T3TRI1040.2 Analysis III (40%)

VORAUSSETZUNGEN

T3TRI1005 Mathematik

LITERATUR

- L. Papula: Mathematik für Ingenieure und Naturwissenschaftler - Band 1 und 2, Vieweg Verlag

Stand vom 01.10.2025 T3TRI1040 // Seite 17

Physik (T3TRI1045)

Applied Physics

FORMALE ANGABEN ZUM MODUL

MODULNUMMER	VERORTUNG IM STUDIENVERLAUF	MODULDAUER (SEMESTER)	MODULVERANTWORTUNG	SPRACHE
T3TRI1045	1. Studienjahr	1	Stephan Müller	Deutsch

EINGESETZTE LEHRFORMEN

LEHRFORMEN	LEHRMETHODEN
Vorlesung, Übung	Lehrvortrag, Diskussion

EINGESETZTE PRÜFUNGSFORMEN

PRÜFUNGSLEISTUNG	PRÜFUNGSUMFANG (IN MINUTEN)	BENOTUNG
Klausur	120	ja
Klausur	120	ja

WORKLOAD UND ECTS-LEISTUNGSPUNKTE

WORKLOAD INSGESAMT (IN H)	DAVON PRÄSENZZEIT (IN H)	DAVON SELBSTSTUDIUM (IN H)	ECTS-LEISTUNGSPUNKTE
150	75	75	5

QUALIFIKATIONSZIELE UND KOMPETENZEN

FACHKOMPETENZ

Materialphysik:

Die Studierenden besitzen Grundkenntnisse über die Zusammensetzung der Materie und Werkstoffe und können die daraus resultierenden Eigenschaften und die technische Verwertbarkeit ableiten.

Technische Physik

Die Studierenden besitzen ein Verständnis der Grundlagen der Optik und der Schwingungslehre und können im Fachgebiet zielgerichtete Berechnungen anstellen.

METHODENKOMPETENZ

Materialphysik:

Die Studierenden sind in der Lage für weitestgehend standardisierte Anwendungsfälle in der Praxis adäquate Materialien und Werkstoffe zu benennen und gezielt auszuwählen.

Technische Physik:

Der Studierende kann mathematische und physikalische Problemstellungen des Fachgebietes analysieren und durch Anwendung bekannter Methoden selbstständig lösen und die Verantwortung dafür übernehmen

Die Studierenden sind in der Lage technische Literatur, Kongresse und andere Informationsquellen effektiv zu nutzen, um ihr Wissen und ihre Kompetenzen in der Physik zu aktualisieren

Die Studierenden sind in der Lage in einem Team physikalische Zusammenhänge darzulegen und aktiv am Informations- und Ideenaustausch teilzunehmen

PERSONALE UND SOZIALE KOMPETENZ

Die Studierenden kennen die Kriterien für die optimale Werkstoffauswahl im Hinblick auf Anwendungen der Mechatronik, aber auch im Hinblick auf Umweltverträglichkeit und Nachhaltigkeit

ÜBERGREIFENDE HANDLUNGSKOMPETENZ

Die Studierenden kennen die gängigen Materialien in der Mechatronik und können deren Grenzen für die praktische Anwendbarkeit einschätzen.

LERNEINHEITEN UND INHALTE

LEHR- UND LERNEINHEITEN	PRÄSENZZEIT	SELBSTSTUDIUM
Materialphysik	30	30

Stand vom 01.10.2025 T3TRI1045 // Seite 18

LEHR- UND LERNEINHEITEN PRÄSENZZEIT SELBSTSTUDIUM

- Aufbau der Materie (Atome, Bindung, Kristallstrukturen, Symmetrien)
- Reale Gitterstrukturen (Defekte)
- Materialkennwerte aus Zugversuch und Härteprüfung
- Legierungsbildung und Zustandsschaubilder
- Eisen-Kohlenstoff-Diagramm

Technische Physik 45 45

- Strahlenoptik
- Schwingungen (Spektrum, Resonanz, Modulation)
- Wellen (Interferenz, Doppler, Holographie)
- Licht (Lichtquellen, Laser, Farbe)

BESONDERHEITEN

Gewichtung der Prüfungsleistungen für die Modulendnote T3TRI1045.1 Materialphysik (40%) T3TRI1045.2 Technische Physik (60%)

VORAUSSETZUNGEN

T3TRI1005 Mathematik

LITERATUR

- H.J. Bargel et al.: Werkstoffkunde, Springer Verlag
- W.D. Callister: Science et génie des matériaux, Modulo éditeur
- W.D. Callister: Materials Science and Engineering An Introduction, John Wiley & Sons
- U. Leute: Physik und ihre Anwendungen in Technik und Umwelt, Hanser Verlag
- E. Hering et al.: Physik für Ingenieure, Springer Verlag

Stand vom 01.10.2025 T3TRI1045 // Seite 19

Mechanik II (T3TRI1050)

Applied Mechanics II

FORMALE ANGABEN ZUM MODUL

MODULNUMMER	VERORTUNG IM STUDIENVERLAUF	MODULDAUER (SEMESTER)	MODULVERANTWORTUNG	SPRACHE
T3TRI1050	1. Studienjahr	1	Prof. Dr. Guy Wennmacher	Deutsch/Französisch

EINGESETZTE LEHRFORMEN

LEHRFORMEN	LEHRMETHODEN
Vorlesung, Übung	Lehrvortrag, Diskussion, Gruppenarbeit

EINGESETZTE PRÜFUNGSFORMEN

PRÜFUNGSLEISTUNG	PRÜFUNGSUMFANG (IN MINUTEN)	BENOTUNG
Klausur	120	ja
Klausur	120	ja

WORKLOAD UND ECTS-LEISTUNGSPUNKTE

WORKLOAD INSGESAMT (IN H)	DAVON PRÄSENZZEIT (IN H)	DAVON SELBSTSTUDIUM (IN H)	ECTS-LEISTUNGSPUNKTE
150	60	90	5

QUALIFIKATIONSZIELE UND KOMPETENZEN

FACHKOMPETENZ

Festigkeitslehre:

Die Studierenden verstehen die Grundlagen der Festigkeitslehre und können diese zur rechnerischen Festigkeitsanalyse von Maschinenbauteilen anwenden. Sie können exemplarisch die Berechnung von Funktion und Festigkeit durchführen.

Die Studierenden verstehen die grundlegenden Beanspruchungsarten mechanischer Bauteile und können die Festigkeit bei einfacher Beanspruchung berechnen und hinsichtlich der Sicherheit gegen Versagen beurteilen

Werkstoffkunde:

Die Studierenden verstehen den Zusammenhang zwischen Werkstoffstruktur und Werkstoffeigenschaften.

Sie kennen das Werkstoffverhalten unter verschiedenen Beanspruchungsbedingungen.

Die Studierenden kennen die Verfahren der Werkstoffherstellung und die Werkstoffanwendungsmöglichkeiten. Sie können anhand von Werkstoffkennwerten die Verwendung beurteilen.

METHODENKOMPETENZ

Festigkeitslehre

Die Studierenden sind in der Lage, die erlernten naturwissenschaftlichen Methoden der Mechanik bei jeder statischen Beurteilung zielgerichtet anzuwenden. Sie besitzen die Fähigkeit, mathematische Berechnungen zuverlässig durchzuführen.

Werkstoffkunde

Die Studierenden beherrschen die fachadäquate Kommunikation mit Kolleginnen Kollegen aus Forschung und Entwicklung sowie Fertigung und Konstruktion. Sie können anhand der vorgestellten Methoden geeignete Werkstoffe für bestimmte Anwendungen auswählen.

PERSONALE UND SOZIALE KOMPETENZ

Die Studierenden lernen, in kleinen Teams effektiv und zielgerichtet das in den Vorlesungen vermittelte Wissen auf neuartige Aufgaben anzuwenden. Sie sind sich der Auswirkung auf alle Bereiche der Gesellschaft und damit der Sorgfaltspflicht bewusst, mit der Werkstoffauswahl, Werkstoffeinsatz und Festigkeitsnachweise zu führen sind.

ÜBERGREIFENDE HANDLUNGSKOMPETENZ

Werkstoffkunde

Die Studierenden können erworbenes Werkstoffkundewissen auf Problemstellungen in der Praxis anwenden und sind in der Lage, sich im Verlaufe ihrer beruflichen Tätigkeit in weiterführende Problemstellungen der Werkstoffkunde selbstständig einzuarbeiten.

Stand vom 01.10.2025 T3TRI1050 // Seite 20

ELIMENTETE ON MITTEE		
LEHR- UND LERNEINHEITEN	PRÄSENZZEIT	SELBSTSTUDIUM
Festigkeitslehre 1	30	45
 Mechanische Grundbelastungen. Berechnung der Verformung und der Spannungen für Zug, Druck, Schub, Torsion. 		

- Biegebeanspruchung
- Festigkeitshypothesen

Werkstoffkunde 30 45

- allgemeine Metallkunde
- Eisenwerkstoffe (Stahl Gusseisen)
- Wärmebehandlung von Eisen-Kohlenstofflegierungen
- Werkstoffkennwerte
- Nichteisenmetalle
- Keramische Werkstoffe
- Kunst- und Verbundstoffe

BESONDERHEITEN

-Gewichtung der Prüfungsleistungen für die Modulendnote T3TRI1050.1 Festigkeitslehre I (50%) T3TRI1050.2 Werkstoffkunde (50%)

VORAUSSETZUNGEN

T3TRI1010 Mechanik T3TRI1045 Physik

LITERATUR

- H. Gross et al.: Technische Mechanik 2, Springer Verlag
- R. Hibbeler: Technische Mechanik 2, Pearson Education
- A. Barzegui: Resistance des matériaux, Edition de l'école Polytechnique de Montréal
- P. Agati: Resistance des matériaux, Editions DUNOD
- M. Aublin: Systèmes mécaniques Théorie et Dimensionnement, Editions DUNOD
- P. Agati: Transmission de puissance principes, Editions DUNOD
- P. Agati:Transmission de puissance applications, Editions DUNOD
- Roos, Maile: Werkstoffkunde für Ingenieure, Springer Verlag
- W.D.Callister et al.: Materialwissenschaften und Werkstofftechnik, Wiley-VCH
- H.J. Bargel et al.: Werkstoffkunde, Springer Vieweg
- J. Shackelford: Werkstofftechnologie für Ingenieure, Pearson Studium

Stand vom 01.10.2025 T3TRI1050 // Seite 21

SPRACHE

Elektrotechnik II (T3TRI1055)

Electrical Engineering II

MODULVERANTWORTUNG

MODULDAUER (SEMESTER)

EUBMV	I E ANG	AREN 7	TIME NA	UDIII

MODULNUMMER VERORTUNG IM STUDIENVERLAUF

T3TRI1055	1. Studienjahr	1	Stephan Müller	Deutsch/Französisch
EINGESETZTE LEHF	RFORMEN			
LEHRFORMEN			LEHRMETHODEN	
Vorlesung, Übung	g		Lehrvortrag, Diskussion, Lehrvortrag,	Diskussion, Gruppenarbeit
EINGESETZTE PRÜI	FUNGSFORMEN			
PRÜFUNGSLEISTU	NG		PRÜFUNGSUMFANG (IN MINUTEN)	BENOTUNG
Klausur			120	ja
Klausur			120	ja

WORKLOAD UND ECTS-LEISTUNGSPUNKTE

WORKLOAD INSGESAMT (IN H)	DAVON PRÄSENZZEIT (IN H)	DAVON SELBSTSTUDIUM (IN H)	ECTS-LEISTUNGSPUNKTE
150	75	75	5

Stand vom 01.10.2025 T3TRI1055 // Seite 22

QUALIFIKATIONSZIELE UND KOMPETENZEN

FACHKOMPETENZ

Flektrotechnik II:

Die Studierenden

- beherrschen die theoretischen Grundlagen der Wechselstromtechnik und grundlegende Netzwerkberechnungsmethoden,
- sind in der Lage, einfache Netzwerke mit Induktivitäten und Kapazitäten bei Wechselspannung im eingeschwungenen Zustand mit Hilfe der komplexen Rechnung zu berechnen.
- können die Phasenbeziehungen in Wechselstromschaltungen mit Hilfe von Zeigerbildern darstellen,
- verfügen über grundlegende Kenntnisse zum Dreiphasenwechselstrom und zu den verschiedenen Verbraucherschaltungen (Stern- und Dreieckschaltung),
- sind in der Lage, die grundlegende messtechnische Ausstattung (Oszilloskop, Frequenzgenerator, Multimeter) im Labor/Praktikum zu bedienen,
- kennen den Aufbau und die Funktionsweise von einfachen Halbleiter- und Leistungshalbleiterbauelementen,
- besitzen einen Überblick über unterschiedliche, gebräuchliche elektronische Schaltungen haben und verstehen deren Wirkprinzipien,
- verfügen über grundlegende Kenntnisse bezüglich der Eigenschaften, Kennwerte, Grenzwerte und Kennlinien elektronischer Bauelemente,

kennen Anwendungen und Einsatzbereiche ausgewählter elektronischer Schaltungen kennen,

- können einfache elektronische Schaltungen selbst entwickeln und entwerfen.

Digitaltechnik II:

Die Studierenden:

- verstehen die grundlegenden digitalen Schaltungsfamilien
- kennen die Darstellungsarten digitaler Signale
- können logische Verknüpfungen in Gleichungsform beschreiben
- können logische Beschreibungen optimieren
- können kombinatorische digitale Schaltungen entwerfen
- kennen die grundlegenden Flipflop-Arten
- können taktgebundene Zähler entwerfen
- kennen die Beschreibungsformen digitaler Steuerungen (Automaten)
- können einfache Automaten entwerfen

METHODENKOMPETENZ

Elektrotechnik / Elektronik

- Umgehen mit verschiedenen Lösungsansätzen bzw. mathematischen Hilfsmitteln (komplexe Rechnung).
- Mit den erlernten Sachkompetenzen sind die Studierenden in der Lage, mit Fachleuten zu kommunizieren und allgemeine grundlegende Problemstellungen bzw. Fragestellungen der Wechselstromtechnik im Team zu vertreten.

Digitaltechnik:

- Die Studierenden können das Fachwissen anhand praktischer Problemstellungen anwenden, eigene Lösungsansätze entwickeln und diese gegeneinander abwägen und deren Stärken und Schwächen gegenüberstellen.
- Die Studierenden können ihr Wissen über die Arbeitsweise digitaler Schaltelemente und den Aufbau digitaler Schaltkreise. Auf die Funktionsweise und den Aufbau von Rechnerbaugruppen übertragen.

PERSONALE UND SOZIALE KOMPETENZ

ÜBERGREIFENDE HANDLUNGSKOMPETENZ

Elektrotechnik

Die Möglichkeiten der Elektronik für gegebene Problemstellungen im Unternehmensumfeld einordnen und die Vor- und Nachteile gegenüber alternativen Technologien / Lösungsansätzen im Unternehmen anwenden und vertreten zu können.

Digitaltechnik

Die Studierenden zeichnen sich durch ein profundes Verständnis der Digitaltechnik aus und sind in der Lage theoretisches Wissen in die Praxis zu übertragen.

LERNEINHEITEN UND INHALTE

LEHR- UND LERNEINHEITEN	PRÄSENZZEIT	SELBSTSTUDIUM
Elektrotechnik 2 / Elektronik 2	45	45

- Zeitabhängige Größen
- Zeitabhängige Felder
- Einschaltvorgänge
- Halbleiter und Anwendungen (Labor)
- Operationsverstärker

Stand vom 01.10.2025 T3TRI1055 // Seite 23

LEHR- UND LERNEINHEITENPRÄSENZZEITSELBSTSTUDIUMDigitaltechnik 23030

- Ablauf- bzw. Taktdiagramme
- Algorithmen zur Ablaufplanung
- Einführung in die sequentielle Logik
- Hierarchische Modellstrukturen
- Betriebsarten und Sicherheitsmanagement
- Parametrierung im Produktionsprozess
- Funktionsweisen von SPS-Systemen
- Einführung in die Automatentheorie Spezifikation und Modellierung
- Umsetzung und Einsatz von sequentiellen SPS-Steuerungen und

Mensch-Maschine-Schnittstelle

BESONDERHEITEN

Gewichtung der Prüfungsleistungen für die Modulendnote T3TRI1055.1 Elektrotechnik II / Elektronik II (60%) T3TRI1055.2 Digitaltechnik II (40%)

VORAUSSETZUNGEN

T3TRI1005 Mathematik T3TRI1020 Elektrotechnik T3TRI1025 Informatik

LITERATUR

- B. Reeb: Automatismes, éditions ellipses
- E. Hering et al.: Elektronik für Ingenieure und Naturwissenschaftler, Springer Verlag
- H. Frohne et al.: Grundlagen der Elektrotechnik, Teubner Verlag
- E. Hering et al.: Handbuch der praktischen und technischen Informatik, Springer Verlag

Stand vom 01.10.2025 T3TRI1055 // Seite 24

Kommunikation II (T3TRI1060)

Communication II

EODM	$I \land I \sqsubseteq \land N$	IC A DEN	1 7111//	MODUL

MODULNUMMER VERORTUNG IM STUDIENVERLAUF MODULDAUER (SEMESTER) MODULVERANTWORTUNG SPRACHE Prof. Dr. Robert Alard Deutsch/Französisch T3TRI1060 1. Studienjahr 1

EINGESETZTE LEHRFORMEN

LEHRFORMEN LEHRMETHODEN

Seminar, Vorlesung, Übung Lehrvortrag, Diskussion, Fallstudien, Lehrvortrag, Diskussion,

Gruppenarbeit, Planspiel

EINGESETZTE PRÜFUNGSFORMEN

PRÜFUNGSLEISTUNG PRÜFUNGSUMFANG (IN MINUTEN) BENOTUNG Kombinierte Prüfung - Kombinierte Prüfung Siehe Pruefungsordnung Kombinierte Prüfung - Kombinierte Prüfung Siehe Pruefungsordnung ja Bestanden/ Nicht-Bestanden

Unbenotete Prüfungsleistung Siehe Pruefungsordnung

WORKLOAD UND ECTS-LEISTUNGSPUNKTE

WORKLOAD INSGESAMT (IN H) DAVON PRÄSENZZEIT (IN H) DAVON SELBSTSTUDIUM (IN H) ECTS-LEISTUNGSPUNKTE 150

T3TRI1060 // Seite 25 Stand vom 01.10.2025

QUALIFIKATIONSZIELE UND KOMPETENZEN

FACHKOMPETENZ

Sprache

Beherrschen von schriftlicher Kommunikation in der Fremdsprache (technische Berichte, E-Mails und berufliche Korrespondenz). Die Studierenden sind in der Lage mündliche Präsentationen eines technischen Fachgebiets vor einer Gruppe in der Fremdsprache durchzuführen.

Projektmanagement

Die Grundbegriffe des Projektmanagements und des Systems Engineerings zu kennen und kleinere Projekte methodisch korrekt durchführen zu können.

Unternehmenssimulation

Fähigkeit, sich unter realitätsnahen Bedingungen in die Führung eines Unternehmens einzuarbeiten.

Grundlagen der Bilanz und Erfolgsrechnung, Ertrag und Kosten, Gewinn und Verlust, Produktion und Markt kennen.

Den Finanz- und Warenfluss anschaulich beschreiben zu können.

Die Bedeutung von betrieblichen Kenngrössen (Eigen- und Fremdkapital, Liquidität usw.) erkannt zu haben.

METHODENKOMPETENZ

Sprache

Die Studierenden erwerben Fähigkeiten und Techniken zum selbständigen Ausbau ihrer Fremdsprachenkompetenz. Sie üben Argumentation und Strukturierung von Konzepten in einer Fremdsprache.

Projektmanagement

Die Studierenden kennen die Grundlagen des Projektmanagements und die damit verbundenen Methoden. Sie sind in der Lage, die erworbenen Kenntnisse zielgerichtet einzusetzen, um kleinere Projekte systematisch bearbeiten zu können. Sie sind in der Lage, vor mittelgroßen Gruppen publikumsgerecht zu präsentieren.

Unternehmenssimulation

Die Studierenden sind in der Lage, Verhandlungen in der Gruppe zu führen und Entscheidungen fällen zu können.

Kommunikationsfähigkeiten in der Gruppe.

Begründung des eigenen Handelns und der Entscheidungen in der Gruppe.

PERSONALE UND SOZIALE KOMPETENZ

Sprache

Die Studierenden agieren bewusst in verschiedenen zwischenmenschlichen Situationen und sind sich ihrer Rolle in interkulturell besetzten Teams bewusst.

Projektmanagement

Das Systems Engineering erweitert die analytischen Fähigkeiten der Studierenden und erlaubt ein strukturiertes und sachlogisches Planen größerer und komplexer soziotechnischer Sachverhalte.

Unternehmenssimulation

Die Simulation ermöglicht die Fähigkeit betriebswirtschaftliche Elemente der Unternehmensführung (Bilanz, Erfolgsrechnung, Umsatz, Kosten) praxisgerecht anzuwenden und Zusammenhänge zu verstehen.

