

Dieses Modulhandbuch gilt für Studierende die im Zeitraum vom 01.10.2017 – 30.09.2024 immatrikuliert wurden.

# Modulhandbuch

# Studienbereich Technik

School of Engineering

### **Studiengang**

Maschinenbau

Mechanical Engineering

## Studienrichtung

Produktionstechnik

Production Engineering

### Studienakademie

HORB



### Curriculum (Pflicht und Wahlmodule)

Aufgrund der Vielzahl unterschiedlicher Zusammenstellungen von Modulen können die spezifischen Angebote hier nicht im Detail abgebildet werden. Nicht jedes Modul ist beliebig kombinierbar und wird möglicherweise auch nicht in jedem Studienjahr angeboten. Die Summe der ECTS aller Module inklusive der Bachelorarbeit umfasst 210 Credits.

Die genauen Prüfungsleistungen und deren Anteil an der Gesamtnote (sofern die Prüfungsleistung im Modulhandbuch nicht eindeutig definiert ist oder aus mehreren Teilen besteht), die Dauer der Prüfung(en), eventuelle Einreichungsfristen und die Sprache der Prüfung(en) werden zu Beginn der jeweiligen Theoriephase bekannt gegeben.

|          | FESTGELEGTER MODULBEREICH                    |                |      |
|----------|----------------------------------------------|----------------|------|
| NUMMER   | MODULBEZEICHNUNG                             | VERORTUNG      | ECTS |
| T3MB1001 | Konstruktion                                 | 1. Studienjahr | 5    |
| T3MB1002 | Fertigungstechnik                            | 1. Studienjahr | 5    |
| T3MB1003 | Werkstoffe                                   | 1. Studienjahr | 5    |
| T3MB1004 | Technische Mechanik + Festigkeitslehre       | 1. Studienjahr | 5    |
| T3MB1005 | Mathematik                                   | 1. Studienjahr | 5    |
| T3MB1006 | Informatik                                   | 1. Studienjahr | 5    |
| T3MB1007 | Elektrotechnik                               | 1. Studienjahr | 5    |
| T3MB1008 | Konstruktion II                              | 1. Studienjahr | 5    |
| T3MB1009 | Technische Mechanik + Festigkeitslehre II    | 1. Studienjahr | 5    |
| T3MB1010 | Mathematik II                                | 1. Studienjahr | 5    |
| T3MB2001 | Technische Mechanik + Festigkeitslehre III   | 2. Studienjahr | 5    |
| T3MB2002 | Thermodynamik                                | 2. Studienjahr | 5    |
| T3MB2003 | Mathematik III                               | 2. Studienjahr | 5    |
| T3_1000  | Praxisprojekt I                              | 1. Studienjahr | 20   |
| T3_2000  | Praxisprojekt II                             | 2. Studienjahr | 20   |
| T3_3101  | Studienarbeit                                | 3. Studienjahr | 10   |
| T3_3100  | Studienarbeit                                | 3. Studienjahr | 5    |
| T3_3200  | Studienarbeit II                             | 3. Studienjahr | 5    |
| T3_3000  | Praxisprojekt III                            | 3. Studienjahr | 8    |
| T3MB2101 | Konstruktion III                             | 2. Studienjahr | 5    |
| T3MB2201 | Fertigungstechnik II                         | 2. Studienjahr | 5    |
| T3MB2103 | Antriebstechnik                              | 2. Studienjahr | 5    |
| T3MB3103 | Regelungstechnik                             | 3. Studienjahr | 5    |
| T3MB3104 | Qualitätsmanagement                          | 3. Studienjahr | 5    |
| T3MB3201 | Handhabungstechnik und Automation            | 3. Studienjahr | 5    |
| T3MB3202 | Produktionsplanung                           | 3. Studienjahr | 5    |
| T3MB9004 | Projektgruppenarbeit                         | 3. Studienjahr | 5    |
| T3MB9065 | Produktionsmaschinen                         | 3. Studienjahr | 5    |
| T3MB9038 | Messtechnik & Statistik                      | 3. Studienjahr | 5    |
| T3MB9074 | Messtechnik                                  | 2. Studienjahr | 5    |
| T3MB9078 | Produktionssysteme und Produktionsmanagement | 3. Studienjahr | 5    |
|          |                                              |                |      |

Stand vom 01.10.2025 Curriculum // Seite 2

|          | FESTGELEGTER MODULBEREICH |                |      |
|----------|---------------------------|----------------|------|
| NUMMER   | MODULBEZEICHNUNG          | VERORTUNG      | ECTS |
| T3MB9141 | Managementsysteme         | 2. Studienjahr | 5    |
| T3_Z9999 | Sozialkompetenzen         | -              | 5    |
| T3_3300  | Bachelorarbeit            | 3. Studienjahr | 12   |