ÜBERGREIFENDE HANDLUNGSKOMPETENZ

Sprache

n. Die Studierenden sind in der Lage, sich schnell in neuen Situationen zurechtzufinden und sich in neue Teams, Aufgaben und Kulturen zu integrieren

Proiektmanagement

Das Systems Engineering eignet sich auch für die Nutzung in nichttechnischen Projekten.

Unternehmenssimulation

Unternehmertum selbst und praxisnah zu erleben.

Strategien im Umgang mit Erfolg und Misserfolg zu entwerfen.

Auf Unvorhergesehene Einflüsse (Marktveränderungen, Konkursgefahr) rasch reagieren können.

LERNEINHEITEN UND INHALTE

LEHR- UND LERNEINHEITEN	PRÄSENZZEIT	SELBSTSTUDIUM
Sprache (D/F) 2	30	15

- Gutes Hörverstehen, Leseverstehen.
- Schriftlich: Erstellen von einfachen Berichten und Protokollen.
- Mündlich: Sich oder andere Personen vorstellen.
- In der Fremdsprache korrekt präsentieren und argumentieren.
- Grammatik: Weiterführende Grammatik

Stand vom 01.10.2025 T3TRI1060 // Seite 26

LEHR- UND LERNEINHEITEN	PRÄSENZZEIT	SELBSTSTUDIUM
Projektmanagement 1 + Unternehmensbesuch	30	45

- Einführung in das Projektmanagement
- Projektarten und -phasen
- Systems Engineering: Systemdenken und Vorgehensmodell
- Systems Engineering: Situationsanalyse (u.a. Systemabgrenzung
- Stärken- / Schwächenanalyse; Chancen- / Gefahrenanalyse)
- Systems Engineering: Zielformulierung
- Systems Engineering: Lösungssuche
- Systems Engineering: Bewertung und Entscheidungsvorbereitung
- Grundlagen des Projektmanagements
- Übungen und Fallstudien

Unternehmenssimulation 15 15

- Startphase:

Strukturierter Aufbau einer definierten Ausgangslage einer produzierenden Firma.

- Simulationsphase:

Simulation von 8 bis 10 Kalenderjahren von in Konkurrenz stehenden Unternehmen, die jeweils

Produkte herstellen.

- Reflexionsphase:

Analyse der Geschäftstätigkeit während der gesamten Dauer.

Reflexion der firmeneigenen Strategie und des operativen Geschäfts.

Reflexion des Marktes und der Mitbewerber.

Reflexion der Qualifikationsziele und Kompetenzen ("lessons learned").

Lernen durch das Erleben mit spielerischen Elementen. Haptische Simulation in Seminarform mittels 3-tägiger Veranstaltung als Blockkurs Testierung durch 100% ige Präsenz.

BESONDERHEITEN

Die Vorlesung Projektmanagement I (Systems-Engineering) wird durch eine umfangreiche Fallstudie ergänzt.

Es finden Unternehmensbesuche statt, um das Erlernte zu vertiefen und Anwendungen in der Praxis zu studieren.

Gewichtung der Prüfungsleistungen für die Modulendnote

T3TRI1060.1 Sprache II (D/F) (50%)

T3TRI1060.2 Projektmanagement + Unternehmensbesuch (50%)

T3TRI1060.3 Unternehmenssimulation (0%), Teilnahme obligatorisch

VORAUSSETZUNGEN

T3TRI1030 Kommunikation

LITERATUR

- F. Clamer et al.: Übungsgrammatik für die Mittelstufe Kurzfassung, Meckenheim
- M. Riegler-Poyet et al.: Das Testbuch Wirtschaftsdeutsch, Langenscheidt
- A. Fearns et al.: Technisches Deutsch für Ausbildung und Beruf. Europa Verlag
- Weitere Literaturhinweise zu den Sprachen werden zu Semesterbeginn bekannt gegeben.
- R. Haberfellner et al.: Systems Engineering Grundlagen und Anwendungen, Orell Füssli Verlag Zürich.
- R. Züst: Einstieg ins Systems Engineering: optimale, nachhaltige Lösungen entwickeln und umsetzen, Verlag Industrielle Organisation.

- R. Züst et al.: No more muddling through: mastering complex projects in engineering and management, Springer Verlag

Stand vom 01.10.2025 T3TR11060 // Seite 27

Angewandte Mathematik (T3TRI2005)

Applied Mathematics

EORM	$\Lambda I = \Lambda$	NCAR	ENI 711N	I MODIII

FORMALE ANGABEN	ZUM MODUL			
MODULNUMMER	VERORTUNG IM STUDIENVERLAUF	MODULDAUER (SEMESTER)	MODULVERANTWORTUNG	SPRACHE
T3TRI2005	2. Studienjahr	1	Stephan Müller	Deutsch/Französisch
EINGESETZTE LEHRFO	ORMEN			
LEHRFORMEN			LEHRMETHODEN	
Vorlesung, Übung Lehrvortrag, Diskussion, Lehrvortrag, Diskussion, Gruppenarbeit				
Vorlesung, Übung			Lehrvortrag, Diskussion, Lehrvortrag, D	Diskussion, Gruppenarbeit
Vorlesung, Übung			Lehrvortrag, Diskussion, Lehrvortrag, D	Diskussion, Gruppenarbeit
Vorlesung, Übung EINGESETZTE PRÜFUI	NGSFORMEN		Lehrvortrag, Diskussion, Lehrvortrag, C	Diskussion, Gruppenarbeit
			Lehrvortrag, Diskussion,	Diskussion, Gruppenarbeit BENOTUNG
EINGESETZTE PRÜFUI PRÜFUNGSLEISTUNG				
EINGESETZTE PRÜFUI			PRÜFUNGSUMFANG (IN MINUTEN)	BENOTUNG
EINGESETZTE PRÜFUI PRÜFUNGSLEISTUNG Klausur			PRÜFUNGSUMFANG (IN MINUTEN) 120	BENOTUNG ja
<mark>EINGESETZTE PRÜFUI</mark> PRÜFUNGSLEISTUNG Klausur Klausur			PRÜFUNGSUMFANG (IN MINUTEN) 120 120	BENOTUNG ja ja
EINGESETZTE PRÜFUI PRÜFUNGSLEISTUNG Klausur Klausur			PRÜFUNGSUMFANG (IN MINUTEN) 120 120	BENOTUNG ja ja

WORKLOAD UND ECTS-LEISTUNGSPUNKTE

WORKLOAD INSGESAMT (IN H)	DAVON PRÄSENZZEIT (IN H)	DAVON SELBSTSTUDIUM (IN H)	ECTS-LEISTUNGSPUNKTE
150	75	75	5

Stand vom 01.10.2025 T3TRI2005 // Seite 28

QUALIFIKATIONSZIELE UND KOMPETENZEN

FACHKOMPETENZ

Differentialgleichungen

Beherrschung der elementaren Theorie der Differentialgleichungen als wesentliches Mittel zur Modellierung ingenieurwissenschaftlicher Probleme.

Die Studierenden können mathematische Problemstellungen analysieren, durch Anwendung adäquater analytischer und numerischer Methoden lösen und die Ergebnisse im Kontext kritisch bewerten.

Transformationen

Die Studierenden verstehen die Integraltransformation als Werkzeug, um technische Problemstellungen mathematisch zu analysieren. Sie können eine Fourier- und Laplace-Transformation durchführen.

Festigkeitslehre

Die Studierenden erweitern ihre Kenntnisse zu Festigkeitsberechnungen von Konstruktionen sowohl unter statischer als auch zeitlich veränderlicher Belastung und können zuverlässig eine Sicherheitsbewertung vornehmen.

Sie können zuverlässig die Sicherheit für mechanische Konstruktionen unter komplexer Beanspruchung beurteilen. Dafür wählen Sie die jeweilige Methode zielsicher und selbstständig aus.

METHODENKOMPETENZ

Differentialgleichungen/Transformationen

Selbständige Erarbeitung und Festigung von Lösungsstrategien zur Analyse mathematischer Problemstellungen.

Festigkeitslehre

Die Studierenden können komplexe Aufgabenstellungen analysieren und durch Wahl geeigneter Ansätze und Methoden zielgerichtet lösen.

PERSONALE UND SOZIALE KOMPETENZ

Differentialgleichungen/Transformationen

Auf- und Ausbau der mathematischen Denkweise in technischem Umfeld.

Kritische Selbsteinschätzung des eigenen Wissens.

Aufbau von Teamkompetenz bei gemeinsamer Bearbeitung von Problemstellungen.

Festigkeitslehre

Die Studierenden sind in der Lage, durch selbständig zu erarbeitende Aufgabenkomplexe Transferwissen zu erwerben . Sie können sich dabei als kleines Team selbständig organisieren.

ÜBERGREIFENDE HANDLUNGSKOMPETENZ

Differentialgleichungen/Transformationen

Fähigkeit zur Anwendung mathematischer Methoden und Algorithmen zur Lösungssuche bei allgemeinen technischen Fragestellungen.

Festigkeitslehre

Die Studierenden setzen zielführend fächerübergreifende Kompetenzen aus den Bereichen Mathematik, Informatik, Werkstofftechnik und Konstruktionslehre ein. Sie können bei der Lösung teamorientiert handeln.

LERNEINHEITEN UND INHALTE

LEHR- UND LERNEINHEITEN	PRÄSENZZEIT	SELBSTSTUDIUM
Differentialgleichungen	30	30

- Gewöhnliche Differentialgleichungen
- Geometrische Betrachtung über Richtungsfelder und Lösungskurven.
- Analytische Lösungsmethoden für spezielle Differentialgleichungen 1. Ordnung.
- Lineare Differentialgleichungen beliebiger Ordnung mit konstanten Koeffizienten.
- Systeme von linearen Differentialgleichungen mit konstanten Koeffizienten.
- Numerische Methoden zur Behandlung von Differentialgleichungen.

Transformationen	15	15	
------------------	----	----	--

- Laplace Transformation
- Fourier Transformation
- Anwendungen

Festigkeitslehre 2	30	30

Mechanische Grundbelastungen

- Berechnung der Verformung und der Spannungen für Zug, Druck, Schub, Torsion.
- Biegebeanspruchung
- Schwingende Belastung

Stand vom 01.10.2025 T3TRI2005 // Seite 29

BESONDERHEITEN

Die Veranstaltung Transformationen kann durch 15h begleitetes Selbststudium ergänzt werden

Gewichtung der Prüfungsleistungen für die Modulendnote T3TRI2005.1 Differenzialgleichungen (40%) T3TRI2005.2 Transformationen (30%) T3TRI2005.3 Festigkeitslehre II (30%)

VORAUSSETZUNGEN

T3TRI1005 Mathematik T3TRI1040 Mathematik II T3TRI1050 Mechanik

LITERATUR

- -
- A. Barzegui: Resistance des matériaux, Edition de l'école Polytechnique de Montréal
- P. Agati: Resistance des matériaux, Editions DUNOD
- M. Aublin: Systèmes mécaniques Théorie et Dimensionnement, Editions DUNOD
- P. Agati: Transmission de puissance principes, Editions DUNOD
- P. Agati: Transmission de puissance applications, Editions DUNOD
- L. Papula: Mathematik für Ingenieure und Naturwissenschaftler Band 1 und 2, Vieweg Verlag
- S. Goebbels, et al.: Mathematik verstehen und anwenden, Spektrum Verlag

Stand vom 01.10.2025 T3TRI2005 // Seite 30

Mechanik III (T3TRI2010)

Applied Mechanics III

FORMALE ANGABEN ZUM MODUL

MODULNUMMER	VERORTUNG IM STUDIENVERLAUF	MODULDAUER (SEMESTER)	MODULVERANTWORTUNG	SPRACHE
T3TRI2010	2. Studienjahr	1	Prof. Dr. Stefan Hess	Französisch

EINGESETZTE LEHRFORMEN

LEHRFORMEN	LEHRMETHODEN
Vorlesung, Übung	Lehrvortrag, Diskussion, Lehrvortrag, Diskussion, Gruppenarbeit

EINGESETZTE PRÜFUNGSFORMEN

PRÜFUNGSLEISTUNG	PRÜFUNGSUMFANG (IN MINUTEN)	BENOTUNG
Konstruktionsentwurf	Siehe Pruefungsordnung	ja
Klausur	Siehe Pruefungsordnung	ja

WORKLOAD UND ECTS-LEISTUNGSPUNKTE

WORKLOAD INSGESAMT (IN H)	DAVON PRÄSENZZEIT (IN H)	DAVON SELBSTSTUDIUM (IN H)	ECTS-LEISTUNGSPUNKTE
150	90	60	5

QUALIFIKATIONSZIELE UND KOMPETENZEN

FACHKOMPETENZ

Konstruktion II

Die Studierenden kennen die konstruktiven Grundlagen des Maschinenbaus und können Bauteile gestalten, berechnen und im konstruktiven Zusammenhang bewerten. Sie können exemplarisch die Berechnung von Funktion und Festigkeit durchführen. Sie besitzen strukturiertes Basiswissen der Maschinenelemente, deren Verbindungen und deren Gestaltung. Die Studierenden können die Auswirkungen der Konstruktion auf den Produktionsprozess analysieren und abschätzen.

Technische Mechanik II

Die Studierenden verstehen die physikalischen Grundprinzipien der Dynamik (Kinematik und Kinetik) und können dynamische mechanische Systeme analysieren, berechnen und bewerten und sind in der Lage das dynamische Verhalten von einfachen Systemen zielsicher vorauszuberechnen.

METHODENKOMPETENZ

Konstruktion I

Die Studierenden kennen die in den Modulinhalten aufgeführten wissenschaftlichen Methoden. Sie sind in der Lage, unter Einsatz dieser Methoden relevante Informationen zu sammeln und unter Berücksichtigung wissenschaftlicher Erkenntnisse gemäß Fachstandards zu interpretieren.

Technische Mechanik II

Die Studierenden können komplexe Aufgabenstellungen analysieren und wählen bewusst einen ganzheitlichen, ingenieurgemäßen Ansatz für eine zielgerichtete Lösung. Sie sind in der Lage, Lösungsansätze und Ergebnisse kritisch zu reflektieren sowie gegebenenfalls Fehler zu erkennen und selbst oder in Teams zu beheben.

PERSONALE UND SOZIALE KOMPETENZ

Die Studierenden sind in der Lage, verantwortungsbewusst und zuverlässig komplexe Probleme durch selbständiges systematisches Arbeiten zu lösen. Sie können sich dafür notwendiges Wissen selbständig erarbeiten und kritisch werten. Gegebenenfalls organisieren sie sich dabei zur Verbesserung der Effektivität als kleines Team.

ÜBERGREIFENDE HANDLUNGSKOMPETENZ

Die Studierenden sind in der Lage Konstruktionselemente und Maschinenteile in mechanischen Ersatzmodellen abzubilden und diese mit den Methoden der klassischen Mechanik zu berechnen.

Sie sind in der Lage, sich im Verlaufe ihrer beruflichen Tätigkeit in weiterführende Problemstellungen des Maschinenbaus selbständig einzuarbeiten.

LERNEINHEITEN UND INHALTE

LEHR- UND LERNEINHEITEN	PRÄSENZZEIT	SELBSTSTUDIUM
Konstruktion 2	45	30

Stand vom 01.10.2025 T3TRI2010 // Seite 31

LEHR- UND LERNEINHEITEN PRÄSENZZEIT SELBSTSTUDIUM

- Maschinenelemente für Verbindungen
- Maschinenelemente für drehende Bewegungen: Lager.
- Auswahl und Dimensionierung eines Übertragungselementes.
- Theorie der Zahnradgetriebe.
- Energetische Betrachtungen von Getriebesystemen.
- Einbindung des CAE-Systems in den gesamten EDV gestützten Produktionsprozess.
- Erstellung von Einzel- und Baugruppenzeichnungen mit dem CAD-System.

Technische Mechanik 2 45 30

Kinematik:

- Bewegung eines Massenpunktes
- Bewegung des starren Körpers
- Translation, Rotation

Kinetik:

- Impulssatz (Anwendungen)
- Drehimpulssatz (Punktmassen, starre Körper)
- Energiesatz
- Bewegungsgleichungen (Punktmassen, starre Körper)

BESONDERHEITEN

Gewichtung der Prüfungsleistungen für die Modulendnote T3TRI2010.1 Konstruktion II (50%) T3TRI2010.2 Technische Mechanik II (50%)

VORAUSSETZUNGEN

T3TRI1040 Mathematik II T3TRI1050 Mechanik II

LITERATUR

- H. Gross et al.: Technische Mechanik 3, Springer Verlag

- R. Hibbeler: Technische Mechanik 3, Pearson Studium

- J.L. Fanchon: Guide de Mécanique, Nathan

Stand vom 01.10.2025 T3TRI2010 // Seite 32

Elektrotechnik III (T3TRI2015)

Electrical Engineering III

FORMALE	ANGABEN	ZUM	MODUL
---------	---------	-----	-------

MODULNUMMER	VERORTUNG IM STUDIENVERLAUF	MODULDAUER (SEMESTER)	MODULVERANTWORTUNG	SPRACHE
T3TRI2015	2. Studienjahr	1	Stephan Müller	Deutsch

EINGESETZTE LEHRFORMEN

LEHRFORMEN	LEHRMETHODEN
Labor, Vorlesung, Vorlesung, Übung	Lehrvortrag, Diskussion, Lehrvortrag, Diskussion, Gruppenarbeit

EINGESETZTE PRÜFUNGSFORMEN

PRÜFUNGSLEISTUNG	PRÜFUNGSUMFANG (IN MINUTEN)	BENOTUNG
Klausur	120	ja
Klausur	120	ja
Klausur	120	ja

WORKLOAD UND ECTS-LEISTUNGSPUNKTE

WORKLOAD INSGESAMT (IN H)	DAVON PRÄSENZZEIT (IN H)	DAVON SELBSTSTUDIUM (IN H)	ECTS-LEISTUNGSPUNKTE
150	90	60	5

Stand vom 01.10.2025 T3TRI2015 // Seite 33

QUALIFIKATIONSZIELE UND KOMPETENZEN

FACHKOMPETENZ

Mikroprozessoren

Die Studierenden können nach Abschluss des Moduls -

- die grundlegende Hardwarestruktur von Mikroprozessorsystemen wiedergeben und verstehen;
- sich auf verschiedenen Programmierebenen von der Hochsprache bis hin zu Assembler zurechtfinden;
- Mikroprozessoren bzw. Mikrocontroller hardwarenahe programmieren;
- sich in verschiedene Entwicklungsumgebungen für Mikroprozessor- bzw. Mikrocontrollerprogrammierung einarbeiten.

Elektromagnetismus

Die Studierenden

- kennen elektrische und magnetische Phänomene im Zusammenhang mit mechatronischen Systemen;
- verstehen die Wirkungsweise von kapazitiven und induktiven Sensoren;
- wissen, wie elektromagnetische Wellen erzeugt werden;
- kennen die Grundlagen der Antennentechnik für Energie und Informationstransport.

METHODENKOMPETENZ

Mikroprozessoren

Die Studierenden sind in der Lage mithilfe von Entwicklungsumgebungen kleinere Beispielprogramme zu bearbeiten.

Die Studierenden können einfache Entwürfe ausarbeiten und formulieren und auf einem konkreten System umsetzen.

Elektromagnetismus:

Die Studierenden sind in der Lage geeignete Sensoren und Aktoren für weitestgehend standardisierte Anwendungsfälle in der Praxis auszuwählen.

PERSONALE UND SOZIALE KOMPETENZ

_

ÜBERGREIFENDE HANDLUNGSKOMPETENZ

Mikroprozessoren

Studierende verstehen ein Computersystem als allgemein einsetzbare Logik und Schaltzentrale für komplexe Anwendungen.

Sie erkennen, dass optimierte Lösungen nur durch Kombination von Hard- und Softwareeigenschaften erzielbar sind

Elektromagnetismus

Die Studierenden zeichnen sich durch ein grundlegendes fachliches Wissen der Funktionsweise von elektromagnetischen Bauteilen aus und sind in der Lage ihr Wissen auf gängige Komponenten in der mechatronischen Praxis zu übertragen.

LERNEINHEITEN UND INHALTE

LEHR- UND LERNEINHEITEN	PRÄSENZZEIT	SELBSTSTUDIUM
Mikroprozessoren	60	45
 Klassifizierung von Mikroprozessoren Grundstrukturen und Grundlagen von Mikroprozessorsystemen Systemarchitekturen moderner Rechnersysteme – Bausteine und Sonderfunktionen Mikrocontroller und aktuelle Prozessoren 		
Mikroprozessor-Labor	15	15
- Spezielle Mikrocontrollerarchitektur - Entwicklungsumgebung und Softwaretools - Programmierung		

15

0

- Elektrische und magnetische Felder
- Erzeugung und Abschirmung Kapazität und Induktivität
- Sensoren
- Schwingkreis Hertz'scher Dipol
- elektromagnetische Welle

Elektromagnetismus

- Modulation und Antennentechnik

BESONDERHEITEN

Es findet ein vorlesungsbegleitendes Mikrocontroller-Labor statt.

Gewichtung der Prüfungsleistungen für die Modulendnote

T3TRI2015.1 Mikroprozessoren (60%)

T3TRI2015.2 Mikroprozessoren-Labor (20%)

T3TRI2015.3 Elektromagnetismus (20%)

Stand vom 01.10.2025 T3TRI2015 // Seite 34

VORAUSSETZUNGEN

T3TRI1055 Elektrotechnik II / Elektronik II

LITERATUR

-

- J. Walter: Mikrocomputertechnik mit der 8051-Familie, Springer Verlag
- G. Schmitt: Mikrocomputertechnik mit Controllern der Atmel-AVR-RISC-Familie, Oldenburg
- B.D. Schaaf et al.: Mikrocomputertechnik, Hanser Verlag
- T. Beierlein et al.: Taschenbuch Mikroprozessortechnik, Fachbuchverlag Leipzig
- H. Bähring: Mikrorechner-Technik 1+2, Springer Verlag
- U. Brinkschulte et al.: Mikrocontroller und Mikroprozessoren, Springer Verlag
- D.A. Patterson et al.: Computer Organization and Design The Hardware/Software Interface, Morgan-Kaufmann
- F. Wittgruber: Digitale Schnittstellen und Bussysteme, Vieweg Verlag
- R. Patzelt et al.: Elektrische Meßtechnik Ausgabe 2, Springer Verlag

Stand vom 01.10.2025 T3TRI2015 // Seite 35

SPRACHE

Informatik II (T3TRI2020)

Informatics II

MODULVERANTWORTUNG

MODULDAUER (SEMESTER)

EORM.	AIEAK	IC V BEN	711M/N	MODIII

MODULNUMMER VERORTUNG IM STUDIENVERLAUF

T3TRI2020	2. Studienjahr	1	Prof. Dr. Stefan Hess	Deutsch/Französisch	
EINGESETZTE LEH	RFORMEN				
LEHRFORMEN			LEHRMETHODEN		
Vorlesung, Vorle	Vorlesung, Vorlesung, Übung, Labor Lehrvortrag, Diskussion, Lehrvortrag, Diskussion, Gruppenarb		Diskussion, Gruppenarbeit		
EINGESETZTE PRÜ					
PRÜFUNGSLEISTU	NG		PRÜFUNGSUMFANG (IN MINUTEN)	BENOTUNG	
Programmentwu	rf		Siehe Pruefungsordnung	ja	
Klausur			Siehe Pruefungsordnung	ja	
Klausur			Siehe Pruefungsordnung	ja	

WORKLOAD UND ECTS-LEISTUNGSPUNKTE

WORKLOAD INSGESAMT (IN H)	DAVON PRÄSENZZEIT (IN H)	DAVON SELBSTSTUDIUM (IN H)	ECTS-LEISTUNGSPUNKTE
150	75	75	5

Stand vom 01.10.2025 T3TRI2020 // Seite 36

FACHKOMPETENZ

Programmieren II

Die Studierenden

- kennen der Grundelemente einer prozeduralen und einer objektorientierten Programmiersprache.
- kennen verschiedener Datenstrukturen und ihre Verwendungsmöglichkeiten.
- verstehen die Grundlagen des objektorientierten Programmierparadigmas und können es in Programmierübungen und Programmierprojekten anwende
- verstehen den strukturierten, modularisierten Programmentwurf und das Arbeiten mit Softwarebibliotheken.

Einführung in die Mechatronik

Die Studierenden begreifen die Mechatronik als Bindeglied im Umfeld von Maschinenbau und Elektrotechnik

Die Studierenden verstehen die Modelle mechanischer und elektrischer Komponenten und werden in die Lage versetzt, Prinzipien und Methoden dynamischer Systeme und ihrer Regelung zu verstehen.

Reale mechatronische Systeme kennen lernen.

Grundlagen der mechatronischen Systembetrachtung kennen lernen und verstehen.

Die technischen Grundlagen der mechatronischen Systembetrachtung in der praktischen

Anwendung kennen lernen.

Software Engineering I

Die Studierenden kennen die ingenieurmäßigen Vorgehensweisen bei der Softwareentwicklung in Bezug auf Phasen, Modellierung und Requirements, können diese beschreiben und systematisch darstellen.

METHODENKOMPETENZ

Programmieren II

Die Studierenden verfügen über die Kenntnis der unterschiedlichen Strukturierungsmöglichkeiten einer modernen höheren Programmiersprache und können diese für weitgehend standardisierte Anwendungsfälle in die Praxis übertragen (Funktionen, Module, Klassen).

Einführung in die Mechatronik

Die Studierenden sind in der Lage die mechatronischen Modelle von standardisierten Anwendungsfällen zielgerichtet anzuwenden und in die Praxis zu übertragen.

Software Engineering I

Die Studierenden haben ein grundlegendes Fachwissen über Prozesse und Methoden des Software-Engineering und können einfachere Problemstellungen systematisch analysieren und dazu Lösungen entwerfen und realisieren. Sie können Requirementsdokumente und Spezifikationen erstellen, kommunizieren und abstimmen.

PERSONALE UND SOZIALE KOMPETENZ

Die Studierenden sind in der Lage einfache Hard- und Softwareprojekte im Team durchzuführen oder bei komplexen Problemstellungen in einem Projektteam mitzuwirken.

ÜBERGREIFENDE HANDLUNGSKOMPETENZ

Die Studierenden sind in der Lage Informationstechnik in verschiedenen Bereichen der Mechatronik zu verstehen, einzusetzen oder Lösungen zu entwickeln.

LERNEINHEITEN UND INHALTE

LEHR- UND LERNEINHEITEN	PRÄSENZZEIT	SELBSTSTUDIUM
Programmieren 2	30	45

- Algorithmenbeschreibung (z.B. Struktogramm)
- Strukturierte Datentypen
- Dateiverarbeitung
- Objektorientierter Programmentwurf (z.B. Klassendiagramme)
- Idee der objektorientierten Programmierung
- Klassenkonzept
- Vererbung
- Klassenbibliotheken

Einführung in die Mechatronik 15 0

- Geschichte der Mechatronik
- Beispiele mechatronischer Systeme
- Merkmale und Grundprinzipien der Mechatronik
- Mechatronik als Synergie verschiedener Disziplinen
- Bausteine und Einflussfaktoren mechatronischer Systeme
- Unterschiede und Gemeinsamkeiten zwischen Maschinenbau, Elektrotechnik und Mechatronik
- Teilgebiete der Mechatronik
- Entwurf und Entwicklung Mechatronischer Systeme

Stand vom 01.10.2025 T3TRI2020 // Seite 37

LEHR- UND LERNEINHEITEN	PRÄSENZZEIT	SELBSTSTUDIUM
Software Engineering 1	30	30

- Prinzipien: Aufzeigen der ingenieurmässigen Vorgehensweise wie top down-/bottom up-Entwicklung, Modularisierung.
- Methoden: strukturierter Systementwurf und Programmierung.
- Phasen des SW-Engineering und deren Zusammenhänge.
- Analyse : Requirements Engineering einfaches Lastenheft.
- Spezifikation: Pflichtenheft, Geschäftsprozesse, Methoden zur Repräsentation von verschiedenen Sichten eines Systems durch UML.

BESONDERHEITEN

Vermittlung der theoretischen Grundlagen kombiniert mit Praktika. Die Studierenden haben einen Programmentwurf vorgetragen und erläutert.

Gewichtung der Prüfungsleistungen für die Modulendnote T3TRI2020.1 Programmieren II (40%) T3TRI2020.2 Einführung in die Mechatronik (20%) T3TRI2020.3 Software Engineering I (40%)

VORAUSSETZUNGEN

T3TRI1025 Informatik

LITERATUR

- C. Ullenboom: Java ist auch eine Insel, Galileo Computing
- K. Pohl et al.: Basiswissen Requirements Engineering, Dpunkt Verlag GmbH
- T. Weilkins et al.: UML 2.0 Zertifizierung: Fundamental, Intermediate und Advanced, Dpunkt Verlag GmbH
- R. Isermann: Mechatronische Systeme Grundlagen, Springer Verlag
- R. Isermann: Mechatronic Systems Fundamentals, Springer Verlag
- -W. Roddeck: Einführung in die Mechatronik, Teubner Verlag

Stand vom 01.10.2025 T3TRI2020 // Seite 38

Kommunikation III (T3TRI2025)

Communication III

EORM	$\Lambda I = \Lambda$	NCAR	ENI 711N	I MODIII

MODULNUMMER	VERORTUNG IM STUDIENVERLAUF	MODULDAUER (SEMESTER)	MODULVERANTWORTUNG	SPRACHE
T3TRI2025	2. Studienjahr	1	Stephan Müller	Englisch/Französisch

EINGESETZTE LEHRFORMEN

 LEHRFORMEN
 LEHRMETHODEN

 Vorlesung, Übung
 Lehrvortrag, Diskussion, Gruppenarbeit

EINGESETZTE PRÜFUNGSFORMEN

PRÜFUNGSLEISTUNGPRÜFUNGSUMFANG (IN MINUTEN)BENOTUNGKombinierte Prüfung - Kombinierte PrüfungSiehe PruefungsordnungjaKombinierte Prüfung - Kombinierte Prüfung (Klausur)Siehe PruefungsordnungjaKlausurSiehe Pruefungsordnungja

WORKLOAD UND ECTS-LEISTUNGSPUNKTE

WORKLOAD INSGESAMT (IN H)	DAVON PRÁSENZZEIT (IN H)	DAVON SELBSTSTUDIUM (IN H)	ECTS-LEISTUNGSPUNKTE
150	90	60	5

Stand vom 01.10.2025 T3TRI2025 // Seite 39

FACHKOMPETENZ

Kommunikationstechniken

Grundlagen der Kommunikation kennen und anwenden können.

Sprache (D/F)

Die Studierenden sind in der Lage

- sich selbstbewusst und autonom in der Fremdsprache auszudrücken;
- ausgewählte schriftliche Kommunikation fehlerfrei zu verfassen;
- sich aktiv an Diskussionen zu beteiligen.

Sie beherrschen das Fachvokabular der entsprechenden Fremdsprache

English (A2/B1)

Students are able to

- write professional email (offers, inquiries, replies)
- hold a professional telephone conversation

English (B2/C1)

Students are able to

- discuss a project management work breakdown structure in English
- talk through the critical path
- identify key issues in a simulated project meeting in English and summarise them in a report.

METHODENKOMPETENZ

Kommunikationstechniken

- Die Studierenden haben ein umfassendes und detailliertes Fachwissen über Kommunikationsstrukturen Kommunikationsstile Kommunikationspartner und sind in der Lage, diese situationsadäquat gegeneinander abzuwägen und einzusetzen.
- Die Studierenden kennen ihren eigenen Kommunikationsstil und können die Kommunikation anderer differenziert bewusst wahrnehmen und beschreiben.
- Die Studierenden sind in der Lage in beruflichen Situation sicher und situationsgerecht zu kommunizieren

Sprache

- Die Studierenden erwerben Fähigkeiten und Techniken zum selbständigen Ausbau ihrer Fremdsprachenkompetenz. Sie üben Argumentation und Strukturierung von Konzepten in einer Fremdsprache.

PERSONALE UND SOZIALE KOMPETENZ

Sensibilität bzgl. Störungen in der Kommunikation und deren Aufhebung.

Die Studierenden sind sich interkultureller Unterschiede und Besonderheiten bewusst und können dementsprechend ihre Kommunikation gestalten.

ÜBERGREIFENDE HANDLUNGSKOMPETENZ

Flexible Anpassung des eigenen Kommunikationsstils an die unterschiedlichen Lebensbereichen.

Die Studierenden können in englischer Sprache qualifiziert kommunizieren und argumentieren.

LERNEINHEITEN UND INHALTE

LEHR- UND LERNEINHEITEN	PRÄSENZZEIT	SELBSTSTUDIUM
Kommunikationstechniken 1	30	20

- Was ist Kommunikation
- Rede- und Präsentationstechniken
- Beziehungen zum Gesprächspartner aufbauen und erhalten
- Kommunikation und der Einfluss unsere 5 Sinne
- Kennenlernen und einsetzen verschiedener Sprachmodelle / Sprachmuster

	Sprache (D/F) 3	30	20	
--	-----------------	----	----	--

- Schriftliche Kommunikation: Entwerfen und Auswerten von Berichten
- Stellungnahmen, Reden, Protokolle
- Mündliche Kommunikation: Im Rahmen einer Diskussion argumentieren und schlussfolgern
- Perfekt in der Fremdsprache präsentieren

Englisch 1	30	20	

Level A2/B1

Grammar and vocabulary related to email and telephoning

Revision of grammar as needed

Level B2/C1

Major skills area and vocabulary focus: the language of project management

Minor skills area: report writing

Grammar focus: tenses, adverbs, linking words

Stand vom 01.10.2025 T3TRI2025 // Seite 40

BESONDERHEITEN

Nach Möglichkeit sollen bei den Sprach-Units entsprechend der Sprachkompetenz zwei Teilgruppen mit unterschiedlichem Niveau eingerichtet werden.

Die Sprachkompetenzen werden im gemeinsamen Europäischen Referenzrahmen für Sprachen evaluiert.

Gewichtung der Prüfungsleistungen für die Modulendnote T3TRI2025.1 Kommunikationstechniken (33%) T3TRI2025.2 Sprache III (D/F) (33%) T3TRI2025.3 Englisch I (33%)

VORAUSSETZUNGEN

T3TRI1060 Kommunikation II

LITERATUR

- F. Schulz von Thun: Miteinander Reden 1 Störungen und Klärungen, Reinbek Verlag
- F. Schulz von Thun: Miteinander Reden 2 Stile, Werte und Persönlichkeitsentwicklung, Reinbek Verlag
- F. Schulz von Thun: Miteinander Reden 3 Das innere Team und die situationsgerechte Kommunikation, Reinbek Verlag

Unterstützende Literatur im Fach Deutsch/Französisch wird zu Beginn bekanntgegeben.

Unterstützende Literatur im Fach Englisch wird zu Beginn der Vorlesung bekanntgegeben.

Stand vom 01.10.2025 // Seite 41

Engineering II (T3TRI2030)

Engineering II

FORMALE ANGABEN ZUM MODUL

MODULNUMMERVERORTUNG IM STUDIENVERLAUFMODULDAUER (SEMESTER)MODULVERANTWORTUNGSPRACHET3TR120302. Studienjahr1Französisch

EINGESETZTE LEHRFORMEN

LEHRFORMENLEHRMETHODENVorlesung, ÜbungLehrvortrag, Diskussion, Fallstudien, Lehrvortrag, Diskussion,
Gruppenarbeit

EINGESETZTE PRÜFUNGSFORMEN

PRÜFUNGSLEISTUNGPRÜFUNGSUMFANG (IN MINUTEN)BENOTUNGKlausurSiehe PruefungsordnungjaKonstruktionsentwurfSiehe Pruefungsordnungja

WORKLOAD UND ECTS-LEISTUNGSPUNKTE

WORKLOAD INSGESAMT (IN H)DAVON PRÄSENZZEIT (IN H)DAVON SELBSTSTUDIUM (IN H)ECTS-LEISTUNGSPUNKTE150755

QUALIFIKATIONSZIELE UND KOMPETENZEN

FACHKOMPETENZ

Automatisierungstechnik

 $\label{thm:condition} \mbox{Die Studierenden kennen unterschiedliche Automatisierungsprozesse und deren Charakteristika;}$

 $\label{thm:continuous} \mbox{Die Studierenden kennen Komponenten von Automatisierungssystemen (Sensorik, Aktorik, SPS und PLS)} \; ;$

Die Studierenden kennen den Aufbau und die Struktur von komplexeren Automatisierungssystemen.

Computer Aided Engineering

Einsatz und Verständnis von CAD-Software (z.B. Pro-Engineer);

Benutzung der CAD zur Konstruktion mechanischer Systeme im Rahmen von Projekten.

METHODENKOMPETENZ

Automatisierungstechnik

Die Studierenden kennen die verschiedenen Ebenen der Prozessautomation und können die Einflüsse und Zusammenhänge verschiedener Komponenten von Automatisierungssystemen differenzieren.

Die Studierenden können die Grenzen und die praktische Anwendbarkeit von Automatisierungssystemen einschätzen

Der Studierende kennen eine SPS Programmiersprache und sind in der Lage einfache Prozesse zu programmieren.

Computer Aided Engineering

Die Studierenden sind in der Lage Konstruktionszeichnungen zu lesen und zu analysieren.

Die Studierenden kennen die Grundlagen eines CAD-Systems und sind in der Lage Einzelteile und Baugruppen zu modellieren und zu verknüpfen.

PERSONALE UND SOZIALE KOMPETENZ

ÜBERGREIFENDE HANDLUNGSKOMPETENZ

Die Studierenden können nach Abschluss des Moduls konstruktive Vorgehensweisen in Industrieunternehmen bestimmen. Sie kennen das ingenieurmäßige Vorgehen insbesondere auch unter Nutzung informationstechnischer Werkzeuge und Simulationen und handeln methodensicher und zielgerichtet

LERNEINHEITEN UND INHALTE

LEHR- UND LERNEINHEITEN	PRÄSENZZEIT	SELBSTSTUDIUM
Automatisierungstechnik	45	40

Stand vom 01.10.2025 T3TRI2030 // Seite 42

LEHR- UND LERNEINHEITEN **PRÄSENZZEIT SELBSTSTUDIUM**

- Einführung in die Prozesslehre, Prozesszustände und Automatisierungsaufgaben Fortgeschrittene Anwendungen der Digitaltechnik (Sequentielle und Kombinatorische Logik)
- Aufbau, Wirkungsweise und Einsatz prozessnaher Komponenten in Form von speicherprogrammierbaren Steuerungen (SPS)
- Erstellung und Verwaltung von parametergesteuerten Produktionsrezepten
- Kommunikation zwischen Automatisierungssystemen
- Aktoren: Servo- Schritt und lineare Motoren.
- Sensoren
- Einsatz von Hochgeschwindigkeitsgebern und -zählern (HSC)

Computer Aided Engineering 1

30

35

- Einführung in die Funktionalitäten eines CAD Programms
- Nutzung von Katalog und Normteilen
- Prinzipskizzen, Berechnungen, Kalkulation/Kostenanalyse
- Erstellen von Stücklisten, Einzel u. Baugruppenzeichnungen mit dem CAD-System
- Zerlegen und Zusammenbau technischer Systeme

BESONDERHEITEN

Gewichtung der Prüfungsleistungen für die Modulendnote T3TRI2030.1 Automatisierungstechnik (60%) T3TRI2030.2 Computer Aided Engineering (40%)

VORAUSSETZUNGEN

T3TRI2010 Mechanik III

LITERATUR

- E. Schneider: Methoden der Automatisierung, Vieweg Verlag
- M. Seitz: Speicherprogrammierbare Steuerungen, Fachbuchverlag Leipzig

Stand vom 01.10.2025 T3TRI2030 // Seite 43

Engineering III (T3TRI2035)

Engineering III

FORMALE	ANGABEN	ZUM	MODUL
---------	---------	-----	-------

MODULNUMMER	VERORTUNG IM STUDIENVERLAUF	MODULDAUER (SEMESTER)	MODULVERANTWORTUNG	SPRACHE
T3TRI2035	2. Studienjahr	1		Französisch

EINGESETZTE LEHRFORMEN

LEHRFORMEN	LEHRMETHODEN
Vorlesung, Übung, Vorlesung, Übung, Labor	Lehrvortrag, Diskussion, Lehrvortrag, Diskussion, Gruppenarbeit

EINGESETZTE PRÜFUNGSFORMEN

Laborarbeit Siehe Pruefungsordnung ja Laborarbeit Siehe Pruefungsordnung ja Klausur Siehe Pruefungsordnung ia	PRÜFUNGSLEISTUNG	PRÜFUNGSUMFANG (IN MINUTEN)	BENOTUNG
	Laborarbeit	Siehe Pruefungsordnung	ja
Klausur Siehe Pruefungsordnung ia	Laborarbeit	Siehe Pruefungsordnung	ja
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Klausur	Siehe Pruefungsordnung	ja

WORKLOAD UND ECTS-LEISTUNGSPUNKTE

WORKLOAD INSGESAMT (IN H)	DAVON PRÄSENZZEIT (IN H)	DAVON SELBSTSTUDIUM (IN H)	ECTS-LEISTUNGSPUNKTE
150	75	75	5

Stand vom 01.10.2025 T3TRI2035 // Seite 44

FACHKOMPETENZ

Messtechnik

Vermittlung der Grundlagen in der Messtechnik, um Messfehler, Digitalisierungsfehler sowie Fehlerfortpflanzungen und Fehlerquellen abschätzen zu können. Die Studierenden sind im Rahmen der Messwerterfassung und –verarbeitung in der Lage, Messsignale zu digitalisieren, zu analysieren und weiterzuverarbeiten sowie dies in Messwertverarbeitungsprogramme umsetzen zu können.