Stand vom 01.10.2025 Curriculum // Seite 3

|          | VARIABLER MODULBEREICH                                      |                |      |
|----------|-------------------------------------------------------------|----------------|------|
| NUMMER   | MODULBEZEICHNUNG                                            | VERORTUNG      | ECTS |
| T3MB3101 | Konstruktions- und Entwicklungstechnik                      | 2. Studienjahr | 5    |
|          |                                                             |                |      |
| T3MB9001 | Physik                                                      | 2. Studienjahr | 5    |
| T3MB9002 | Verfahrenstechnik                                           | 2. Studienjahr | 5    |
| T3MB9013 | Mechatronische Systeme                                      | 3. Studienjahr | 5    |
| T3MB9037 | Robotik                                                     | 3. Studienjahr | 5    |
| T3MB9064 | Steuerungstechnik                                           | 3. Studienjahr | 5    |
|          |                                                             |                |      |
| T3MB9068 | Vertiefung Produktionstechnik mit Produktionskostenrechnung | 3. Studienjahr | 5    |
| T3MB9077 | Erweiterte Methoden in Entwicklung und Produktion           | 3. Studienjahr | 5    |
| T3MB9081 | Digitale Fabrik                                             | 3. Studienjahr | 5    |
| T3MB9082 | Produktionsorientierte Konstruktion                         | 3. Studienjahr | 5    |
| T3MB9122 | Virtual Reality                                             | 3. Studienjahr | 5    |
|          |                                                             |                |      |
| T3MB9123 | Simulation Fertigungssysteme                                | 3. Studienjahr | 5    |
| T3MB9151 | Digitale Automatisierungstechnik                            | 3. Studienjahr | 5    |
| T3MB9166 | Digitalisierungsstrategien                                  | 3. Studienjahr | 5    |
|          |                                                             |                |      |

Stand vom 01.10.2025 Curriculum // Seite 4



### Konstruktion (T3MB1001)

### **Engineering Design**

#### FORMALE ANGABEN ZUM MODUL

MODULNUMMERVERORTUNG IM STUDIENVERLAUFMODULDAUER (SEMESTER)MODULVERANTWORTUNGSPRACHET3MB10011. Studienjahr1Prof. Dr.-Ing. Michael SternbergDeutsch

#### **EINGESETZTE LEHRFORMEN**

LEHRMETHODEN LEHRMETHODEN

Vorlesung, Übung, Labor Lehrvortrag, Diskussion, Fallstudien

#### **EINGESETZTE PRÜFUNGSFORMEN**

PRÜFUNGSLEISTUNGPRÜFUNGSUMFANG (IN MINUTEN)BENOTUNGKonstruktionsentwurf oder Kombinierte Prüfung (Klausur < 50 %)</td>120ja

#### WORKLOAD UND ECTS-LEISTUNGSPUNKTE

WORKLOAD INSGESAMT (IN H)DAVON PRÄSENZZEIT (IN H)DAVON SELBSTSTUDIUM (IN H)ECTS-LEISTUNGSPUNKTE15060905

#### QUALIFIKATIONSZIELE UND KOMPETENZEN

#### FACHKOMPETENZ

Die Studierenden haben mit Abschluss des Moduls die Kompetenz erworben, nach vorgegebener Aufgabenstellung Technische Zeichnungen für einfache Konstruktionen zu erstellen und zu interpretieren. Sie können die Auswirkungen der Konstruktion auf den Produktionsprozess beschreiben.

#### METHODENKOMPETENZ

Probleme, die sich im beruflichen Umfeld im Themengebiet "Technisches Zeichnen" ergeben, werden identifiziert und mit den vorgestellten Methoden gelöst. Sie sind in der Lage, unter Einsatz dieser Methoden relevante Informationen zu sammeln und zu interpretieren.

#### PERSONALE UND SOZIALE KOMPETENZ

Die Studierenden haben mit Abschluss des Moduls erste Kompetenzen erworben, bei Entscheidungen im Berufsalltag auch gesellschaftliche und ethische Erkenntnisse zu berücksichtigen

#### ÜBERGREIFENDE HANDLUNGSKOMPETENZ

Die Studierenden haben mit Abschluss des Moduls ein solides Grundverständnis zu den Themen "Technische Zeichnungen lesen & verstehen" und "Normgerechtes Erstellen von Technischen Zeichnungen" erworben und sind in der Lage einfache Konstruktionen zu erstellen. Sie können fehlende Informationen aus vorgegebenen Quellen beschaffen und sind in der Lage ihr Vorgehen in einem Fachgespräch zu erläutern.