Fertigungstechnik II

Fertigung mit konventionellen wie mit CNC gesteuerten Werkzeugmaschinen

Produktionswirtschaft

Die Studierenden kennen die verschiedenen Funktionen und Prozesse der Material- und Produktionswirtschaft Die Studierenden verstehen die Produktionsplanung und –steuerung als Planungsinstrument

Die Studierenden verstenen die Produktionsplandig und -stederung als Plandigsinstrumen

METHODENKOMPETENZ

Messtechnik

Anwendung der erlernten Inhalte auf neue messtechnische Fragestellungen und kritische Betrachtung von Messergebnissen.

Fertigungstechnik II

Die Studierenden sind in der Lage, für weitgehend standardisierte Anwendungsfälle in der Praxis die angemessene Fertigungsmethode auszuwählen und anzuwenden. Dabei sind sie sich der Stärken und Schwächen der Methoden bewusst und können so den Fertigungsvorgang optimieren.

Produktionswirtschaft

Die Studierenden beherrschen die Grundlagen der Produktionsplanung und -steuerung und kennen die Relevanz dieser Methoden in ihrem Berufsfeld.

PERSONALE UND SOZIALE KOMPETENZ

Die Studierenden kennen und verstehen die Produktionsplanung und -steuerung als Planungsinstrument und wissen, dass sie interdisziplinäre Überschneidungen zu anderen Unternehmensbereichen aufzeigt.

ÜBERGREIFENDE HANDLUNGSKOMPETENZ

Messtechnik

Die Studierenden sind in der Lage die Auswirkungen von Messfehlern in verschiedenen Unternehmensbereichen zu beschreiben und einzuschätzen.

Fertigungstechnik II

Die Studierenden können selbstständing die Auswirkungen der Konstruktion auf den Produktionsprozess beschreiben, die sind in der Lage die fertigungsbedingten Kosten von verschiedenen Konstruktionen und Verfahren kritisch gegenüberzustellen.

Produktionswirtschaft

Die Studierenden werden für die Herausforderungen partnerschaftlicher Supply-Chain-Beziehungen im internationalen Kontext sensibilisiert.

LERNEINHEITEN UND INHALTE

LEHR- UND LERNEINHEITEN	PRÄSENZZEIT	SELBSTSTUDIUM
Messtechnik	30	30
 - Grundlagen und Begriffe der Messtechnik - Einführung: Einheiten, Standards, Normen, Vorschriften, gesetzliche Grundlagen - Messverfahren und Prinzipien, Kenngrößen - Messkette und Fehlerbetrachtung - Messfehler und Messunsicherheit, Fehlerangaben bei Messmitteln, Fehlerfortpflanzung, Ausgleich, Darstellung der Messergebnisse. 		
Fertigungstechnik 2 (CN)	30	30
 NC gesteuerte Werkzeugmaschinen ISO Programmierung: Drehen und Fräsen CNC Programmierung und Anwendung Einführung in den Computer Aided Manufacturing Process. 		

15

15

- Einführung in die Material- und Produktionswirtschaft
- Logistikkonzepte (Just-in-time, Single-Minute-Exchange of Dies, Kanban)
- Produktionsplanung und –steuerung (Manufacturing Ressource Planning, CDB, Normung und Kennzeichung)
- Praktische Umsetzungen und Beispiele

Produktionswirtschaft (PPS)

Stand vom 01.10.2025 T3TRI2035 // Seite 45

BESONDERHEITEN

Vorlesungsbegleitend finden praktische Übungen in einer modern ausgestatteten Lehrwerkstatt statt.

Gewichtung der Prüfungsleistungen für die Modulendnote T3TRI2035.1 Messtechnik (30%) T3TRI2035.2 Fertigungstechnik II (40%) T3TRI2035.3 Produktionswirtschaft (PPS) (30%)

VORAUSSETZUNGEN

T3TRI1015 Engineering

LITERATUR

- collection R. Quatremer et al.: Précis Méthodes d'Usinage, Editions Nathan
- A. Chevalier et al.: Guide du technicien en productique, Editions Hachette
- H. Luczak et al.: Produktionsplanung und -steuerung Grundlagen Gestaltung und Konzepte, Springer Verlag
- T. Mühl: Einführung in die elektrische Messtechnik, Teubner Verlag
- R. Parthier: Messtechnik, Vieweg Verlag
- E. Schrüfer: Elektrische Messtechnik, Hanser Verlag

Stand vom 01.10.2025 T3TRI2035 // Seite 46

Mechatronik (T3TRI2040)

Mechatronics

FORMALE ANGABEN ZUM MODUL

MODULNUMMER	VERORTUNG IM STUDIENVERLAUF	MODULDAUER (SEMESTER)	MODULVERANTWORTUNG	SPRACHE
T3TRI2040	2. Studieniahr	1	Dr. Raymond Stoffel	Deutsch/Französisch

EINGESETZTE LEHRFORMEN

LEHRFORMEN	LEHRMETHODEN
Vorlesung, Übung	Lehrvortrag, Diskussion, Lehrvortrag, Diskussion, Gruppenarbeit

EINGESETZTE PRÜFUNGSFORMEN

PRÜFUNGSLEISTUNG	PRÜFUNGSUMFANG (IN MINUTEN)	BENOTUNG
Kombinierte Prüfung - Kombinierte Prüfung	Siehe Pruefungsordnung	ja
Kombinierte Prüfung - Kombinierte Prüfung	Siehe Pruefungsordnung	ja

WORKLOAD UND ECTS-LEISTUNGSPUNKTE

WORKLOAD INSGESAMT (IN H)	DAVON PRÄSENZZEIT (IN H)	DAVON SELBSTSTUDIUM (IN H)	ECTS-LEISTUNGSPUNKTE
150	75	75	5

QUALIFIKATIONSZIELE UND KOMPETENZEN

FACHKOMPETENZ

Regelungstechnik

Die Studierenden können relevante Informationen zu regelungstechnischen Fragestellungen interpretieren, einordnen und formulieren und können Verknüpfungen zu anderen Fachgebieten herstellen. Sie kennen Grundideen, Vorgehensweisen und Beschreibungsformen der klassischen Regelungstechnik und können geeignete einfache Reglertypen auswählen, deren Einstellparameter bestimmen und unterschiedliche Regelungen kritisch vergleichen.

Schwingungslehre

Die Studierenden kennen die relevanten Grundbegriffe aus der Schwingungstechnik. Sie sind mit Abschluss des Moduls in der Lage, mathematische Schwingungsprobleme zu lösen. Sie identifizieren den Einfluss unterschiedlicher Faktoren, setzen diese in Zusammenhang und erzielen die Lösung durch die Neukombination unterschiedlicher Lösungswege. Sie sind in der Lage bei unerwünschten Schwingungen geeignete Gegenmaßnahmen einzuleiten.

METHODENKOMPETENZ

Regelungstechnik

Die Studierenden sind in der Lage, durch ausgewählte Beispiele das Regelstrecken-Verhalten zu bestimmen und eine dafür geeignete und stabile Regelung auszuwählen. Die Studierenden werden so sensibilisiert, in mechatronischen Systemen adäquate Regler zu integrieren durch eine Zeit- und Frequenzanalyse der Regelstrecke. So lernen sie das Systemverhalten eines Mechatronischen Systems durch die Integration eines Regelkreises zu verbessern.

PERSONALE UND SOZIALE KOMPETENZ

Regelungstechnik

Die Studierenden sind mit Abschluss des Moduls dafür sensibilisiert, für die Lösung von Projektaufgaben der Regelungstechnik eine systematischen und methodisch fundierten Vorgehensweise zu wählen. Sie strukturieren ihre Aufgaben den Anforderungen der eingesetzten Methode und den Anforderungen der konkreten Anwendungssituation entsprechend und führen kleinere Projekte zum Abschluss.

Schwingungslehre

Die Studierenden kennen die Lösungsmethoden der Dynamik und der Schwingungslehre und können sie kritisch reflektieren und gegebenenfalls Fehler erkennen und beheben.

ÜBERGREIFENDE HANDLUNGSKOMPETENZ

_

LERNEINHEITEN UND INHALTE

LEHR- UND LERNEINHEITEN	PRÄSENZZEIT	SELBSTSTUDIUM

Stand vom 01.10.2025 T3TRI2040 // Seite 47

LEHR- UND LERNEINHEITEN	PRÄSENZZEIT	SELBSTSTUDIUM
Regelungstechnik	45	45

- Bestimmung des Übertragungsverhaltens eines Systems im Zeit- und Frequenzbereich
- Eigenschaften von linearen Reglern
- Reglerrealisierung
- Struktur des geschlossenen Regelkreises
- Analyse des Regelkreises, statisches und dynamisches Verhalten
- Verschiedene Methoden zur Reglerwahl und -Einstellung
- Stabilitätsanalyse
- Optimierung des Regelverhaltens mit Hilfe von Simulation
- -Digitale und analoge Sensoren
- MĒMS

Schwingungslehre 30 30

- Systeme mit einem Freiheitsgrad (mit und ohne Dämpfung)
- freie und erzwungene Schwingung
- Systeme mit n Freiheitsgraden
- Maßnahmen gegen Resonanzerscheinungen

BESONDERHEITEN

Gewichtung der Prüfungsleistungen für die Modulendnote T3TRI2040.1 Regelungstechnik (60%) T3TRI2040.2 Schwingungslehre (40%)

VORAUSSETZUNGEN

T3TRI2005 Angewandte Mathematik T3TRI2010 Mechanik III

LITERATUR

- H. Unbehauen: Regelungstechnik Band 1, Vieweg Verlag
- H. Unbehauen et al.: Das Ingenieurwissen Regelungs- und Steuerungstechnik, Springer Vieweg
- H.W. Philippsen: Einstieg in die Regelungstechnik, Hanser Verlag
- H. Lutz et al.: Taschenbuch der Regelungstechnik, Harri Deutsch Verlag
- G. Schulz: Regelungstechnik 1, Oldenbourg
- J. Lunze: Regelungstechnik Bd. 1, Springer Verlag
- M. Lalanne: Mécanique des vibrations linéaires, Edition MASSON

Stand vom 01.10.2025 T3TRI2040 // Seite 48

Mechatronik II (T3TRI2805)

Mechatronics II

FORMALE ANGABEN	ZUM MODUL	
MODIII NIIMMER	VERORTUN	d

MODULNUMMER	VERORTUNG IM STUDIENVERLAUF	MODULDAUER (SEMESTER)	MODULVERANTWORTUNG	SPRACHE
T3TRI2805	2. Studienjahr	1	Dr. Raymond Stoffel	Deutsch/Französisch

EINGESETZTE LEHRFORMEN

LEHRFORMEN	LEHRMETHODEN
Labor, Seminar, Vorlesung	Gruppenarbeit, Lehrvortrag, Diskussion, Lehrvortrag, Diskussion,
	Fallstudien

EINGESETZTE PRÜFUNGSFORMEN

PRÜFUNGSLEISTUNG	PRÜFUNGSUMFANG (IN MINUTEN)	BENOTUNG
Laborarbeit	Siehe Pruefungsordnung	ja
Laborarbeit	Siehe Pruefungsordnung	ja
Hausarbeit	Siehe Pruefungsordnung	ja

WORKLOAD UND ECTS-LEISTUNGSPUNKTE

WORKLOAD INSGESAMT (IN H)	DAVON PRÄSENZZEIT (IN H)	DAVON SELBSTSTUDIUM (IN H)	ECTS-LEISTUNGSPUNKTE
150	30	120	5

Stand vom 01.10.2025 T3TRI2805 // Seite 49

FACHKOMPETENZ

Projektarbeit Mechatronik

Die Studierenden kennen reale mechatronische Systeme.

Sie kennen die Grundlagen der mechatronischen Systembetrachtung und sind in der Lage das Verhalten von mechatronischen Systemen zu verstehen und in der praktischen Anwendung kennenzulernen.

Wissenschaftliches Programmieren

Die Studierenden kennen die Grundlagen einer Programmiersprache (Matlab, LabVIEW) und sind mit Abschluss des Moduls in der Lage

- einfachere Computerprogramme zu entwickeln;
- numerische Modelle mit einer Programmierumgebung (Matlab, LabVIEW) zu bilden;
- mechatronische Komponenten anzusteuern.

Wissenschaftliches Arbeiten

Die Studierenden verstehen die Grundlagen wissenschaftlich-systematisierten Denkens und Arbeitens. Sie verfügen über Fähigkeiten zur Anwendung dieses Denkens und Wissens auf konkrete praktische und theoretische Gegenstände.

Sie beherrschen die Grundfertigkeiten des wissenschaftlichen Arbeitens, der Recherche, Analyse, Falsifizierung und Dokumentation.

METHODENKOMPETENZ

Projektarbeit Mechatronik

Die Studierenden sind in der Lage ein Projekt zielgerichtet zu planen und zu steuern.

Wissenschaftliches Programmieren

Die Studierenden sind mit Abschluss des Moduls in der Lage, das komplexe Zusammenspiel innerhalb eines mechatronischen Systems selbstständig zu analysieren und mit einer Programmiersprache zu steuern.

Die Studierenden sind in der Lage, unter Einsatz einer Programmiersprache die Schnittstellen mechatronischer Hardware anzusteuern.

Wissenschaftliches Arbeiten

Methoden wissenschaftlicher Arbeit analytisch und praktisch verstehen und unter Berücksichtigung ethischer Aspekte zielgerichtet bei der Beurteilung und Lösung von Aufgaben und deren praktischer Umsetzung zielgerichtet anwenden und kritisch reflektieren.

Die Studierenden sind in der Lage wissenschaftlich zu diskutieren und zu argumentieren. Sie kennen die Bausteine wissenschaftlicher Arbeit und sind in der Lage die verschiedenen erkenntnistheoretischen Ansätze zu reflektieren und in der Dokumentation der Arbeit umzusetzen.

PERSONALE UND SOZIALE KOMPETENZ

Die Studierenden sind mit Abschluss des Moduls in der Lage,

- Randbedingungen für den Betrieb eines mechatronischen Systems zu erfragen und zusammenzustellen,
- Teilsysteme der Projektbeteiligten in ein Gesamtsystem zusammenzuführen.
- Das Projekt wird möglichst in trinationalen Gruppen ausgeführt. Die Studierenden reflektieren ihre interkulturellen Erfahrungen vor dem Hintergrund ihres Theoriewissens.

Wissenschaftliches Arbeiten

Die Studierenden können sowohl eigenständig, als auch im Team verantwortungsvoll, zielorientiert und nachhaltig in ihrem wissenschaftlichen und praktischen Umfeld handeln.

ÜBERGREIFENDE HANDLUNGSKOMPETENZ

Die Studierenden sind mit Abschluss des Moduls in der Lage, ein mechatronisches System zu bewerten und verschiedene Parametereinflüsse transparent zu machen.

Wissenschaftliches Arbeiten:

Aktuelle Internet-basierte Quellen- und Literaturrecherchemöglichkeiten, bevorzugt in fachgebietsrelevanten digitalen Datenbanken und Portalen recherchieren und die Ergebnisse kompetent auswerten und kommunizieren. Professionell Textsatz- und animierte Präsentationssysteme für die Erstellung wissenschaftlicher Dokumentationen nutzen.

Die Studierenden sind in der Lage Problemstellungen eigenständig und kritisch zu beobachten, nach alternativen Denk- und Lösungsansätzen zu suchen sowie bisherige Vorgehensweisen zu hinterfragen.

LERNEINHEITEN UND INHALTE

LEHR- UND LERNEINHEITEN	PRÄSENZZEIT	SELBSTSTUDIUM
Projektarbeit Mechatronik	10	70

Das mechatronische Projekt wird in möglichst trinationalen Gruppen durchgeführt.

Stand vom 01.10.2025 T3TR12805 // Seite 50

LEHR- UND LERNEINHEITEN	PRÄSENZZEIT	SELBSTSTUDIUM
Wissenschaftliches Programmieren	15	15

LabVIEW:

- Grundlagen der graphischen Programmierung
- Programmstrukturen (Arrays und Cluster, Schleifen)
- Diagramme und Graphen
- Messen und Steuern mit LabVIEW

Matlab:

- Grundlagen (Matrizen, Vektoren, Operatoren, Funktionen)
- Programmelemente (Entscheidungen, Schleifen)
- Graphische Ausgaben
- Grundlagen Simulink

Wissenschaftliches Arbeiten 5 35

Das Seminar "Wissenschaftliches Arbeiten" findet während der Theoriephase statt. Eine Durchführung im gesamten Umfang in einem Semester oder die Aufteilung auf zwei Semester ist möglich. Für einige Grundlagen kann das WBT "Wissenschaftliches Arbeiten" der DHBW genutzt werden.

- Leitlinien des wissenschaftlichen Arbeitens
- Themenwahl und Themenfindung bei der stage II, stage III und BT
- Typische Inhalte und Anforderungen an eine wissenschaftliche Arbeit
- Aufbau und Gliederung einer wissenschaftlichen Arbeit
- Literatursuche, -beschaffung und -auswahl
- Nutzung des Bibliotheksangebots der DHBW, FHNW, UHA
- Form einer wissenschaftlichen Arbeit (z.B. Zitierweise, Literaturverzeichnis)
- Hinweise zu DV-Tools (z.B. Literaturverwaltung und Generierung von Verzeichnissen in der Textverarbeitung)
- Was ist Wissenschaft?
- Theorie und Theoriebildung
- Überblick über Forschungsmethoden (Interviews, etc.)
- Gütekriterien der Wissenschaft
- Wissenschaftliche Erkenntnisse sinnvoll nutzen
- Aufbau und Gliederung einer Bachelorarbeit
- Projektplanung im Rahmen der stage II, stage III und BT
- Zusammenarbeit mit Betreuern und Beteiligten

BESONDERHEITEN

Präsentation des Projekts bei Abschluss vor einer Jury (in Form eines Wettbewerbs)

Gewichtung der Prüfungsleistungen für die Modulendnote T3TRI2805.1 Projektarbeit Mechatronik (60%) T3TRI2805.2 Wissenschaftliches Programmieren (20%)

T3TRI2805.3 Wissenschaftliches Arbeiten (20%)

VORAUSSETZUNGEN

T3TRI1060 Kommunikation II T3TRI2005 Angewandte Mathematik T3TRI2015 Elektrotechnik III T3TRI2020 Informatik II

LITERATUR

- M. Kornmeier: Wissenschaftlich schreiben leicht gemacht für Bachelor, Master und Dissertation, Bern 2011.
- A.W. Hunziker: Spass am wissenschaftlichen Arbeiten so schreiben Sie eine gute Semester-, Bachelor- oder Masterarbeit, Verlag SKV Zürich
- M.R. Theisen: Wissenschaftliches Arbeiten Erfolgreich bei Bachelor- und Masterarbeit, Vahlen Verlag München
- R. Jamal et al.: LabVIEW Das Grundlagenbuch, Addison-Wesley
- A. Bosl: Einführung in MATLAB/Simulink, Hanser Verlag

Stand vom 01.10.2025 T3TR12805 // Seite 51

Management (T3TRI2810)

Management

EORM/	M = M M	CAREN	711M	MODIII

MODULNUMMERVERORTUNG IM STUDIENVERLAUFMODULDAUER (SEMESTER)MODULVERANTWORTUNGSPRACHET3TRI28102. Studienjahr1Prof. Dr. Robert AlardDeutsch/Englisch

EINGESETZTE LEHRFORMEN

LEHRFORMENLEHRMETHODENVorlesung, ÜbungLehrvortrag, Diskussion, Lehrvortrag, Diskussion, Fallstudien

EINGESETZTE PRÜFUNGSFORMEN

PRÜFUNGSLEISTUNGPRÜFUNGSUMFANG (IN MINUTEN)BENOTUNGKlausurSiehe PruefungsordnungjaKombinierte Prüfung - Kombinierte PrüfungSiehe Pruefungsordnungja

WORKLOAD UND ECTS-LEISTUNGSPUNKTE

WORKLOAD INSGESAMT (IN H)	DAVON PRÄSENZZEIT (IN H)	DAVON SELBSTSTUDIUM (IN H)	ECTS-LEISTUNGSPUNKTE
150	75	75	5

Stand vom 01.10.2025 T3TRI2810 // Seite 52

FACHKOMPETENZ

Einführung BWL

Die Studierenden sind in der Lage die Aufgabenbereiche der Betriebswirtschaftslehre einzuordnen, kennen wesentliche betriebswirtschaftliche Grundbegriffe und wenden diese fachadäquat an. Sie kennen die Aufgaben und Strukturen der strategischen Unternehmensführung sowie der grundlegenden betriebswirtschaftlichen Funktionen und setzen diese in Bezug zu ihren Erfahrungen aus der beruflichen Praxis. Hinsichtlich einfacher Beispiele sind die Studierenden in der Lage, diese auch praxisgerecht anzuwenden und eine Geschäftsplanung vorzunehmen.