### LERNEINHEITEN UND INHALTE

| LEHR- UND LERNEINHEITEN | PRÄSENZZEIT | SELBSTSTUDIUM |
|-------------------------|-------------|---------------|
| Konstruktion            | 60          | 90            |

#### Konstruktionslehre 1:

- Technisches Zeichnen, Ebenes und räumliches Skizzieren.
- Maß-, Form- u. Lage-Toleranzen und Passungen.
- Grundlagen der Gestaltungslehre (beanspruchungs-/ fertigungsgerecht).

#### Konstruktionsentwurf 1:

- Erstellen, Lesen und Verstehen von technischen Zeichnungen: Darstellung, Bemaßung,

Tolerierung, Kantenzustände, technische Oberflächen, Wärmebehandlung.

#### BESONDERHEITEN

Die Prüfungsdauer bezieht sich auf die Klausur.

Stand vom 01.10.2025 T3MB1001 // Seite 5

VOILAUSSETZU

#### LITERATUR

#### Technisches Zeichnen

- Hoischen: Technisches Zeichnen, Cornelsen
- Böttcher/Forberg: Technisches Zeichnen; Springer.
- Labisch/Weber: Technisches Zeichnen, Springer.

Geometrische Produktspezifikation (Maß-, Form- und Lagetoleranzen sowie Passungen)

- Jorden: Form- und Lagetoleranzen, Hanser.
- Klein: Toleranzdesign im Maschinen- und Fahrzeugbau, de Gruyter.

#### Grundlagen der Gestaltungslehre

- Haberhauer/ Bodenstein: Maschinenelemente, Springer.
- Schmid: Konstruktionslehre Maschinenbau, Europa.
- Dubbel: Taschenbuch für den Maschinenbau; Springer.
- Niemann: Maschinenelemente 1, Springer.
- Roloff/ Matek; Maschinenelemente; Vieweg-Verlag
- Decker; Maschinenelemente; Hanser-Verlag
- Köhler/ Rögnitz/ Künne; Maschinenteile; Teubner-Verlag

#### Normen

- Klein: Einführung in die DIN-Normen, Springer.
- Taschenbuch Metall, Europa.

#### englischsprachige Literatur

- Madsen/Madsen: Engineering Drawing and Design, Delmar.
- Goetsch: Technical Drawing and Engineering Communication, Delmar.
- Henzold: Geometrical Dimensioning and Tolerancing for Design, Manufacturing and Inspection, Elsevier.
- Mechanical and Metal Trades Handbook, Europa.

Stand vom 01.10.2025 T3MB1001 // Seite 6



### Fertigungstechnik (T3MB1002)

### Manufacturing Engineering

#### FORMALE ANGABEN ZUM MODUL

MODULNUMMERVERORTUNG IM STUDIENVERLAUFMODULDAUER (SEMESTER)MODULVERANTWORTUNGSPRACHET3MB10021. Studienjahr2Prof. Dr. Manfred SchlatterDeutsch

EINGESETZTE LEHRFORMEN

LEHRFORMEN LEHRMETHODEN

Vorlesung, Labor Lehrvortrag, Diskussion, Fallstudien

**EINGESETZTE PRÜFUNGSFORMEN** 

PRÜFUNGSLEISTUNG PRÜFUNGSUMFANG (IN MINUTEN) BENOTUNG

Klausur 120 ja

WORKLOAD UND ECTS-LEISTUNGSPUNKTE

WORKLOAD INSGESAMT (IN H)

DAVON PRÄSENZZEIT (IN H)

DAVON SELBSTSTUDIUM (IN H)

ECTS-LEISTUNGSPUNKTE

72

78

5

#### QUALIFIKATIONSZIELE UND KOMPETENZEN

#### **FACHKOMPETENZ**

Kennen lernen der grundlegenden heutigen Fertigungsverfahren des Spanens und des Urformens, des Umformens und der Blechbearbeitung, des Fügens mit Schweißen, Löten und Kleben -Analysieren der Möglichkeiten verschiedener Verfahren in der Beziehung zu Konstruktion, Produkteigenschaft und Maschinen/Anlagen -Berechnen der Kräfte und Bearbeitungszeiten für ausgewählte Verfahren -Die technische und wirtschaftliche Eignung von Verfahren beurteilen -Bewerten und Treffen von Entscheidungen bezüglich des Produktionsprozesses -Einordnen der verschiedenen Verfahren in ein Unternehmen

#### METHODENKOMPETENZ

Die Studierenden sind mit Abschluss des Moduls in der Lage, für weitgehend standardisierte Anwendungsfälle in der Praxis die angemessene Methode auszuwählen und anzuwenden. Sie kennen die Stärken und Schwächen der Methode in ihrem beruflichen Anwendungsfeld und können diese in konkreten Handlungssituationen gegeneinander abwägen.

#### PERSONALE UND SOZIALE KOMPETENZ

-

#### ÜBERGREIFENDE HANDLUNGSKOMPETENZ

-

#### LERNEINHEITEN UND INHALTE

LEHR- UND LERNEINHEITENPRÄSENZZEITSELBSTSTUDIUMFertigungstechnik7278

Einführung in die Fertigungstechnik -Trennen (Zerspanen mit geometrisch bestimmter und unbestimmter Schneide) -Trennende Verfahren der Blechbearbeitung-Abtragen -Urformen -Umformen (Blechumformung sowie Kalt- und Warmmassivumformverfahren) -Fügen (Ausgewählte Schweißverfahren, Löten und Kleben)

#### **BESONDERHEITEN**

Laborversuche können vorgesehen werden

#### VORAUSSETZUNGEN

keine

Stand vom 01.10.2025 T3MB1002 // Seite 7

#### LITERATUR

- -Dillinger, J. et al.: Fachkunde Metall, Europa-Lehrmittel, Haan-Gruiten -Reichard, A.: Fertigungstechnik I, Verlag Handwerk und Technik, Hamburg -Degner, W. et al.: Spanende Formung, Hanser-Verlag, München -Fritz, A. et al.: Fertigungstechnik, Springer-Verlag, Berlin Heidelberg New York
- -Kugler, H.: Umformtechnik, Hanser-Verlag, München -Schal, W.: Fertigungstechnik, Verlag Handwerk und Technik, Hamburg

Stand vom 01.10.2025 T3MB1002 // Seite 8 Studienbereich Technik // School of Engineering
Maschinenbau // Mechanical Engineering
Produktionstechnik // Production Engineering



### Werkstoffe (T3MB1003)

### **Materials Technology**

#### FORMALE ANGABEN ZUM MODUL

MODULNUMMERVERORTUNG IM STUDIENVERLAUFMODULDAUER (SEMESTER)MODULVERANTWORTUNGSPRACHET3MB10031. Studienjahr2Prof. Dr.-Ing. Claus MühlhanDeutsch

#### **EINGESETZTE LEHRFORMEN**

LEHRFORMENLEHRMETHODENVorlesungLehrvortrag, Diskussion

#### EINGESETZTE PRÜFUNGSFORMEN

PRÜFUNGSLEISTUNGPRÜFUNGSUMFANG (IN MINUTEN)BENOTUNGKlausurarbeit oder Kombinierte Prüfung120ja

#### WORKLOAD UND ECTS-LEISTUNGSPUNKTE

WORKLOAD INSGESAMT (IN H)
DAVON PRÄSENZZEIT (IN H)
DAVON SELBSTSTUDIUM (IN H)
ECTS-LEISTUNGSPUNKTE
72
78
5

#### QUALIFIKATIONSZIELE UND KOMPETENZEN

#### FACHKOMPETENZ

Die Studierenden sind in der Lage, komplexe Problemstellungen aus der Praxis zu analysieren und aufzuarbeiten. Sie gewinnen die für die Lösung relevanten Informationen, führen die Werkstoffauswahl und -bewertunen selbständig durch und geben kritische Hinweise zur Belastbarkeit ihrer Ergebnisse.

#### METHODENKOMPETENZ

Die Studierenden sind mit Abschluss des Moduls dafür sensibilisiert, für die Lösung von Projektaufgaben eine systematischen und methodisch fundierten Vorgehensweise zu wählen. Sie strukturieren ihre Aufgaben den Anforderungen der eingesetzten Methode und den Anforderungen der konkreten Anwendungssituation entsprechend und führen kleinere Projekte zum Abschluss.

#### PERSONALE UND SOZIALE KOMPETENZ

----

### ÜBERGREIFENDE HANDLUNGSKOMPETENZ

-

#### LERNEINHEITEN UND INHALTE

LEHR- UND LERNEINHEITENPRÄSENZZEITSELBSTSTUDIUMWerkstoffe7278

- Aufbau der Werkstoffe
- Mechanische, physikalische und chemische Eigenschaften
- Grundlagen der Wärmebehandlung
- Die vier Werkstoffgruppen
- Werkstoffbezeichnung bzw. /-normung
- Werkstoffprüfung

#### BESONDERHEITEN

Labor Werkstoffprüfung zur vertiefenden, praxisnahen Anwendung in der Qualitätssicherung, Schadensanalyse und Werkstoffentwicklung (z.B. 5- 12 h) kann vorgesehen werden.

Die Prüfungsdauer bezieht sich auf die Klausur.