Englisch II

Die Studierenden sind in der Lage, komplexere englischsprachige Texte insbesondere aus der Berufswelt zu verstehen und eigene detaillierte Texte in englischer Sprache anzufertigen. Die Studierenden können verschiedene Sprachstrukturen und -funktionen im Geschäftsbereich anwenden.

METHODENKOMPETENZ

Einführung BWL

Die Studierenden können die behandelten Methoden und Werkzeuge anwenden (z.B. Investitionsrechnung, Kostenrechnung, strategische Analysemethoden).

Englisch II

Die Studierenden können im internationalen Umfeld der Geschäftswelt sicher auftreten und können an Diskussionen teilnehmen bzw. diese auch anleiten. Die Studierenden sind in der Lage fehlerfrei per Email zu kommunizieren, Geschäftsprotokolle zu führen und können Bilder und Zahlenmaterial korrekt beschreiben.

PERSONALE UND SOZIALE KOMPETENZ

Einführung BWL

Die Studierenden sind in der Lage die sozialen und politischen Auswirkungen wirtschaftlichen Handels zu reflektieren. Sie verstehen im Gegenzug die Rahmenbedingungen, die Unternehmen bei der Erreichung ihrer Ziele zu beachten haben.

Englisch II

Die Studierenden sind sich interkultureller Unterschiede und Besonderheiten bewusst und können dementsprechend ihre Kommunikation gestalten.

ÜBERGREIFENDE HANDLUNGSKOMPETENZ

Einführung BWL

Die Studierenden sind in der Lage reale Sachverhalte mit dem theoretischen betriebswirtschaftlichen Wissen in einen Zusammenhang bringen und reale Unternehmensabläufe zu verstehen. Sie lösen zielgerichtet Probleme im beruflichen Umfeld mit betriebswirtschaftlich fundierten Methoden.

Englisch II

Die Studierenden können in englischer Sprache qualifiziert kommunizieren und argumentieren.

LERNEINHEITEN UND INHALTE

LEHR- UND LERNEINHEITEN	PRÄSENZZEIT	SELBSTSTUDIUM
Einführung Betriebswirtschaftslehre	45	45
Cognostand and Ziele der Patriobowirtschaft		

- Gegenstand und Ziele der Betriebswirtschaft
- Markt- und Unternehmensanalysen
- Zielbildung und Strategiewahl
- Produktions-, Beschaffungs- und Absatzmanagement
- Personalmanagement
- Internes und externes Rechnungswesen
- Investitions- und Finanzierungsmanagement

Englisch 2 (Business English) 30 30

- Aufbau von Grammatik und Vokabular für englische Fachkommunikation
- Erstellen von Berichten und Protokollen basierend auf Business Cases
- Präsentationen
- Telefonate führen, Verfassen von Emails
- Vorstellung der eigenen Person und anderer

Major skills area and vocabulary focus:

Candidate interview, motivation letter and resumé writing

Minor skills area:

Socialising - discussing current events (politics, economy, business)

Grammar focus:

Talking about past and recent experience:

Past simple, past perfect - Present perfect - Relative clauses

Stand vom 01.10.2025 T3TRI2810 // Seite 53

BESONDERHEITEN

Die betriebswirtschaftlichen Inhalte sollen an Beispielen aus der Praxis erläutert werden und von den Studierenden auch durch die Bearbeitung von Musteraufgaben gefestigt werden. Die Studierenden halten Präsentationen, z.B. basierend auf PowerPoint über ein Thema ihrer Wahl (Mechanik, Elektronik, Sport...).

Gewichtung der Prüfungsleistungen für die Modulendnote T3TRI2810.1 Einführung BWL (60%) T3TRI2810.2 Englisch II (40%)

VORAUSSETZUNGEN

T3TRI2025 Kommunikation III

LITERATUR

- H. Schierenbeck: Grundzüge der Betriebswirtschaftslehre, Oldenbourg
- T. Hutzschenreuter: Allgemeine Betriebswirtschaftslehre Grundlagen mit zahlreichen Praxisbeispielen, Springer Gabler
- M.E. Porter: Wettbewerbsvorteile, Campus Verlag
- W. Weber et al.: Einführung in die Betriebswirtschaftslehre, Gabler Verlag
- J. Bell et al.: Advanced Expert Coursebook, Harlow Pearson Education
- M. Foley et al.: My Grammar Lab Advanced, Harlow Pearson Education

Stand vom 01.10.2025 T3TRI2810 // Seite 54

Angewandte Mathematik II (T3TRI3005)

Applied Mathematics II

FORMALE ANGABEN ZUM MODUL

MODULNUMMER	VERORTUNG IM STUDIENVERLAUF	MODULDAUER (SEMESTER)	MODULVERANTWORTUNG	SPRACHE
T3TRI3005	3. Studienjahr	1	Stephan Müller	Deutsch/Französisch

EINGESETZTE LEHRFORMEN

LEHRFORMEN	LEHRMETHODEN
Vorlesung, Übung	Lehrvortrag, Diskussion

EINGESETZTE PRÜFUNGSFORMEN

PRÜFUNGSLEISTUNG	PRÜFUNGSUMFANG (IN MINUTEN)	BENOTUNG
Klausur	120	ja
Klausur	120	ja

WORKLOAD UND ECTS-LEISTUNGSPUNKTE

WORKLOAD INSGESAMT (IN H)	DAVON PRÄSENZZEIT (IN H)	DAVON SELBSTSTUDIUM (IN H)	ECTS-LEISTUNGSPUNKTE
180	60	120	6

QUALIFIKATIONSZIELE UND KOMPETENZEN

FACHKOMPETENZ

Statistik

Die Studierenden kennen und verstehen die Grundlagen der Wahrscheinlichkeitsrechnung sowie der beschreibenden und beurteilenden Statistik und können diese auf konkrete Problemstellungen anwenden.

Numerik

Die Studierenden kennen und verstehen Grundbegriffe der numerischen Mathematik und können diese auf einfache numerische Problemstellungen anwenden. Sie sind sich der Fehlerquellen bewusst, die beim Lösen mathematischer Probleme mit numerischen Methoden auftreten können.

METHODENKOMPETENZ

Die Studierenden kennen grundlegende Methoden der Wahrscheinlichkeitsrechnung und der Statistik sowie der numerischen Mathematik und können diese auf konkrete Problemstellungen anwenden. Sie sind sich der Reichhaltigkeit der Anwendung dieser Methoden, aber auch ihrer Grenzen bewusst.

PERSONALE UND SOZIALE KOMPETENZ

ÜBERGREIFENDE HANDLUNGSKOMPETENZ

- Die Studierenden erlernen strukturierte und systematische Herangehensweisen an komplexe Sachverhalte.
- Die Studierenden können stochastiche Grundkenntnisse auf technische und wirtschaftliche Fragestellungen anwenden.

LERNEINHEITEN UND INHALTE

LEHR- UND LERNEINHEITEN	PRÄSENZZEIT	SELBSTSTUDIUM
Statistik	45	60

- Beschreibende Statistik (ein- und zweidimensionale Stichproben, Regression und Korrelation)
- Wahrscheinlichkeit
- Verteilungen
- Schließende Statistik (Schätzungen, Hypothesentests)

Stand vom 01.10.2025 T3TRI3005 // Seite 55

LEHR- UND LERNEINHEITEN PRÄSENZZEIT SELBSTSTUDIUM Numerische Methoden 15 60

- Iterationsverfahren (Newton-Verfahren, Interpolation)
- numerische Differentiation und Integration
- Einleitung zu Methode der Finiten Elemente (Anwendung Balkenbiegung)
- nach Möglichkeit Anwendung eines numerischen Softwarepakets (z.B. MATLAB, Algor)

BESONDERHEITEN

Gewichtung der Prüfungsleistungen für die Modulendnote T3TRI3005.1 Statistik (60%) T3TRI3005.2 Numerische Methoden (40%)

VORAUSSETZUNGEN

T3TRI2005 Angewandte Mathematik

LITERATUR

- H.G. Roos et al.: Numerische Mathematik, Springer Vieweg
- K. Bosch: Basiswissen Statistik, Oldenbourg L. Papula: Mathematik für Ingenieure und Naturwissenschaftler Band 3, Vieweg Verlag
- K. Bosch: Elementare Einführung in die Wahrscheinlichkeitsrechnung, Vieweg Studium

T3TRI3005 // Seite 56 Stand vom 01.10.2025

Mechatronik III (T3TRI3805)

Mechatronics III

FORMALE	ANGABEN	ZUM	MODUL
---------	---------	-----	-------

MODULNUMMER	VERORTUNG IM STUDIENVERLAUF	MODULDAUER (SEMESTER)	MODULVERANTWORTUNG	SPRACHE
T3TRI3805	3. Studienjahr	1	Dr. Raymond Stoffel	Deutsch

EINGESETZTE LEHRFORMEN

LEHRFORMEN	LEHRMETHODEN
Labor, Vorlesung, Übung, Vorlesung, Übung, Labor	Gruppenarbeit, Lehrvortrag, Diskussion, Lehrvortrag, Diskussion,
	Gruppenarbeit

EINGESETZTE PRÜFUNGSFORMEN

PRÜFUNGSLEISTUNG	PRÜFUNGSUMFANG (IN MINUTEN)	BENOTUNG
Klausur	Siehe Pruefungsordnung	ja
Laborarbeit	Siehe Pruefungsordnung	ja
Klausur	Siehe Pruefungsordnung	ja

WORKLOAD UND ECTS-LEISTUNGSPUNKTE

WORKLOAD INSGESAMT (IN H)	DAVON PRÄSENZZEIT (IN H)	DAVON SELBSTSTUDIUM (IN H)	ECTS-LEISTUNGSPUNKTE
180	90	90	6

Stand vom 01.10.2025 T3TRI3805 // Seite 57

FACHKOMPETENZ

Mechatronische Systeme/Labor

Die Studierenden kennen den Aufbau von mechatronischen Systemen und können die wichtigsten Komponenten benennen.

Sie verstehen die Methodik der mechatronischen Modellbildung und können diese auf einfache Systeme aus der Praxis anwenden.

Die Studierenden sind in der Lage periodische Signale zu identifizieren und zur Steuerung von Komponenten selbstständig einzusetzen.

Die Studierenden kennen die Funktion und die Eignung für verschiedene Einsatzgebiete von Aktoren, Sensoren und Mikrorechnern.

Verteilte Systeme II

Die Studierenden kennen den Aufbau von verschiedenen Betriebssystemen.

Sie verstehen und erkennen Multitasking Systeme und können deren Vorteile und Probleme bewerten.

Die Studierenden können Einsatzgebiet der Echtzeitbetriebssysteme und der Echtzeitprogrammierung in der

industriellen Umgebung nennen und können deren Grenzen und praktische Anwendbarkeit einschätzen.

METHODENKOMPETEN7

Mechatronische Systeme/Labor

Die Studierenden sind dafür sensibilisiert bei der Modellbildung und Umsetzung eines mechatronischen Projektes eine systematische und methodisch fundierte Vorgehensweise zu wählen. Dazu gehört die Integration der Teilsysteme in ein Modell und auch das Ableiten eines mechatronischen Systems in seine Einzelbestandteile und Anforderungen. Dies wird anhand einer detaillierten theoretischen Einführung von Modellen vollzogen. Sie strukturieren die Aufgabe den Anforderungen entsprechend und führen selbstständig ein Projekt aus.

Verteilte Systeme II

Die Studierenden sind in der Lage verteilte Systeme mit unterschiedlichen Busstrukturen zu bewerten, deren Stärken und Schwächen abzuschätzen und für einfache Fälle in der Praxis zu konfigurieren.

PERSONALE UND SOZIALE KOMPETENZ

Die Studierenden kooperieren im Team, um ein System vom Konzept bis zum funktionierenden Produkt zu entwickeln.

Die Studierenden schätzen ihre Fachkompetenz adäquat ein und beziehen Experten aus anderen Domänen (Elektronik, Informatik, M-Bau) ein, um übergreifende Lösungen zu entwickeln.

Die Studierenden sind in der Lage, in einer Gruppe unterschiedliche Zielsetzungen und Interessenslagen wahrzunehmen, sichtbar zu machen und geeignete Lösungen zu finden. Gegenüber Fachfremden kommunizieren sie sachgerecht und verständlich

ÜBERGREIFENDE HANDLUNGSKOMPETENZ

Die Studierenden zeichnen sich aus durch fundiertes Wissen, Verständnis für disziplinübergreifende Zusammenhänge sowie die Fähigkeit theoretische Modelle in die Praxis zu übertragen.

LERNEINHEITEN UND INHALTE

LEHR- UND LERNEINHEITEN	PRÄSENZZEIT	SELBSTSTUDIUM
Mechatronische Systeme	30	30

- Vom mechanischen zum mechatronischen System
- Ableiten eines mechatronischen Systems in seine Einzelbestandteile und Anforderungen
- Beispiele mechatronischer Systeme
- Funktionen mechatronischer Systeme
- Entwurf mechatronischer Systeme
- Modellbildung technischer Prozesse
- Integration der Teilsysteme in ein mathematisch physikalisches Modell
- Strukturierung der Aufgabe den Anforderungen mittels Anwendungsfällen
- Identifikation dynamischer Systeme
- Modelle periodischer Signale
- Sensoren, Aktoren, Mikrorechner
- Fehlertolerante mechatronische Systeme
- Eingebettete Systeme

Mechatronisches Labor 30 30

- Aufbau, Wirkungsweise und Realisierungen verschiedener Aktoren und Sensoren
- Signale und Prozessdatenverarbeitung
- Regelung mechatronischer Systeme
- Ausgewählte Beispiele mechatronischer Systeme.

Stand vom 01.10.2025 T3TR13805 // Seite 58

LEHR- UND LERNEINHEITENPRÄSENZZEITSELBSTSTUDIUMVerteilte Systeme 23030

Einführung in Betriebssysteme (Aufbau und Funktion)

- Nebenläufigkeit: Betriebsarten, Hard- und Softwarenebenläufigkeit
- Verteilte Systeme (Komponenten und Eigenschaften Zusammenhang zu Betriebssystemen)
- $\hbox{-} Software strukturen (Lokale Betriebssysteme (u.a.\ Kern), verteilte Systeme (u.a.\ Middleware),$

Client-Server-Kooperation, Peer-to-Peer-Kooperation)

- UNIX-Betriebssystem (LINUX, auch andere denkbar, Nebenläufigkeit)
- Prozesse und Threads (Synchronisation (zeitliche Koordination), Problemstellung, Semaphore, Monitore, Transaktionen, Deadlocks)

Kommunikation

- Datenaustausch, Grundbegriffe, Lokale Kommunikation Shared Memory, Pipes, Message Queues)
- Kommunikation in Rechnernetzen (Nachrichten und Protokolle, Protokollstacks)
- Internet of things

BESONDERHEITEN

Mechatronisches Labor findet möglichst in trinationalen Gruppen mit kleinen Übungen als Einstieg statt.

Gewichtung der Prüfungsleistungen für die Modulendnote T3TRI3805.1 Mechatronische Systeme (30%) T3TRI3805.2 Mechatronisches Labor (30%)

T3TRI3805.3 Verteilte Systeme II (40%)

VORAUSSETZUNGEN

T3TRI1025 Informatik T3TRi2020 Informatik II T3TRI2015 Elektrotechnik III

LITERATUR

- R. Isermann: Mechatronische Systeme Grundlagen, Springer
- K. Janschek: Systementwurf mechatronischer Systeme Methoden Modelle Konzepte, Springer
- M. Meyer: Signalverarbeitung Analoge und digitale Signale Systeme und Filter, Vieweg Verlag
- H. Balzert: Lehrbuch der Softwaretechnik, Spektrum Akademischer Verlag
- K. Küpfmüller et al: Theoretische Elektrotechnik, Springer Verlag
- T. Mühl: Einführung in die elektrische Messtechnik, Springer Vieweg
- W. Roddeck: Grundprinzipien der Mechatronik, Springer Vieweg
- M. Glöckler: Simulation mechatronischer Systeme, Springer Vieweg
- W. Stallings: Betriebssysteme und Umsetzung, Prentice Hall
- M. Ben-Ari: Grundlagen der Parallel-Programmierung, Hanser Verlag
- R. Brause: Bestriebssysteme, Springer Verlag

Stand vom 01.10.2025 T3TR13805 // Seite 59

Management II (T3TRI3810)

Management II

EORM.	$\Lambda I = \Lambda N$	CAREN	711M/N	MODIII

FORMALE ANGABEN ZUM MODUL				
MODULNUMMER	VERORTUNG IM STUDIENVERLAUF	MODULDAUER (SEMESTER)	MODULVERANTWORTUNG	SPRACHE
T3TRI3810	3. Studienjahr	1	Prof. Dr. Robert Alard	Deutsch/Englisch

EINGESETZTE LEHRFORMEN

LEHRFORMEN	LEHRMETHODEN
Vorlesung, Übung	Lehrvortrag, Diskussion, Lehrvortrag, Diskussion, Fallstudien, Lehrvortrag, Diskussion, Gruppenarbeit

EINGESETZTE PRÜFUNGSFORMEN

PRÜFUNGSLEISTUNG	PRÜFUNGSUMFANG (IN MINUTEN)	BENOTUNG
Referat	Siehe Pruefungsordnung	ja
Klausur	Siehe Pruefungsordnung	ja
Klausur	Siehe Pruefungsordnung	ja

WORKLOAD UND ECTS-LEISTUNGSPUNKTE

WORKLOAD INSGESAMT (IN H)	DAVON PRÄSENZZEIT (IN H)	DAVON SELBSTSTUDIUM (IN H)	ECTS-LEISTUNGSPUNKTE
180	75	105	6

Stand vom 01.10.2025 T3TRI3810 // Seite 60

FACHKOMPETENZ

Interkulturelles Management

Die Studierenden kennen die Bedeutung des interkulturellen Managements und die Chancen Herausforderungen der interkulturellen Zusammenarbeit. Sie können den Kulturbegriff definieren, die Bedeutung kultureller Unterschiede einschätzen und Kulturtheorien im Kontext anwenden. Studierende kennen kulturelle Werte ausgewählter Länder und deren Implikationen für das Management.

Marketing + Vertrieb

Die Studierenden kennen die Grundlagen des Marketings und verstehen Marketing als markt- und kundenorientierte Unternehmensführung. Sie verstehen die Bedürfnisse der Nachfrager als zentralen Bezugspunkt des Marketings.

Sie können markt- und kundenrelevante Komponenten im Unternehmen identifizieren und Gestaltungsempfehlungen geben. Sie kennen den Prozess des Marketingmanagements und der Marketingforschung. Sie kennen die Ausgestaltungsmöglichkeiten von Marketinginstrumenten.

Kosten- und Leistungsrechnung

Nach erfolgreichem Abschluss dieses Moduls verfügen die Studierenden über die für Ingenieure notwendigen Grundkenntnisse in der Kosten- und Leistungsrechnung und können diese auf betriebliche Fragestellungen anwenden. Sie sind in der Lage die Bedeutung dieses Themas für das Unternehmen als Ganzes einzuschätzen.

METHODENKOMPETENZ

Interkulturelles Management

Die Studierenden verfügen über interkulturelle Kompetenz und bewegen sich im interkulturellen Umfeld sicher. Sie sind offen und bereit, ihnen fremde Kulturen zu erschließen. Sie wissen, wie sie mit Menschen unterschiedlicher Kulturen umgehen können, um Missverständnisse zu vermeiden und eine erfolgreiche Zusammenarbeit zu ermöglichen.

Marketing + Vertrieb

Die Studierenden kennen mit Abschluss des Moduls die wesentlichen Methoden der Marktforschung, der Beschreibung und Analyse von Märkten und der Marketingstrategien und sie kennen die Stärken und Schwächen dieser Methoden.

Die Studierenden sind in der Lage, für Anwendungsfälle in der Praxis angemessene Methoden auszuwählen und anzuwenden.

Kosten- und Leistungsrechnung

Die Studierenden werden in die Lage versetzt für Problemstellungen in der Praxis kosten- und leistungstheoretische Lösungen zu erarbeiten.

Die Studierenden sind sensibilisiert für die Bewertung von kosten- und leistungstheoretischen Fragestellungen eine systematische und methodisch fundierte Vorgehensweise zu wählen.

PERSONALE UND SOZIALE KOMPETENZ

Interkulturelles Management

Die Studierenden können mit Rücksicht auf kulturelle Werte, Traditionen und Verhaltensweisen die Zusammenarbeit mit Kollegen und Geschäftspartnern steuern. Sie sind sensibilisiert für Verhaltensweisen, die in der Kultur eines Menschen begründet sind und in der Lage, eigenes Verhalten aus der Perspektive anderer Kulturen zu reflektieren.

Marketing + Vertrieb

Den Studierenden gelingt es in den Fallbeispielen, das eigene Marketingwissen zu reflektieren und selbständig auf die jeweils bestehenden Anforderungen anzupassen. Die Studierenden können Ihre eigene Position und Meinung zu den Themenstellungen des Marketings durch eine fachadäquate Kommunikation argumentativ vertreten und gemeinsam mit Kollegen weiterentwickeln.

ÜBERGREIFENDE HANDLUNGSKOMPETENZ

Interkulturelles Management

Interkulturelle Kompetenz befähigt die Studenten unter anderem auch, Konflikte besser zu lösen, effizienter zu kommunizieren, und erfolgreicher zu verhandeln.

Marketing + Vertrieb

Die Studierenden können in Fallbeispielen erworbenes theoretisches Marketingwissen auf Problemstellungen in der Praxis anwenden.

Kosten- und Leistungsrechnung

Die Studenten können Kenntnisse aus unterschiedlichen (technischen und betriebswirtschaftlichen) Fachgebieten verknüpfen und die Inhalte wechselseitig anwenden.

LERNEINHEITEN UND INHALTE

LEHR- UND LERNEINHEITEN	PRÄSENZZEIT	SELBSTSTUDIUM
Interkulturelles Management	15	30

- Definition und Grundlagen des interkulturellen Managements
- Kulturelle Dimensionen im Vergleich
- Einfluss kultureller Unterschiede auf die Unternehmensführung
- Marketing im interkulturellen Kontext
- Verhandlung im interkulturellen Kontext

Stand vom 01.10.2025 T3TR13810 // Seite 61

LEHR- UND LERNEINHEITEN	PRÄSENZZEIT	SELBSTSTUDIUM
Marketing + Vertrieb	30	30

- Grundlagen des Marketing
- Käuferverhalten im B2B und B2C
- Marktforschung
- Marketingstrategien
- Leistungspolitik
- Preispolitik
- Kommunikationspolitik
- Distribution und Vertrieb

Kosten- und Leistungsrechnung

30

45

- Kostenrechnung und Rechnungswesen
- Kostenprinzipien
- Kostenarten-, Kostenstellen- und Kostenträgerrechnung
- Deckungsbeitragsrechnung
- Break-Even-Analyse
- Prozesskostenrechnung
- Target Costing

BESONDERHEITEN

Die Veranstaltung "Interkulturelle Kompetenz" zeichnet sich durch Interaktivität und einen hohen Praxisbezug aus. Gruppenarbeit, Diskussion und Erfahrungsaustausch sind wich-tige didaktische Elemente dieser Vorlesung und es werden zahlreiche reale Beispiele zu den erläuterten Theorien geliefert.

In der Veranstaltung Marketing und Vertrieb werden verschiedene Marketingmethoden und -werkzeuge anhand von Fallbeispielen behandelt werden. Anschauliche Beispiele aus der Praxis dienen der Förderung des Verständnisses für Zusammenhänge.

Gewichtung der Prüfungsleistungen für die Modulendnote

T3TRI2810.1 Interkulturelles Management (20%)

T3TRI2810.2 Marketing und Vertrieb (40%)

T3TRI2810.3 Kosten- unbd Leistungsrechnung (40%)

VORAUSSETZUNGEN

T3TRI2810 Management I

LITERATUR

- F.R. Esch et al.: Marketing, Vahlen
- C. Homburg: Marketing Management, Springer Gabler Verlag
- H. Meffert et al.: Marketing, Springer Gabler Verlag
- P. Kotler et al.: Marketing Management, Pearson Studium
- G. Hofstede et al.: Cultures and Organizations Software of the Mind Intercultural Cooperation and Its Importance for Survival, Mcgraw-Hill.
- G. Hofstede et al.: Lokales Denken globales Handeln Interkulturelle Zusammenarbeit und globales Management, Deutscher Taschenbuch Verlag.
- F. Trompenaars et al.: Riding the Waves of Culture Understanding Cultural Diversity in Business, N. Brealey Publishing.
- S. Hummel et al.: Kostenrechnung, Gabler Verlag
- W. Jórasz: Kosten- und Leistungsrechnung, Schäffer Poeschel
- J. Kloock et al.: Kosten- und Leistungsechnung, Lucius & Lucius
- H. Schierenbeck: Grundzüge der Betriebswirtschaftslehre, Oldenbourg
- H. Schierenbeck: Übungsbuch Grundzüge der Betriebswirtschaftslehre, Oldenbourg

Stand vom 01.10.2025 T3TR13810 // Seite 62

Management III (T3TRI9305)

Management III

FORMALE ANGABEN ZUM MODUL

MODULNUMMER	VERORTUNG IM STUDIENVERLAUF	MODULDAUER (SEMESTER)	MODULVERANTWORTUNG	SPRACHE
T3TRI9305	3. Studienjahr	1	Prof. Dr. Robert Alard	Deutsch

EINGESETZTE LEHRFORMEN

LEHRFORMEN	LEHRMETHODEN
Vorlesung, Übung	Lehrvortrag, Diskussion, Lehrvortrag, Diskussion, Fallstudien

FINGESETZTE PRÜFUNGSFORMEN

PRÜFUNGSLEISTUNG	PRÜFUNGSUMFANG (IN MINUTEN)	BENOTUNG
Klausur	Siehe Pruefungsordnung	ja
Klausur	Siehe Pruefungsordnung	ja
Klausur	Siehe Pruefungsordnung	ja

WORKLOAD UND ECTS-LEISTUNGSPUNKTE

WORKLOAD INSGESAMT (IN H)	DAVON PRÄSENZZEIT (IN H)	DAVON SELBSTSTUDIUM (IN H)	ECTS-LEISTUNGSPUNKTE
180	65	115	6

QUALIFIKATIONSZIELE UND KOMPETENZEN

FACHKOMPETENZ

Prozessmanagement I

Die Studierenden sind in der Lage Prozesse im Unternehmen zu verstehen und in Gesamtaufgabe des Unternehmens einzuordnen.

ERP

Die Studierenden können Eigenschaften und Charakteristiken von Enterprise-Resource-Planning (ERP)-Systemen (Begriffe, Einsatzbereiche, etc.) benennen und beschreiben.

METHODENKOMPETENZ

Prozessmanagement I

Die Studierenden können reale Sachverhalte mit den vielfältigen Zusammenhängen von Technik, Organisation und Personal sachgerecht erfassen und einordnen und Aufgaben entsprechend den Anforderungen der konkreten Anwendungssituation erfolgreich zum Abschluss führen

ERP

Die Studierenden können zwischen operativer, strategischer und unternehmensübergreifender Planung und Steuerung von Ressourcen unterscheiden.

PERSONALE UND SOZIALE KOMPETENZ

ÜBERGREIFENDE HANDLUNGSKOMPETENZ

Prozessmanagement I

Die Studierenden können komplexe Zusammenhänge analysieren und relevante Informationen extrahieren. Der Studierende ist mit der Sprache des Fachgebietes vertraut, versteht aber auch die Notwendigkeit in der Kommunikation für eindeutige Definitionen der hinter den Begrifflichkeiten verborgenen Fachinhalte zu sorgen.

ERP

Die Studierenden kennen Methoden für die Beurteilung und Auswahl von ERP-Systemen für den spezifischen Einsatz in einem Unternehmen und können diese anwenden.

LERNEINHEITEN UND INHALTE

LEHR- UND LERNEINHEITEN	PRÄSENZZEIT	SELBSTSTUDIUM
Prozessmanagement 1	30	30

Stand vom 01.10.2025 T3TRI9305 // Seite 63

LEHR- UND LERNEINHEITEN	PRÄSENZZEIT	SELBSTSTUDIUM
 Prozesse (Aufbau- vs. Ablauforganisation) Prozessphasen, Organisation, Ablauf- und Prozesskontrolle. TOM und EFOM-Modell – Qualität als Beitrag zur Kostenoptimierung Logistik als Querschnittsfunktion entlang der Wertschöpfungskette bis zur Marktbelieferung. Bestimmen von Kennzahlen. Fallstudie: Prozessmodellierung in der Praxis. 		
Enterprise Resource Planning Systeme (ERP)	20	55
 Enterprise Resource Planning – Begriffe, Systeme und Architekturen Planung und Steuerung operativer Ressourcen Planung und Steuerung strategischer Ressourcen Planung und Steuerung unternehmensübergreifender Ressourcen Auswahl, Einführung und Betrieb von ERP-Systemen 		
Wahlfach 1 (Thema D)	15	30

BESONDERHEITEN

Das Modul beinhaltet ein Wahlfach im Umfang von 15 UE, welches von den Studierenden aus mehreren wechselnden Vorschlägen ausgewählt wird. Die Themengebiete werden kontinuierlich der aktuellen Situation und dem Bedarf angepasst.

Gewichtung der Prüfungsleistungen für die Modulendnote T3TRI9305.1 Prozessmanagement I (40%) T3TRI9305.2 ERP (40%) T3TRI9305.3 Wahlfach I (20%)

VORAUSSETZUNGEN

T3TRI3810 Management II

LITERATUR

- N. Gronau: Enterprise Resource Planning Architektur Funktion und Management von ERP-Systemen, Oldenbourg
- P. Grammer: Der ERP-Kompass ERP-Projekte zum Erfolg führen, Verlagsgruppe Huethig Jehle Rehm Heidelberg.
- M. Hesseler et al.: Basiswissen ERP-Systeme Auswahl, Einführung und Einsatz betriebswirtschaftlicher Standardsoftware, W3L-Verlag Dortmund.
- P. Schönsleben: Integrales Logistikmanagement, Springer Verlag

Stand vom 01.10.2025 T3TRI9305 // Seite 64

Kommunikation IV (T3TRI3010)

Communication IV

RAALE	ANGARE	- NI 711N/	MACDIII

MODULNUMMERVERORTUNG IM STUDIENVERLAUFMODULDAUER (SEMESTER)MODULVERANTWORTUNGSPRACHET3TRI30103. Studienjahr1Stephan MüllerDeutsch/Englisch

EINGESETZTE LEHRFORMEN

LEHRFORMEN LEHRMETHODEN

Seminar, Vorlesung, Übung Lehrvortrag, Diskussion, Gruppenarbeit, Projekt

EINGESETZTE PRÜFUNGSFORMEN

PRÜFUNGSLEISTUNG PRÜFUNGSUMFANG (IN MINUTEN) BENOTUNG

Referat Siehe Pruefungsordnung ja

Unbenotete Prüfungsleistung Siehe Pruefungsordnung Bestanden/ Nicht-Bestanden

Klausur Siehe Pruefungsordnung ja

WORKLOAD UND ECTS-LEISTUNGSPUNKTE

WORKLOAD INSGESAMT (IN H)

DAVON PRÄSENZZEIT (IN H)

DAVON SELBSTSTUDIUM (IN H)

ECTS-LEISTUNGSPUNKTE

180

75

105

6

Stand vom 01.10.2025 T3TRI3010 // Seite 65

FACHKOMPETENZ

Kommunikationstechniken II

Die Studierenden sind in der Lage

- kommunikative Situationen einzuschätzen
- die Entwicklung und Stärkung individueller kommunikativer Potentiale abzuschätzen.

Die Studierenden identifizieren den Einfluss von rhetorischen Wirkungsfaktoren und kommunikationspsychologischen Zusammenhängen, setzen diese in Zusammenhang und passen ihre Kommunikation der jeweiligen Situation an.

Die Studierenden sind in der Lage, Personal- und Verhandlungsgespräche zu führen und angemessen auf Konflikte in der gewählten kommunikativen Lösung zu reagieren.

Interkulturelles Projekt (Unternehmensbesuche)

Kennenlernen von verschiedenen Unternehmen und deren Herausforderungen im technischen Bereich sowie in den Managementdisziplinen (Projektmanagement, Logistikmanagement, Supply Chain Management, Prozessmanagement)

English (B1)

Students are able to

- use appropriate language when applying for jobs
- develop their email and telephoning skills for use in a wider range situations
- discuss current affairs with business partners

English (B2/C1)

Students are able to

- express themselves fluently regarding areas of potential risk in projects
- identify project deliverables and discuss earned value management
- write appropriate email to introduce company, make plans, resolve problems
- read and discuss questions related to mechatronics articles

METHODENKOMPETENZ

Die Studierenden haben ein umfassendes und detailliertes Fachwissen über Kommunikationsstrukturen - Kommunikationsstile - Kommunikationspartner und sind in der Lage, diese situationsadäquat gegeneinander abzuwägen und einzusetzen.

Die Studierenden kennen ihren eigenen Kommunikationsstil und können die Kommunikation anderer differenziert bewusst wahrnehmen und beschreiben.

Die Studierenden sind in der Lage ihre Fremdsprachenkompetenz selbstständig auszubauen. Sie treten im internationalen Umfeld sicher auf und können an Diskussionen teilnehmen bzw. diese auch anleiten.

PERSONALE UND SOZIALE KOMPETENZ

Die Studierenden setzen ihre Kommunikationsfähigkeiten in allen Lebensbereichen ein und nutzen diese gezielt. Die Studierenden fühlen sich im fremdsprachigen Umfeld wohl und integrieren sich im multikulturellen Umfeld.

ÜBERGREIFENDE HANDLUNGSKOMPETENZ

Flexible Anpassung des eigenen Kommunikationsstils an unterschiedliche Lebensbereiche.

LERNEINHEITEN UND INHALTE

LEHR- UND LERNEINHEITEN	PRÄSENZZEIT	SELBSTSTUDIUM
Kommunikationstechniken 2	30	30
 Redemittel: Kleines Lexikon der Gesprächsstrategien "Vier Seiten einer Nachricht" nach Schulz von Thun Transaktionsanalyse Gruppendynamik Führungsstile Konfliktmanagement 		
Interkulturelles Projekt (Unternehmensbesuche)	15	15
Mehrtägige Exkursion mit Betriebsbesichtigungen mehrerer Unternehmen		
Englisch 3	30	60

Level B1

Job application process: Write cover letters and practise job interviews Vocabulary related to skills, qualifications and work experience Language of society, business and politics required to discuss current affairs

Level B2/C1

Inhalte

Major skills area: risk and cost management

Minor skills area: practising functional language of email writing

Grammar focus: advanced tense work, use of prepositions, gerunds, infinitives

Stand vom 01.10.2025 T3TRI3010 // Seite 66

BESONDERHEITEN

Die Veranstaltung Interkulturelles Projekt) beinhaltet in der Regel 2 Unternehmensbesuche pro Tag und wird meist um einen Social Event (z.B. Stadtbesichtigung, Museumbesuch) ergänzt. Die Unternehmensbesuche sind in der Regel folgendermassen aufgebaut: Vorstellung des Unternehmens, Betriebsbesichtigung, Fachvorträge (technische Themen und / oder Managementthemen) sowie Diskussionen. Die Studierenden sollten sich im Vorfeld der Exkursion über die zu besuchenden Unternehmen in-formieren (Internet, Geschäftsberichte etc.).

Gewichtung der Prüfungsleistungen für die Modulendnote T3TRI3010.1 Kommunikationstechniken II (50%) T3TRI3010.2 Interkulturelles Projekt (Unternehmensbesuche) (0%), Teilnahme obligatorisch T3TRI3010.3 Englisch III (50%)

VORAUSSETZUNGEN

T3TRI2025 Kommunikation

LITERATUR

- V. Eismann: Wirtschaftskommunikation Deutsch, Goethe Institut zur Pflege der internationalen und kulturellen Zusammenarbeit Berlin Begleitende Literatur zur Vorlesung Englisch wird in der Vorlesung bekanntgegeben.

Stand vom 01.10.2025 T3TRI3010 // Seite 67

Engineering IV (T3TRI3015)

Engineering IV

FORMALE ANGABEN ZUM MODUL

MODULNUMMERVERORTUNG IM STUDIENVERLAUFMODULDAUER (SEMESTER)MODULVERANTWORTUNGSPRACHET3TRI30153. Studienjahr1Französisch

EINGESETZTE LEHRFORMEN

LEHRFORMEN

Vorlesung, Übung, Labor

Lehrvortrag, Diskussion, Fallstudien

EINGESETZTE PRÜFUNGSFORMEN

PRÜFUNGSLEISTUNGPRÜFUNGSUMFANG (IN MINUTEN)BENOTUNGKonstruktionsentwurfSiehe PruefungsordnungjaKlausurSiehe Pruefungsordnungja

WORKLOAD UND ECTS-LEISTUNGSPUNKTE

WORKLOAD INSGESAMT (IN H)DAVON PRÄSENZZEIT (IN H)DAVON SELBSTSTUDIUM (IN H)ECTS-LEISTUNGSPUNKTE150755

QUALIFIKATIONSZIELE UND KOMPETENZEN

FACHKOMPETENZ

Computer Aided Engineering II

Die Studierenden sind in der Lage, mit den Techniken des Computer Aided Design für Standardfälle der Praxis einfache Problemstellungen zu analysieren. Technische Zeichnungen können computerunterstützt erstellt werden.

Die Studierenden sind in der Lage die Bedeutung des Computer Aided Design einzuordnen und dabei die technischen und die gesetzlichen Grundbegriffe fachadäquat anzuwenden.

Finite Elemente

Die Studierenden sind mit Abschluss des Moduls in der Lage, zu den in den Modulinhalten genannten Theorien, Modellen und Diskursen detaillierte Finite Elemente Analysen und Argumentationen aufzubauen. Sie können Zusammenhänge und Einflüsse innerhalb von Problemlagen differenzieren und darauf aufbauend neue Lösungsvorschläge entwickeln und diese kritisch evaluieren.

METHODENKOMPETENZ

Computer Aided Engineering II

Die Studierenden können nach Abschluss des Moduls die Methoden der Mechanik und der Konstruktionslehre nutzen und diese auf Problemstellungen in der Mechatronik anwenden.

Finite Elemente

Die Absolventen verfügen über das in den Modulinhalten aufgeführte Spektrum an Methoden und Techniken zur Bearbeitung wissenschaftlicher Finite Elemente Probleme aus denen sie angemessene Methoden auswählen und anwenden, um neue Lösungen zu erarbeiten. Bein einzelnen Methoden verfügen Sie über ein vertieftes Fach- und Anwendungswissen. Einfache FEM Probleme können numerisch gelöst werden.

PERSONALE UND SOZIALE KOMPETENZ

ÜBERGREIFENDE HANDLUNGSKOMPETENZ

OBEKOKEIFENDE HANDLUNGSKOMPETEN

LERNEINHEITEN UND INHALTE

LEHR- UND LERNEINHEITEN	PRÄSENZZEIT	SELBSTSTUDIUM
Computer Aided Engineering 2	45	45

Stand vom 01.10.2025 T3TRI3015 // Seite 68

LEHR- UND LERNEINHEITEN **PRÄSENZZEIT SELBSTSTUDIUM**

- Effizienter Umgang mit AutoCAD-Befehlen
- Übergang vom Volumen- zum Oberflächenmodell
- Zeichnungsableitung
- Flächenglättung
- Zusammenfügen von OberflächenArbeiten mit Bewegungsskeletten

Finite Element Methods 30 30

- Benutzung eines Softwaretools, um ausgewählte praktische Problemstellungen zu modellieren und zu lösen.
- Anpassung an komplizierte Integrationsgebiete und einfache Behandlung von Randbedingungen
- Schwingungsverhalten von Konstruktionen Modalanalyse
- Strukturanalysen und Wärmeberechnungen
- Schnittstelle zu CAD Software (Pro/mechanica)

BESONDERHEITEN

Gewichtung der Prüfungsleistungen für die Modulendnote T3TRI3015.1 Computer Aided Engineering II (60%) T3TRI3015.2 Finite Elemente (40%)

VORAUSSETZUNGEN

T3TRI2030 Engineering II T3TRI3005 Angewandte Mathematik

LITERATUR

- J.C. Craveur: Modélisation par éléments finis, Editions DUNOD
- J.C. Craveur: De la CAO au calcul, Editions DUNOD
- M. Jung et al.: Methode der finiten Elemente für Ingenieure Eine Einführung in die numerischen Grundlagen und Computersimulation, B.G. Teubner

Stand vom 01.10.2025 T3TRI3015 // Seite 69

ECTS-LEISTUNGSPUNKTE

Physik II (T3TRI9310)

Applied Physics II

EORM/	M = M M	CAREN	711M	MODIII

WORKLOAD INSGESAMT (IN H)

150

MODULNUMMER	VERORTUNG IM STUDIENVERLAUF	MODULDAUER (SEMESTER)	MODULVERANTWORTUNG	SPRACHE
T3TRI9310	3. Studienjahr	1	Stephan Müller	Deutsch/Französisch
EINGESETZTE LEHRF	ORMEN			
LEHRFORMEN			LEHRMETHODEN	
Vorlesung, Übung			Lehrvortrag, Diskussion	
EINGESETZTE PRÜFU	NGSFORMEN			
PRÜFUNGSLEISTUNG	i		PRÜFUNGSUMFANG (IN MINUTEN)	BENOTUNG
Klausur			Siehe Pruefungsordnung	ja
Klausur			Siehe Pruefungsordnung	ja
Klausur			Siehe Pruefungsordnung	ja
Klausur			Siehe Pruefungsordnung	ja
MODEL OVE TIME EC.	TS-LEISTUNGSPUNKTE			
WORKLOAD OND EC	13-FF13 LOMOSI OMNIE			

DAVON SELBSTSTUDIUM (IN H)

DAVON PRÄSENZZEIT (IN H)

Stand vom 01.10.2025 T3TRI9310 // Seite 70

FACHKOMPETENZ

Fluidmechanik

Der Studierende beherrscht die mechanischen Grundmodelle zur Beschreibung von Flüssigkeiten und Gasen. Er oder sie kann Spannungszustände in Fluiden erstellen und berechnen sowie charakteristische Kennzahlen daraus ableiten.