Stand vom 01.10.2025 T3MB1003 // Seite 9

#### LITERATUR

- Bargel, Schulze: Werkstoffkunde, Springer, Berlin
- Roos, Maile: Werkstoffkunde für Ingenieure, Springer, Berlin
- Merkel: Taschenbuch der Werkstoffe, Hanser Fachbuchverlag
   Bergmann: Werkstofftechnik, Tl.1 Grundlagen: Struktureller Aufbau von Werkstoffen, Hanser Fachbuchverlag
- Bergmann: Werkstofftechnik, Tl.2 Anwendung: Werkstoffherstellung, Werkstoffverarbeitung Werkstoffanwendung, Hanser Fachbuchverlag
- Hornbogen: Werkstoffe, Springer, Berlin
- Hornbogen, Jost: Fragen und Antworten zu Werkstoffe, Springer, Berlin
   Schumann, Oettel: Metallografie, WILEY-VCH Verlag
- Berns, Theisen: Eisenwerkstoffe Stahl und Gusseisen, Springer
- Menges: Werkstoffkunde Kunststoffe, Hanser, München

Stand vom 01.10.2025 T3MB1003 // Seite 10 Studienbereich Technik // School of Engineering
Maschinenbau // Mechanical Engineering
Produktionstechnik // Production Engineering
HORB



### Technische Mechanik + Festigkeitslehre (T3MB1004)

### **Engineering Mechanics and Stress Analysis**

#### FORMALE ANGABEN ZUM MODUL

MODULNUMMERVERORTUNG IM STUDIENVERLAUFMODULDAUER (SEMESTER)MODULVERANTWORTUNGSPRACHET3MB10041. Studienjahr1Prof. Dr.-lng. Petra BormannDeutsch

#### **EINGESETZTE LEHRFORMEN**

LEHRFORMENLEHRMETHODENVorlesung, ÜbungLehrvortrag, Diskussion

#### **EINGESETZTE PRÜFUNGSFORMEN**

PRÜFUNGSLEISTUNGPRÜFUNGSUMFANG (IN MINUTEN)BENOTUNGKlausur120ja

#### WORKLOAD UND ECTS-LEISTUNGSPUNKTE

WORKLOAD INSGESAMT (IN H)DAVON PRÄSENZZEIT (IN H)DAVON SELBSTSTUDIUM (IN H)ECTS-LEISTUNGSPUNKTE15072785

#### QUALIFIKATIONSZIELE UND KOMPETENZEN

#### **FACHKOMPETENZ**

Die Studierenden erlernen die grundlegenden Methoden der Statik, basierend auf den Newtonschen Axiomen (Kräftezerlegung, Schnittprinzip, Reaktionen, Gleichgewicht, Schwerpunkt, Reibung).

Sie erlernen die Elemente der Statik.

Sie erwerben die Fähigkeit, einfache und zusammengesetzte Tragwerke statisch zu berechnen und können Schnittreaktionen sicher ermitteln.

Sie erlernen und verstehen die Grundbeanspruchungsarten von Konstruktionen sowie den Ablauf von Festigkeitsrechnungen.

Sie können eine Beurteilung gegen Versagen vornehmen.

#### METHODENKOMPETENZ

Die Studierenden sind in der Lage, die erlernten naturwissenschaftlichen Methoden der Mechanik bei jeder statischen Beurteilung zielgerichtet anzuwenden. Sie besitzen die Fähigkeit, mathematische Berechnungen zuverlässig durchzuführen.

#### PERSONALE UND SOZIALE KOMPETENZ

Die Studierenden lernen, in kleinen Teams effektiv und zielgerichtet das in den Vorlesungen vermittelte Wissen auf neuartige Aufgaben anzuwenden. Sie sind sich der Auswirkung auf alle Bereiche der Gesellschaft und damit der Sorgfaltspflicht bewusst, mit der Festigkeitsnachweise zu führen sind.

#### ÜBERGREIFENDE HANDLUNGSKOMPETENZ

LERNEINHEITEN UND INHALTE

 LEHR- UND LERNEINHEITEN
 PRÄSENZZEIT
 SELBSTSTUDIUM

 Technische Mechanik + Festigkeitslehre
 72
 78

- -Begriffe
- -Kräftesysteme, Gleichgewicht
- -Schwerpunktberechnung
- -Einfache und zusammengesetzte Tragwerke
- -Schnittreaktionen
- -Reibung
- -Grundlagen und Begriffe der Festigkeitslehre
- -Grundbeanspruchungsarten Zug-Druckbeanspruchung, Biegung, Torsion, Schub

Stand vom 01.10.2025 T3MB1004 // Seite 11

#### **BESONDERHEITEN**

Die Sachkompetenz kann durch z.B. zusätzliche Tutorien gestärkt werden.

#### VORAUSSETZUNGEN

#### LITERATUR

Dankert/Dankert: Technische Mechanik, Springer Verlag

Gross, Hauger, Schröder, Wall: Technische Mechanik 1 und 2, Springer Verlag.

Hibbeler: Technische Mechanik 1und 2, Pearson Studium

Issler, Ruoß, Häfele: Festigkeitslehre-Grundlagen, Springer Verlag Läpple: Einführung in die Festigkeitslehre, Vieweg Alle Bücher liegen als ebook vor. Verwendung der neuesten Ausgaben in Papierform.