Thermodynamik

Die Studierenden verstehen die Grundprinzipien der Thermodynamik und können diese zur rechnerischen Bewertung von technischen Problemstellungen anwenden. Die Studierenden erfassen die Grundbegriffe, das systemische Denken und Vorgehen in der Thermodynamik und können thermodynamische Prozesse und Systeme mit physikalisch-mathematischen Methoden beschreiben.

Elastizität

Die Studierenden verstehen die Grundprinzipien der mechanischen Elastizitätstheorie. Sie können mechanische Spannungszustände in Festkörpern beschreiben und in einfachen Anwendungsfällen auch berechnen.

METHODENKOMPETENZ

Fluidmechanik

Der Studierende verfügt über Fähigkeiten, um Flüssigkeiten und Gase in Verbindung mit mechanischen Modellen, chemischen Reaktionen und produktivem Durchsatz zu bringen und Werte für die Auslegung verfahrenstechnischer Apparate zu ermitteln.

Thermodynamik

Die Studierenden sind in der Lage, sich im Verlaufe ihrer beruflichen Tätigkeit in weiterführende Problemstellungen der Thermodynamik selbstständig einzuarbeiten.

Elastizität

Die Studierenden sind in der Lage einfache elastische Systeme mathematisch zu beschreiben und Kenngrößen der mechanischen Belastung zu bestimmen.

PERSONALE UND SOZIALE KOMPETENZ

-

ÜBERGREIFENDE HANDLUNGSKOMPETENZ

Die Studierenden sind in der Lage mathematischer Methoden und Algorithmen bei der Lösung physikalischer Aufgabenstellungen aus dem Bereich Fluidmechanik, Thermodynamik und Elastizität anzuwenden.

Die Studierenden haben gelernt, sich schnell in neuen Siuationen und physikalischen Fragestellungen zurechtzufinden. Fehlende Informationen beschaffen sie sich durch zielgerichtete Literatur- und Internetrecherchen.

LERNEINHEITEN UND INHALTE

LEHR- UND LERNEINHEITEN	PRÄSENZZEIT	SELBSTSTUDIUM
Fluidmechanik	15	15
 - Fluidstatik - Eindimensionale Ausströmung der idealen und realen Fluide - Bernoulli Gleichung - Einführung in die Aerodynamik (Reynolds Wert, Auftrieb, Spur, Kraft) 		
Thermodynamik	15	15
- Temperaturmessmethoden - Wärmetransport und Isolation - 1. und 2. Hauptsatz - Wirkungsgrade		
- MIKUHASAIANG		

Elastizität	30	30

- Spannungs- und Verzerrungszustand, Dehnung
- Mohrscher-Spannungskreis
- Vergleichsspannungshypothesen
- Spannungs- und Dehnungsmatrix
- Elastizitätsgesetz für den ebenen und 3D Spannungszustand
- Dünnwandige Behälter

- Ideale und reale Gase

- Kreiszylindrischer Behälter unter Innen- oder Aussendruck

Wahlfach 21515

Stand vom 01.10.2025 T3TRI9310 // Seite 71

BESONDERHEITEN

Gewichtung der Prüfungsleistungen für die Modulendnote T3TRI9310.1 Fluidmechanik (25%) T3TRI9310.2 Thermodynamik (25%) T3TRI9310.3 Elastizität (30%) T3TRI9310.4 Wahlfach II (20%)

VORAUSSETZUNGEN

T3TRI1045 Physik T3TRI1050 Mechanik II T3TRI2005 Angewandte Mathematik

LITERATUR

- H. Dietmann: Einführung in die Elastizitäts- und Festigkeitslehre, Alfred Kröner Verlag
- J.P. Henry: Cours d'élasticité, Editions DUNOD
- J.D. Anderson: Computational Fluid Dynamics The Basics with Applications, McGraw Hill International Editions
- J. Ferzinger et al.: Computational Methods for Fluid Dynamics, Springer
- C.A.J. Fletcher: Computational Techniques for Fluid Dynamics Vol. 1 Fundamental and General Techniques, Springer Verlag
- H. Sigloch: Technische Fluidmechanik, Springer Verlag
- R. Comolet: Mécanique des fluides, Editions MASSON P. Stephan et al.: Thermodynamik Band 1, Springer Vieweg

Stand vom 01.10.2025 T3TRI9310 // Seite 72

Mechatronik IV (T3TRI9315)

Mechatronics IV

FORMALE	ANGABEN	ZUM	MODUL
---------	---------	-----	-------

MODULNUMMER	VERORTUNG IM STUDIENVERLAUF	MODULDAUER (SEMESTER)	MODULVERANTWORTUNG	SPRACHE
T3TRI9315	3. Studienjahr	1	Dr. Raymond Stoffel	Deutsch

EINGESETZTE LEHRFORMEN

LEHRFORMEN	LEHRMETHODEN
Vorlesung, Übung, Labor	Lehrvortrag, Diskussion, Gruppenarbeit

EINGESETZTE PRÜFUNGSFORMEN

PRÜFUNGSLEISTUNG	PRÜFUNGSUMFANG (IN MINUTEN)	BENOTUNG
Referat oder Labor	Siehe Pruefungsordnung	ja
Klausur	Siehe Pruefungsordnung	ja
Klausur	Siehe Pruefungsordnung	ja

WORKLOAD UND ECTS-LEISTUNGSPUNKTE

WORKLOAD INSGESAMT (IN H)	DAVON PRÄSENZZEIT (IN H)	DAVON SELBSTSTUDIUM (IN H)	ECTS-LEISTUNGSPUNKTE
150	75	75	5

Stand vom 01.10.2025 T3TRI9315 // Seite 73

QUALIFIKATIONSZIELE UND KOMPETENZEN

FACHKOMPETENZ

Rapid Prototyping

Die Studierenden kennen die eingesetzten, industriellen Rapid Prototyping-Verfahren und deren Schnittstellen zu CAD-Systemen.

Die Studierenden verstehen den technologischen Ablauf von Rapid Prototyping-Projekten und können Einsatzgrenzen erkennen.

Die gemeinsame Bearbeitung von Projekten in kleinen Teams befähigt die Studierenden zur fachlichen Kommunikation innerhalb des Teams und mit Außenstehenden. Sie können gewählte Vorgehensweisen und Ergebnisse darstellen und begründen.

Software Engineering II

Die Studierenden sind in der Lage, Softwareprojekte systematisch entsprechend dem Vorgehensmodell zu planen und systematisch durchzuführen.

Die Studierenden kennen Methoden und Konzepte zur Anforderungsermittlung und Dokumentation und können diese anwenden

Die Studierende können aufgrund der Anforderungen SW-Architekturen auf einer groben Ebene entwickeln und den Entwurf begründen.

Sie kennen das Vorgehen beim Testen und verschiedene Testarten, die im Projektverlauf zum Einsatz kommen.

METHODENKOMPETENZ

Rapid Prototyping

Die Studierenden sind in der Lage für die gängigen industriellen Anwendungen geeignete RP-Verfahren und Werkstoffe auszuwählen und zu bestimmen. Sie können das Verfahren des Rapid Prototypings in den Entwicklungsprozess einordnen, dessen Grenzen und praktische Anwendbarkeit einschätzen.

Software Engineering II

Die Studierenden können nach Abschluss des Moduls

- softwaretechnische Methoden eigenständig anwenden
- ein vorgegebenes softwaretechnisches Problem selbständig analysieren, Software-Methoden und Werkzeuge auswählen,

um mit diesen Lösungen adäquat zu entwerfen und zu implementieren.

Die Studierenden sind mit Abschluss des Moduls in der Lage,

für komplexe Praxisanwendungen eine angemessene Methode

auszuwählen und anzuwenden. So können die Möglichkeiten,

Praktikabilität und Grenzen der eingesetzten Methode einschätzen.

PERSONALE UND SOZIALE KOMPETENZ

-

ÜBERGREIFENDE HANDLUNGSKOMPETENZ

Rapid Prototyping

Die Studierenden besitzen ein fundiertes Wissen des Rapid Prototyping Verfahrens und zeichnen sich durch die Fähigkeit aus, Bauzeit- und Kostanabschätzungen vorzunehmen.

Die Studierenden wenden bereichsübergreifende Zusammenhänge aus Konstruktionslehre und CAD-Modellierung an, um die Verfahrensparameter eines RP-Prozesses zu optimieren

Software Engineering II

Die Studierenden können nach Abschluss des Moduls

- im Team Software entwickeln und selbständig Software-Projekte analysieren, strukturieren oder bei komplexeren Problemstellungen in einem Projektteam mitwirken
- zielgerichtet Phasendokumente erstellen

LERNEINHEITEN UND INHALTE

LEHR- UND LERNEINHEITEN	PRÄSENZZEIT	SELBSTSTUDIUM
Rapid Prototyping	15	15

- Einordnung von Rapid Prototyping in den Entwicklungsprozess
- Begriffsbestimmungen: Rapid Prototyping, Rapid Tooling, Rapid Manufacturing, Generative Fertigungsverfahren, Schichtbauverfahren, 3D-Printing
- Darstellung der verschiedenen RP-Technologien und verfügbare Werkstoffe
- Technologischer Ablauf von Rapid Prototyping-Projekten
- Überblick über die Schnittstellen zu CAD-Systemen
- Mathematische Modellbildung und Optimierung von Verfahrensparametern
- Laborversuch: Erstellung eines 3D-CAD-Modells, Datenübertragung auf eine RP-Anlage und Fertigung eines RP-Modells
- Die Studierenden erstellen eigenständig ein 3D-CAD-Modell, das sie dann auf einer Rapid Prototyping-Anlage fertigen.

Stand vom 01.10.2025 T3TRI9315 // Seite 74

LERNEINHEITEN UND INHALTE

LEHR- UND LERNEINHEITEN	PRÄSENZZEIT	SELBSTSTUDIUM
Software Engineering 2	30	45

- Phasen des SW-Engineering und deren Zusammenhänge
- Vorgehensmodelle
- Erfassen und Bewerten von Anforderungen
- SW-Architekturen
- Qualitätsmanagement
- Testarten und Testdurchführung
- IT-Projektmanagement

Wahlfach 3 30 15

BESONDERHEITEN

Fertigung eines RP-Modells im Laborversuch.

Gewichtung der Prüfungsleistungen für die Modulendnote T3TRI9315.1 Rapid Prototyping (20%) T3TRI9315.2 Software Engineering II (40%) T3TRI9315.3 Wahlfach III (40%)

VORAUSSETZUNGEN

T3TRI2020 Informatik II T3TRI2035 Fertigungstechnik II T3TRI3015 Engineering IV

LITERATUR

- A. Gebhardt: Generative Fertigungsverfahren, Hanser Verlag
- R. Noorani: Rapid Prototyping, John Wiley & Sons
- M.F. Zäh: Wirtschaftliche Fertigung mit Rapid-Technologien, Hanser Verlag
- H. Balzert: Lehrbuch der Softwaretechnik Basiskonzepte und Requirements Engineering, Spektrum Akademischer Verlag
- H. Balzert: Lehrbuch der Softwaretechnik Softwaremanagement Lehrbücher der Informatik, Spektrum Akademischer Verlag
- J. Ludewig et al.: Software Engineering Grundlagen Menschen Prozesse Techniken, dpunkt Verlag
- R. Pichler: Scrum Agiles Projektmanagement erfolgreich einsetzen, dpunkt Verlag
- C. Rupp: Requirements-Engineering und -Management Professionelle iterative Anforderungsanalyse für die Praxis, Hanser Verlag
- I. Sommerville: Software engineering, Pearson Studium

Stand vom 01.10.2025 T3TRI9315 // Seite 75

Management IV (T3TRI3815)

Management IV

FORMALE ANGABEN ZUM MODUL

MODULNUMMER	VERORTUNG IM STUDIENVERLAUF	MODULDAUER (SEMESTER)	MODULVERANTWORTUNG	SPRACHE
T3TRI3815	3. Studienjahr	1	Prof. Dr. Robert Alard	Deutsch/Englisch

EINGESETZTE LEHRFORMEN

LEHRFORMEN	LEHRMETHODEN
Vorlesung, Übung	Lehrvortrag, Diskussion, Fallstudien

EINGESETZTE PRÜFUNGSFORMEN

PRÜFUNGSLEISTUNG	PRÜFUNGSUMFANG (IN MINUTEN)	BENOTUNG
Klausur	Siehe Pruefungsordnung	ja
Klausur	Siehe Pruefungsordnung	ja

WORKLOAD UND ECTS-LEISTUNGSPUNKTE

WORKLOAD INSGESAMT (IN H)	DAVON PRÄSENZZEIT (IN H)	DAVON SELBSTSTUDIUM (IN H)	ECTS-LEISTUNGSPUNKTE
150	60	90	5

QUALIFIKATIONSZIELE UND KOMPETENZEN

FACHKOMPETENZ

Prozessmanagement II

Herausforderungen und Lösungen beim Management von unternehmensübergreifenden Prozesse verstehen; die verschiedenen SCOR-Prozesse (insb. Source, Make, Deliver) kennen.

Projektmanagement II

Die Studierenden haben mit dem Abschluss des Moduls die Kompetenz erworben, eine gegebene Aufgabenstellung aus dem unternehmerischen Alltag mit den Methoden und Werkzeugen des Projektmanagement vollständig zu bearbeiten, d.h.

- eine gegebene Aufgabenstellung zu verstehen und die Ziele des Auftraggebers zu erkennen
- bei Analyse und Strukturierung der Aufgabenstellung geeignete Methoden des Projektmanagement auszuwählen und anzuwenden.

METHODENKOMPETENZ

Prozessmanagement II

Die Studierenden können reale Sachverhalte mit den vielfältigen Zusammenhängen von Technik, Organisation und Personal sachgerecht erfassen und einordnen.

Projektmanagement I

Die Studierenden kennen die Grundlagen des Projektmanagements und die damit verbundenen Methoden. Sie können die Stärken und Schwächen der Methoden abschätzen und kennen deren Relevanz dieser Methoden in ihrem Berufsfeld.

PERSONALE UND SOZIALE KOMPETENZ

Die Studierenden haben mit Abschluss des Moduls die Kompetenz erworben, gruppendynamische Effekte im Projektteam zu erkennen und angemessen darauf zu reagieren.

ÜBERGREIFENDE HANDLUNGSKOMPETENZ

Prozessmanagement II

Die Studierenden können komplexe Zusammenhänge analysieren und relevante Informationen extrahieren. Der Studierende ist mit der Sprache des Fachgebietes vertraut, versteht aber auch die Notwendigkeit in der Kommunikation für eindeutige Definitionen, der hinter den Begrifflichkeiten verborgenen Fachinhalte zu sorgen.

Projektmanagement II

Die Studierenden haben mit Abschluss des Moduls die Kompetenzen erworben,

- selbständig Problemlösungen zu entwickeln und diese systematisch umzusetzen;
- die eigene Vorgehensweise im Projektteam kritisch zu reflektieren, zu bewerten und Optimierungspotenziale zu nutzen.

Stand vom 01.10.2025 T3TR13815 // Seite 76

LERNEINHEITEN UND INHALTE

LEHR- UND LERNEINHEITEN	PRÄSENZZEIT	SELBSTSTUDIUM
Prozessmanagement 2	30	45

- Prozessreferenzmodelle (SCOR)
- SCM-Simulation
- Prozess Source (Beschaffungsstrategie; Situations- und Bedarfsanalyse, Lieferantenanalyse und -auswahl); Global Sourcing
- Prozess Make
- Prozess Deliver
- Prozessmanagement in der Praxis

Projektmanagement 2 30 45

- Fabrik: Systembetrachtung, Standort, Areal, Gebäude, Raum, Arbeitsplatz
- Planung: Planen, Systems Engineering, Projektmanagement, Teamarbeit, Stakeholder Management, Strategie
- Fabrikplanungs-Projekt: Vorstudie / Zielplanung, Hauptstudie / Konzeptplanung, Detailstudie / Ausführungsplanung
- Fachthemen Fabrikplanung: Betrieb / Organisation, Technik, Gebäude / Bauwesen

BESONDERHEITEN

Gewichtung der Prüfungsleistungen für die Modulendnote T3TRI3815.1 Prozessmanagement II (50%) T3TRI3815.2 Projektmanagement II (50%)

VORAUSSETZUNGEN

T3TRI1060 Kommunikation II T3TRI9305 Management III

LITERATUR

- P. Schönsleben: Integrales Logistikmanagement, Springer Verlag

Stand vom 01.10.2025 T3TRI3815 // Seite 77

Management V (T3TRI3820)

Management V

FORMALE	ANGABEN	ZUM	MODUL
---------	---------	-----	-------

MODULNUMMER	VERORTUNG IM STUDIENVERLAUF	MODULDAUER (SEMESTER)	MODULVERANTWORTUNG	SPRACHE
T3TRI3820	3. Studienjahr	1	Prof. Dr. Guy Wennmacher	Deutsch/Englisch

EINGESETZTE LEHRFORMEN

LETITORINIEN	LEUKINIETUODEN
Vorlesung, Übung	Lehrvortrag, Diskussion, Fallstudien, Lehrvortrag, Diskussion, Gruppenarbeit

EINGESETZTE PRÜFUNGSFORMEN

PRÜFUNGSLEISTUNG	PRÜFUNGSUMFANG (IN MINUTEN)	BENOTUNG
Klausur	120	ja
Klausur	120	ja

WORKLOAD UND ECTS-LEISTUNGSPUNKTE

WORKLOAD INSGESAMT (IN H)	DAVON PRÄSENZZEIT (IN H)	DAVON SELBSTSTUDIUM (IN H)	ECTS-LEISTUNGSPUNKTE
150	60	90	5

Stand vom 01.10.2025 T3TRI3820 // Seite 78

QUALIFIKATIONSZIELE UND KOMPETENZEN

FACHKOMPETENZ

Unternehmensführung und Controlling

Die Studierenden erkennen die einzelnen Bereiche der betrieblichen Leistungserstellung und ihre Zusammenhänge aus der Sicht des Controlling. Sie können die verschiedenen Instrumente des Controllings zur Planung sowie zielorientierter Regelung der betrieblichen Leistungsbereiche und –prozesse anwenden. Die Studierenden können Controllingprozesse im Unternehmen zielorientiert, wirksam und nachhaltig gestalten.

Die Studierenden verstehen die Wertorientierung als unternehmerische Oberzielsetzung und sind in der Lage aus dieser Oberzielsetzung konkrete Unterziele abzuleiten und damit die Wertorientierung im Unternehmen zu implementieren.

Qualitätsmanagement

Die Studierenden sind in der Lage fundiertes Basiswissen des prozessorientierten Qualitätsmanagement im praktischen Kontext des Unternehmens anzuwenden. Sie können Unternehmensprozesse hinsichtlich der Forderungen des normativen Qualitätsmanagements (insbesondere ISO 9000 ff) und dem Einsatz geeigneter Qualitätsmethoden analysieren und verbessern.

METHODENKOMPETENZ

Unternehmensführung und Controlling

Dieses Modul stärkt die Studenten im Umgang mit betrieblicher Komplexität und konfligiernden Zielen. Studenten erfahren die Notwendigkeit, Leistungsfähigkeit und Grenzen der betriebwirtschaftlichen Planung und Kontrolle und können die Instrumente und Methoden der Unternehmensführung/des Controlling in der Praxis anwenden

Qualitätsmanagement

Die Studierenden haben die Fähigkeit erworben, das Potential und die Anwendbarkeit von Prozesskonzepten und Qualitätsmethoden in konkreten betrieblichen Aufgabenstellung zu beurteilen, eine geeignete Methodenauswahl zu treffen und diese auf konkrete Unternehmenssituationen anzuwenden.

PERSONALE UND SOZIALE KOMPETENZ

Unternehmensführung und Controlling

Die Studierenden verstehen die primäre Verpflichtung des Controlling als Unterstützung der Unternehmensführung. Die Studenten erkennen die Schnittstellenfunktion des Controllings und die daraus resultierende Kommunikations- und Kooperationsverantwortung aber auch die mit der Stellung des Controlling als Stabsstelle verbundenen Friktionen. Die Studenten verstehen, wie Zielkonflikte im Unternehmen mit Hilfe von Controllinginstrumenten versachlicht, operationalisiert und gelöst werden können.