Stand vom 01.10.2025 T3MB1004 // Seite 12



### Mathematik (T3MB1005)

#### **Mathematics**

#### FORMALE ANGABEN ZUM MODUL

| MODULNUMMER | VERORTUNG IM STUDIENVERLAUF | MODULDAUER (SEMESTER) | MODULVERANTWORTUNG         | SPRACHE |
|-------------|-----------------------------|-----------------------|----------------------------|---------|
| T3MB1005    | 1. Studienjahr              | 1                     | Prof. DrIng. Nico Blessing | Deutsch |

#### **EINGESETZTE LEHRFORMEN**

| LEHRFORMEN       | LEHRMETHODEN            |
|------------------|-------------------------|
| Vorlesung, Labor | Lehrvortrag, Diskussion |

#### **EINGESETZTE PRÜFUNGSFORMEN**

| PRÜFUNGSLEISTUNG | PRÜFUNGSUMFANG (IN MINUTEN) | BENOTUNG |
|------------------|-----------------------------|----------|
| Klausur          | 120                         | ja       |

#### WORKLOAD UND ECTS-LEISTUNGSPUNKTE

| WORKLOAD INSGESAMT (IN H) | DAVON PRÄSENZZEIT (IN H) | DAVON SELBSTSTUDIUM (IN H) | ECTS-LEISTUNGSPUNKTE |
|---------------------------|--------------------------|----------------------------|----------------------|
| 150                       | 60                       | 90                         | 5                    |

#### QUALIFIKATIONSZIELE UND KOMPETENZEN

#### FACHKOMPETENZ

Sicheres Anwenden der mathematischen Methoden auf dem Gebiet der Vektorrektorrechnung, Lineare Gleichungssysteme, Determinanten, Matrizen, Komplexe Zahlen und Numerische Methoden der Mathematik. Übertragung der theoretischen Inhalte auf praktische Problemstellungen. Eventuell Anwendung von computergestützten Berechnungsmethoden auf praktische Aufgabenstellungen.

#### METHODENKOMPETENZ

Die Studierenden kennen mit Abschluss des Moduls die in den Modulinhalten aufgeführten mathematischen Verfahren und Lösungsalgorithmen und sind in der Lage, unter Einsatz/Anwendung dieser Methoden fachübergreifende Problemstellungen zu analysieren und zu lösen.

#### PERSONALE UND SOZIALE KOMPETENZ

#### ÜBERGREIFENDE HANDLUNGSKOMPETENZ

Fächerübergreifende Anwendung der gelernten mathematischen Methoden, Anwendung der theoretischen, mathematischen Inhalte auf praktische Aufgabenstellungen.

#### LERNEINHEITEN UND INHALTE

| LEHR- UND LERNEINHEITEN | PRÄSENZZEIT | SELBSTSTUDIUM |
|-------------------------|-------------|---------------|
| Mathematik              | 60          | 90            |

Didaktisch geeignete Auswahl aus folgenden Lerninhalten:

- Vektorrechnung
- Lineare Gleichungssysteme
- Determinanten
- Matrizen
- Komplexe Zahlen

Optional können weitere Inhalte gewählt werden:

- Numerische Methoden der Mathematik
- Linare Transformationen (Hauptachsentrasformation)
- Affine Abbildungen
- Analytische Geometrie (Vertiefung, z.B. Kugel, Tangentialebene)
- ggf. weitere

Stand vom 01.10.2025 T3MB1005 // Seite 13

#### LERNEINHEITEN UND INHALTE

LEHR- UND LERNEINHEITEN PRÄSENZZEIT SELBSTSTUDIUM

#### BESONDERHEITEN

Eine Laborveranstaltung zur Vermittlung von Lerninhalten der numerischen Mathematik kann integriert werden.

#### VORAUSSETZUNGEN

\_

### LITERATUR

- L. Papula: Mathematik für Ingenieure und Naturwissenschaftler. Bd. 1 und 2, Vieweg + Teubner
- I. N. Bronstein: Taschenbuch der Mathematik, Deutsch
- M. Hanke-Bourgeois: Grundlagen der Numerischen Mathematik und des Wissenschaftlichen Rechnens, Vieweg + Teubner

Stand vom 01.10.2025 T3MB1005 // Seite 14

Studienbereich Technik // School of Engineering
Maschinenbau // Mechanical Engineering
Produktionstechnik // Production Engineering
HORB



### Informatik (T3MB1006)

### Computer Science

#### FORMALE ANGABEN ZUM MODUL

MODULNUMMERVERORTUNG IM STUDIENVERLAUFMODULDAUER (SEMESTER)MODULVERANTWORTUNGSPRACHET3MB10061. Studienjahr2Prof. Dipl.-Ing. Tobias AnkeleDeutsch