ÜBERGREIFENDE HANDLUNGSKOMPETENZ

Unternehmensführung und Controlling

Dieses Modul stärkt die Handlungsfähigkeit in anspruchsvollen, unbestimmten und konfliktären Situationen. Das vernetzte, systemische oder "ganzheitliche" Denken, Handeln und Kommunizieren der Studierenden wird gestärkt. Dies dient insbesondere der Handlungsfähigkeit in "echten" Führungssituationen.

Qualitätsmanagement

Die Studierenden können Qualitätsmanagement als interdisziplinäre Managementdisziplin zwischen Technik, Betriebswirtschaft und Organisation einordnen und im Unternehmen vertreten

LERNEINHEITEN UND INHALTE

EERHEIMTEN CHO INIVEEE			
LEHR- UND LERNEINHEITEN	PRÄSENZZEIT	SELBSTSTUDIUM	
Unternehmensführung und Controlling	30	45	

- Wertorientierte Unternehmensführung
- Mehrperiodenmodell (shareholder value)
- Einperiodenmodell (Das EVA Konzept)
- EVA Konzept als Kontroll-, Planungs-, Steuerungs- und als Entlohnungsinstrument
- Einführung in das Controlling
- Controllingfunktionen
- Controllingbereiche
- Controllingebenen
- Controllinginstrumente (Budgetierung, Kennzahlen, balanced scorecard,

Prozesskostenrechnung)

Qualitätsmanagement 30 45

- Qualitätsmanagement als Unternehmensziel und Führungsaufgabe
- Systematisierungsgrundlagen des Qualitätsmanagements
- Managementverantwortung für das Qualitätsmanagement
- Methoden und Werkzeuge des Qualitätsmanagements
- Fehlermöglichkeits- und Einfluss-Analyse (FMEA)
- Qualitätsmanagement in der Entwicklung, Produktion, Einkauf, Kundendienst
- $Statistische \ Prozesskontrolle: \ Qualit\"{a}tsregelkarten, \ Prozessf\"{a}higkeit, \ Maschinenf\"{a}higkeit$
- Stichprobenprüfung / Stichprobensysteme: Grundlagen, Planung und Durchführung von Stichprobenprüfungen
- Auditierung und Zertifizierung von Qualitätsmanagementsystemen

Stand vom 01.10.2025 T3TR13820 // Seite 79

BESONDERHEITEN

Gewichtung der Teilnoten:

T3TRI3820.1 Unternehmensführung und Controlling (50%)

T3TRI3820.2 Qualitätsmanagement (50%)

VORAUSSETZUNGEN

T3TRI3810 Management II T3TRI3815 Management IV

LITERATUR

- A. Coenenberg et al.: Jahresabschluss und Jahresabschlussanalyse, Schäffer Poeschel
- P. Horváth: Controlling, Vahlen Verlag
- K. Küting et al.: Die Bilanzanalyse, Schäffer Poeschel
- C. Schulte: Personalcontrolling mit Kennzahlen, Vahlen Verlag
- G. Wöhe: Einführung in die Allgemeine Betriebswirtschaftslehre, Vahlen Verlag J.P. Thommen: Managementorientierte Betriebswirtschaftslehre, Versus
- J.P. Thommen: Introduction à la gestion d'entreprise, Versus
- W. Masing: Handbuch Qualitätsmanagement, Hanser Verlag
- T. Pfeifer: Qualitätsmanagement Strategien Methoden Techniken, Hanser Verlag
- G.F. Kamiske et al.: Qualitätsmanagement von A Z, Hanser Verlag
- G. Linß, Qualitätsmanagement für Ingenieure, Fachbuchverlag Leipzig

Stand vom 01.10.2025 T3TRI3820 // Seite 80

Praxisprojekt I (T3TRI1035)

Internship I

FORMALE ANGABEN ZUM MODUL

MODULNUMMERVERORTUNG IM STUDIENVERLAUFMODULDAUER (SEMESTER)MODULVERANTWORTUNGSPRACHET3TR|10351. Studienjahr1Dr. Raymond StoffelDeutsch/Französisch

EINGESETZTE LEHRFORMEN

LEHRFORMEN LEHRMETHODEN

Praktikum, Seminar Lehrvortrag, Diskussion, Projekt

EINGESETZTE PRÜFUNGSFORMEN

PRÖFUNGSLEISTUNGPRÖFUNGSUMFANG (IN MINUTEN)BENOTUNGProjektarbeitSiehe PruefungsordnungBestanden/ Nicht-BestandenAblauf- und ReflexionsberichtSiehe PruefungsordnungBestanden/ Nicht-Bestanden

WORKLOAD UND ECTS-LEISTUNGSPUNKTE

WORKLOAD INSGESAMT (IN H)DAVON PRÄSENZZEIT (IN H)DAVON SELBSTSTUDIUM (IN H)ECTS-LEISTUNGSPUNKTE15015005

QUALIFIKATIONSZIELE UND KOMPETENZEN

FACHKOMPETENZ

Erste Erfahrungen über Abläufe im Unternehmen. Der Studierende zeigt erstmals in einer schriftlichen Ausarbeitung, dass er fachliche Probleme beschreiben und verstehen kann. Der Studierende gewinnt Einblicke in die wissenschaftlichen Grundlagen seines Fachgebietes.

METHODENKOMPETENZ

Der Studierende hat gezeigt, dass er eine Problemstellung erkennen und dessen Lösung nachvollziehen kann. Als Mitglied einer Arbeitsgruppe kann er innerhalb einer Gruppe / eines Teams arbeiten und am Informations- und Ideenaustausch teilnehmen.

PERSONALE UND SOZIALE KOMPETENZ

Erkennen der eigenen Persönlichkeit und Fähigkeit im interkulturellen Arbeitsumfeld.

ÜBERGREIFENDE HANDLUNGSKOMPETENZ

Als Mitglied einer Arbeitsgruppe kann er innerhalb einer Gruppe / eines Teams arbeiten und am Informations- und Ideenaustausch teilnehmen.

LERNEINHEITEN UND INHALTE

LEHR- UND LERNEINHEITEN Praxis 1 / stage 1	PRÄSENZZEIT 150	SELBSTSTUDIUM 0
Praxisphase im Unternehmen (Dauer 8 Wochen)		
Wissenschaftliches Arbeiten 1	0	0

BESONDERHEITEN

Es wird auf den Ausbildungsplan des trinationalen Studiengangs verwiesen. Für die Details zum Abfassen des Berichts für Praxisphase I / Stage I gibt es Richtlinien. Darin sind der Ablauf und die Organisation der Stage I detailliert beschrieben.

Stand vom 01.10.2025 T3TR11035 // Seite 81

VORAUSSETZUNGEN

LITERATUR

Stand vom 01.10.2025 T3TRI1035 // Seite 82

Praxisprojekt II (T3TRI2045)

Internship II

FORMALE ANGABEN ZUM MODUL

MODULNUMMER	VERORTUNG IM STUDIENVERLAUF	MODULDAUER (SEMESTER)	MODULVERANTWORTUNG	SPRACHE
T3TRI2045	2. Studieniahr	1	Dr. Raymond Stoffel	Deutsch/Französisch

EINGESETZTE LEHRFORMEN

LEHRFORMEN	LEHRMETHODEN
Praktikum, Vorlesung, Übung	Lehrvortrag, Diskussion, Gruppenarbeit, Projekt

EINGESETZTE PRÜFUNGSFORMEN

PRÜFUNGSLEISTUNG	PRÜFUNGSUMFANG (IN MINUTEN)	BENOTUNG
Projektarbeit	Siehe Pruefungsordnung	ja
Ablauf- und Reflexionsbericht	Siehe Pruefungsordnung	Bestanden/ Nicht-Bestanden

WORKLOAD UND ECTS-LEISTUNGSPUNKTE

WORKLOAD INSGESAMT (IN H)	DAVON PRÄSENZZEIT (IN H)	DAVON SELBSTSTUDIUM (IN H)	ECTS-LEISTUNGSPUNKTE
300	300	0	10

QUALIFIKATIONSZIELE UND KOMPETENZEN

FACHKOMPETENZ

Der Studierende zeigt in einer Arbeit, dass er für fachliche Probleme durch Anwendung wissenschaftlicher Methoden unter Anleitung Lösungen erarbeiten oder weiterentwickeln kann. Der Studierende versteht die wissenschaftlichen Grundlagen seines Fachgebietes und kann fachliche Diskussionen verstehen.

METHODENKOMPETENZ

Der Studierende kann mit geringer Anleitung nach vorgegebenen Prinzipien Problemstellungen analysieren und alternative Problemlösungen bewerten. Der Studierende kann Lernprozesse weiterführen und sich selbstständig aktuelles Wissen aneignen und nach vorgegebenen Klassifikationen einordnen bzw. zweckmäßig umformulieren. Der Studierende kann Problemsituationen analysieren und angemessene Methoden zur Problemlösung wählen.

PERSONALE UND SOZIALE KOMPETENZ

Als Mitglied einer Arbeitsgruppe kann er wirksam innerhalb einer Gruppe / eines Teams arbeiten und am Informations- und Ideenaustausch aktiv und flexibel teilnehmen.

ÜBERGREIFENDE HANDLUNGSKOMPETENZ

Der Studierende lernt die Arbeitsweise eines Ingenieurs kennen und dabei fachliche mit wirtschaftlichen Zielen zu verbinden. Der Studierende hat gezeigt, dass er ein Problem und seine Lösungsansätze darstellen kann.

Der Studierende kann die eigenen Leistungsschwächen und -stärken beurteilen und eigene Kriterien und Meinungen entwickeln.

LERNEINHEITEN UND INHALTE

LEHR- UND LERNEINHEITEN	PRÄSENZZEIT	SELBSTSTUDIUM
Praxis 2 / stage 2	300	0
2. bewertete Praxisphase im Unternehmen (13 Wochen)		
Wissenschaftliches Arbeiten 2	0	0
Missensenaturies Auberten Z	•	<u> </u>

BESONDERHEITEN

Stand vom 01.10.2025 T3TRI2045 // Seite 83

VORAUSSETZUNGEN

LITERATUR

Stand vom 01.10.2025 T3TRI2045 // Seite 84

Praxis III - Vorstudie zur Bachelorarbeit (T3TRI4000)

Internship III - Preliminary Studies to Bachelor Thesis

EU BM	AIE.	Λ NIC. Λ	REN	7111//	MODIII

MODULNUMMERVERORTUNG IM STUDIENVERLAUFMODULDAUER (SEMESTER)MODULVERANTWORTUNGSPRACHET3TRI40007. Semester1Prof. Dr. Stefan HessDeutsch/Französisch

EINGESETZTE LEHRFORMEN

LEHRFORMEN LEHRMETHODEN

Praktikum, Vorlesung Lehrvortrag, Diskussion, Gruppenarbeit, Projekt

EINGESETZTE PRÜFUNGSFORMEN

PRÜFUNGSLEISTUNG PRÜFUNGSUMFANG (IN MINUTEN) BENOTUNG

Projektarbeit Siehe Pruefungsordnung ja

Ablauf- und Reflexionsbericht Siehe Pruefungsordnung Bestanden/ Nicht-Bestanden

WORKLOAD UND ECTS-LEISTUNGSPUNKTE

WORKLOAD INSGESAMT (IN H)DAVON PRÄSENZZEIT (IN H)DAVON SELBSTSTUDIUM (IN H)ECTS-LEISTUNGSPUNKTE450450015

Stand vom 01.10.2025 T3TRI4000 // Seite 85

QUALIFIKATIONSZIELE UND KOMPETENZEN

FACHKOMPETENZ

Der Studierende zeigt mit dem Bericht, der Präsentation und der mündlichen Prüfung (Kolloquium), dass er selbstständig fachliche Problemstellungen seines Studiengangs analysieren und dafür fachgerechte Lösungen erarbeiten oder weiterentwickeln kann.

Die Studierenden sind in der Lage, komplexe Problemstellungen

aus der Praxis so zu analysieren und aufzuarbeiten, dass sie zu diesen entsprechende Aufstellungen und Berechnungen erstellen können. Sie gewinnen die für die Lösung relevanten Informationen, führen die

Lösungsfindung selbständig durch und geben kritische Hinweise zur Belastbarkeit ihrer Ergebnisse.

METHODENKOMPETENZ

Die Studierenden sind mit Abschluss des Moduls in der Lage, für komplexe Praxisanwendungen eine angemessene Methode auszuwählen und anzuwenden. So können die Möglichkeiten, Praktikabilität und Grenzen der eingesetzten Methode einschätzen

und sind in der Lage, Handlungsalternativen aufzuzeigen.

Der Studierende kann alternative Problemlösungen bewerten und auswählen. Der Studierende kann Lernprozesse selbstständig durchführen und sich so selbstständig aktuelles Wissen aneignen.

Der Studierende kann in eine Fachdisputation eintreten und Standpunkte fachlich vertreten und verantworten.

PERSONALE UND SOZIALE KOMPETENZ

Als Projektbearbeiter können die Studierendeneinen komplexen Zusammenhang darlegen und am Informations- und Ideenaustausch mit Fachleuten aktiv und kompetent teilnehmen.

Für die von ihnen übernommenen Aufgaben stellen die Studierenden klare Zuständigkeiten her und übernehmen die Verantwortung für die bei Ihnen liegenden Projekte und Aufgaben, mit denen sie sich auch persönlich identifizieren. Sie zeigen hohe Zuverlässigkeit, Fleiß und Pflichtgefühl und machen verbindliche Zusagen.

ÜBERGREIFENDE HANDLUNGSKOMPETENZ

Die Studierenden zeichnen sich aus durch fundiertes fachliches Wissen, Verständnis für übergreifende Zusammenhänge sowie die Fähigkeit, theoretisches Wissen in die Praxis zu übertragen.

In für den Studierenden unbekannten Aufgabengebieten kann der Studierende verschiedene Methoden und Techniken anwenden.

Der Studierende hat gezeigt, dass er ein Problem und seine Lösungsansätze darstellen kann.

LERNEINHEITEN UND INHALTE

LEHR- UND LERNEINHEITEN Praxis 3 / stage 3	PRÄSENZZEIT 450	SELBSTSTUDIUM 0
3. benotete Praxisphase im Unternehmen (12 Wochen) Vorstudie zur Bachelor Thesis		
Wissenschaftliches Arbeiten 3	0	0

BESONDERHEITEN

Für die Details zum Abfassen des Berichts für Praxisphase III / Stage III gibt es Richtlinien zusammen mit der Bachelorarbeit. Darin sind der Ablauf und die Organisation der Stage III detailliert beschrieben.

VORAUSSETZUNGEN

LITERATUR

Stand vom 01.10.2025 T3TRI4000 // Seite 86

Semesterarbeit (Thema D und F) (T3TRI3020)

Semester Project

FORMALE ANGABEN ZUM MODUL

MODULNUMMERVERORTUNG IM STUDIENVERLAUFMODULDAUER (SEMESTER)MODULVERANTWORTUNGSPRACHET3TRI30203. Studienjahr1Prof. Dr. Stefan HessDeutsch/Französisch

EINGESETZTE LEHRFORMEN

LEHRFORMENLEHRMETHODENPraktikumGruppenarbeit

EINGESETZTE PRÜFUNGSFORMEN

PRÜFUNGSLEISTUNGPRÜFUNGSUMFANG (IN MINUTEN)BENOTUNGProjektarbeitSiehe Pruefungsordnungja

WORKLOAD UND ECTS-LEISTUNGSPUNKTE

WORKLOAD INSGESAMT (IN H)DAVON PRÄSENZZEIT (IN H)DAVON SELBSTSTUDIUM (IN H)ECTS-LEISTUNGSPUNKTE150151355

QUALIFIKATIONSZIELE UND KOMPETENZEN

FACHKOMPETENZ

Der Studierende kann sich unter Anleitung in ein Fachgebiet vertiefend einarbeiten und den allgemeinen Stand des Wissens erwerben. Der Studierende hat fachliche Lösungsalternativen erarbeitet und bewertet.

METHODENKOMPETEN7

PERSONALE UND SOZIALE KOMPETENZ

Eine Semesterarbeit wird immer als Gruppenarbeit vergeben. Dazu sollten möglichst alle drei Nationalitäten – mindestens jedoch zwei – vertreten sein.

ÜBERGREIFENDE HANDLUNGSKOMPETENZ

Der Studierende kann die Ergebnisse seiner Tätigkeit in Form einer wissenschaftlichen Arbeit darstellen und kritisch reflektieren.

Die Studierenden lernen in internationalen Teams mit den Methoden des Projektmanagements eine gestellte Aufgabe zu lösen und das definierte Ziel zu ereichen.

LERNEINHEITEN UND INHALTE

LEHR- UND LERNEINHEITENPRÄSENZZEITSELBSTSTUDIUMSemesterarbeit15135

BESONDERHEITEN

Durch das breite Spektrum der Module des trinationalen Studiengangs sind Themen aus dem technischen als auch nicht-technischen Bereich möglich.

VORAUSSETZUNGEN

-

LITERATUR

_

Stand vom 01.10.2025 T3TRI3020 // Seite 87

Bachelor Thesis (T3TRI4005)

Bachelor Thesis

FORMALE ANGABEN ZUM MODUL

 MODULNUMMER
 VERORTUNG IM STUDIENVERLAUF
 MODULDAUER (SEMESTER)
 MODULVERANTWORTUNG
 SPRACHE

 T3TRI4005
 7. Semester
 1

EINGESETZTE LEHRFORMEN

LEHRFORMENLEHRMETHODENIndividualbetreuung, PraktikumProjekt

EINGESETZTE PRÜFUNGSFORMEN

PRÜFUNGSLEISTUNGPRÜFUNGSUMFANG (IN MINUTEN)BENOTUNGBachelor-ArbeitSiehe Pruefungsordnungja

WORKLOAD UND ECTS-LEISTUNGSPUNKTE

WORKLOAD INSGESAMT (IN H)DAVON PRÄSENZZEIT (IN H)DAVON SELBSTSTUDIUM (IN H)ECTS-LEISTUNGSPUNKTE4503042015

QUALIFIKATIONSZIELE UND KOMPETENZEN

FACHKOMPETENZ

Mit der obligatorischen Abschlussarbeit (Bachelorarbeit) wird die Fähigkeit nachgewiesen, innerhalb einer vorgegebenen Frist ein Problem aus dem jeweiligen Fachgebiet selbständig nach wissenschaftlichen Methoden zu bearbeiten. Der Studierende zeigt in einer selbstständigen Arbeit, dass er komplexe fachliche Probleme in seinem Beruf durch Anwendung wissenschaftlicher Methoden Lösungen erarbeiten oder weiterentwickeln kann. Der Studierende versteht die wissenschaftlichen Grundlagen seines Fachgebietes und hat nachgewiesen, dass er sie vertiefen und kritisch anwenden kann. Der Studierende kann den aktuellen Forschungsstand in seinem Lerngebiet einschließen.

METHODENKOMPETENZ

Der Studierende wendet ingenieurmäßige Arbeitstechniken und Arbeitswerkzeuge unter industriellen und wirtschaftlichen Gesichtspunkten an. Die Studierenden sind mit Abschluss des Moduls in der Lage, Projekte durch durchdachte Konzepte, fundierte Planung und gutes Projektmanagement auch bei sich häufig ändernden Anforderungen erfolgreich umzusetzen. Dabei bauen sie auf ihr theoretisches Wissen sowie ihrer Berufserfahrung auf.

PERSONALE UND SOZIALE KOMPETENZ

Die Absolventen trauen sich, auch ungewöhnliche Vorschläge zur Diskussion zu stellen, aus denen Impulse für Weiterentwicklungen erwachsen können. Sie unterstützen Neuerungen und Innovationen, wo ihnen dies sinnvoll erscheint und sind motiviert, mit ihren Handlungen sichtbare Erfolge zu erzielen.

ÜBERGREIFENDE HANDLUNGSKOMPETENZ

Der Studierende hat gezeigt, dass er in einer umfangreicheren Arbeit das Problem und seinen Lösungsansatz darstellen kann.

Die Studierenden haben gelernt, sich schnell in neuen Situationen zurechtzufinden und sich in neue Aufgaben, Teams und Kulturen zu integrieren.

Die Studierenden lösen Probleme im beruflichen Umfeld methodensicher und zielgerichtet und handeln dabei teamorientiert.

LERNEINHEITEN UND INHALTE

LEHR- UND LERNEINHEITEN	PRÄSENZZEIT	SELBSTSTUDIUM
Bachelorarbeit	15	345
-		
Kolloquium	15	75

Stand vom 01.10.2025 T3TRI4005 // Seite 88

BESONDERHEITEN

Die Bachelorarbeit kann von aus dem Bereich Betriebswirtschaft, Ingenieurwesen sowie den weiteren im Studienplan abgedeckten Modulinhalten sein oder aus einer beliebigen Kombination dieser Möglichkeiten bestehen.

Gewichtung der Prüfungsleistungen für die Modulendnote Schriftliche Ausarbeitung (66%) Mündliche Prüfung (33%)

VORAUSSETZUNGEN

LITERATUR

Stand vom 01.10.2025 T3TRI4005 // Seite 89