#### **EINGESETZTE LEHRFORMEN**

LEHRFORMEN LEHRMETHODEN

Vorlesung, Übung, Labor Lehrvortrag, Diskussion, Gruppenarbeit

#### **EINGESETZTE PRÜFUNGSFORMEN**

PRÜFUNGSLEISTUNGPRÜFUNGSUMFANG (IN MINUTEN)BENOTUNGKombinierte Prüfung - Klausurarbeit (< 50 %) und Programmentwurf</td>120ja

#### WORKLOAD UND ECTS-LEISTUNGSPUNKTE

WORKLOAD INSGESAMT (IN H)DAVON PRÄSENZZEIT (IN H)DAVON SELBSTSTUDIUM (IN H)ECTS-LEISTUNGSPUNKTE15072785

#### QUALIFIKATIONSZIELE UND KOMPETENZEN

#### FACHKOMPETENZ

- Die Studierenden sind in der Lage, einfachere Computerprogramme zu in einer höheren Programmiersprache zu entwickeln
- Die Studierenden verstehen die grundlegende Funktionsweise eines Digitalrechners und die interne Datenverarbeitung

#### METHODENKOMPETENZ

- Die Studierenden haben gelernt, eine Problemstellung zu analysieren und die Problemlösung in Form eines Algorithmus zu formulieren und in geeigneter Notation zu dokumentieren
- Die Studierenden sind in der Lage, Themen der Vertiefung (s. Inhalt) im betrieblichen Umfeld einzuordnen und zu bewerten.

#### PERSONALE UND SOZIALE KOMPETENZ

- Die Studierenden können die Digitaltechnik sowohl eigenständig also auch im Team ergebnisorientiert einsetzen
- Sie sind in der Lage, Einsatzmöglichkeiten und -grenzen des Rechnereinsatzes im betrieblichen Umfeld abzuschätzen

#### ÜBERGREIFENDE HANDLUNGSKOMPETENZ

#### LERNEINHEITEN UND INHALTE

| LEHR- UND LERNEINHEITEN | PRÄSENZZEIT | SELBSTSTUDIUM |
|-------------------------|-------------|---------------|
| Informatik              | 72          | 78            |

Stand vom 01.10.2025 T3MB1006 // Seite 15

#### LEHR- UND LERNEINHEITEN PRÄSENZZEIT SELBSTSTUDIUM

Grundlagen der Datenverarbeitung

- Problemanalyse, Formulierung Algorithmen, Dokumentation in allgemeiner Notation (z. B.

Struktogramm)

- Zahlensysteme (dezimal, binär, hexadezimal)
- Operatoren, Boolsche Operationen, Bitoperationen
- Datentypen

Grundlagen der Programmierung in einer höheren Programmiersprache:

- Konstanten und Variablen (Deklaration, Initialisierung, Namespaces)
- Benutzerinteraktion (Ein- und Ausgabe, Ausgabeformatierung)
- Kontrollstrukturen (Verzweigungen, Schleifen)
- Modularer Aufbau von Programmen (Unterprogramme, Prozeduren und Funktionen)

Vertiefende Themen der Informationsverarbeitung, z. B:

- Aufbau und Funktion eines Rechners (Rechnerarchitektur, Computerkomponenten und deren

Konfiguration, Eingabe- und Ausgabegeräte, Schnittstellen)

- Erweiterte Programmiertechniken (Strukturierte Datentypen, dynamische Speicherverwaltung, Pointer, Verkettete Listen, Dateiverarbeitung, Grafikfunktionen usw.)

- Betriebssysteme
- Datenbanken, Datenbankabfragen

#### BESONDERHEITEN

- Laborversuche können vorgesehen werden.
- Die Veranstaltung kann entweder im 1. und 2. Semester oder im 1. Semester oder im 2. Semester abgehalten werden.

#### VORAUSSETZUNGEN

#### LITERATUR

- Uwe Schneider; Dieter Werner: Taschenbuch der Informatik, Hanser Fachbuch
- Heinz-Peter Gumm, Manfred Sommer: Einführung in die Informatik, Oldenbourg
- Thomas Ottmann, Peter Widmayer: Algorithmen und Datenstrukturen, Spektrum Akademischer Verlag Heidelberg

Stand vom 01.10.2025 T3MB1006 // Seite 16

Studienbereich Technik // School of Engineering
Maschinenbau // Mechanical Engineering
Produktionstechnik // Production Engineering
HORR



### Elektrotechnik (T3MB1007)

### **Electrical Engineering**

#### FORMALE ANGABEN ZUM MODUL

MODULNUMMERVERORTUNG IM STUDIENVERLAUFMODULDAUER (SEMESTER)MODULVERANTWORTUNGSPRACHET3MB10071. Studienjahr2Prof. Dr. Wilhelm BrixDeutsch/Englisch

#### **EINGESETZTE LEHRFORMEN**

 LEHRFORMEN
 LEHRMETHODEN

 Vorlesung, Übung, Labor
 Lehrvortrag, Diskussion, Gruppenarbeit

#### **EINGESETZTE PRÜFUNGSFORMEN**

PRÜFUNGSLEISTUNGPRÜFUNGSUMFANG (IN MINUTEN)BENOTUNGKlausurarbeit oder Kombinierte Prüfung120ja

#### WORKLOAD UND ECTS-LEISTUNGSPUNKTE

WORKLOAD INSGESAMT (IN H)

DAVON PRÄSENZZEIT (IN H)

DAVON SELBSTSTUDIUM (IN H)

ECTS-LEISTUNGSPUNKTE

90

5

#### QUALIFIKATIONSZIELE UND KOMPETENZEN

#### FACHKOMPETENZ

Die Studierenden sind in der Lage, elektrotechnische Problemstellungen aus der Praxis zu analysieren und aufzuarbeiten. Sie erarbeiten sich die für die Lösung relevanten Informationen, führen die Auswahl der Komponenten selbständig durch und geben Hinweise zur Belastbarkeit ihrer Ergebnisse.

#### METHODENKOMPETENZ

Die Studierenden sind mit Abschluss des Moduls dafür sensibilisiert, für die Lösung von Projektaufgaben eine systematischen und methodisch fundierten Vorgehensweise zu wählen. Sie strukturieren ihre Aufgaben den Anforderungen der eingesetzten Methode und den Anforderungen der konkreten Anwendungssituation entsprechend und führen kleinere Projekte zum Abschluss.

#### PERSONALE UND SOZIALE KOMPETENZ

Die Absolventen reflektieren die in den Modulinhalten angesprochenen Theorien und Modelle in Hinblick auf die damit verbundene soziale, ethische und ökologische Verantwortung und Implikationen.

#### ÜBERGREIFENDE HANDLUNGSKOMPETENZ

-

#### LERNEINHEITEN UND INHALTE

LEHR- UND LERNEINHEITENPRÄSENZZEITSELBSTSTUDIUMElektrotechnik6090

- Grundbegriffe
- Leistung und Arbeit
- Gleichstromkreise
- Kondensator und elektrisches Feld
- Induktivität und magnetisches Feld
- Wechselstrom
- Wirk- und Blindwiderstände
- Leistung und Arbeit in Wechselstromnetzen

Optional können weitere Themen behandelt werden, z.B. Drehstromsysteme, etc.

Stand vom 01.10.2025 T3MB1007 // Seite 17

#### **BESONDERHEITEN**

Laborversuche können vorgesehen werden.

Die Veranstaltung kann entweder im 1. und 2. Semester oder im 1. Semester oder im 2. Semester abgehalten werden. Die Prüfungsdauer bezieht sich auf die Klausur.

#### VORAUSSETZUNGEN

-

#### LITERATUR

- Harriehausen, T. und Schwarzenau, D.: "Moeller Grundlagen der Elektrotechnik", Verlag Springer Vieweg
- Küpfmüller, K. und Mathis, W.: "Theoretische Elektrotechnik: Eine Einführung", Verlag Springer Vieweg
- Hering, M. et al.: "Elektrotechnik und Elektronik für Maschinenbauer", Springer Verlag

Stand vom 01.10.2025 T3MB1007 // Seite 18



### Konstruktion II (T3MB1008)

### Engineering Design II

#### FORMALE ANGABEN ZUM MODUL

| MODULNUMMER | VERORTUNG IM STUDIENVERLAUF | MODULDAUER (SEMESTER) | MODULVERANTWORTUNG             | SPRACHE |
|-------------|-----------------------------|-----------------------|--------------------------------|---------|
| T3MB1008    | 1. Studienjahr              | 1                     | Prof. DrIng. Michael Sternberg | Deutsch |

#### **EINGESETZTE LEHRFORMEN**

LEHRFORMEN LEHRMETHODEN

Vorlesung, Übung, Labor Lehrvortrag, Diskussion, Fallstudien

#### **EINGESETZTE PRÜFUNGSFORMEN**

PRÜFUNGSLEISTUNGPRÜFUNGSUMFANG (IN MINUTEN)BENOTUNGKombinierte Prüfung - Klausurarbeit (< 50 %) und Konstruktionsentwurf</td>120ja

#### WORKLOAD UND ECTS-LEISTUNGSPUNKTE

| WORKLOAD INSGESAMT (IN H) | DAVON PRÄSENZZEIT (IN H) | DAVON SELBSTSTUDIUM (IN H) | ECTS-LEISTUNGSPUNKTE |
|---------------------------|--------------------------|----------------------------|----------------------|
| 150                       | 60                       | 90                         | 5                    |

#### QUALIFIKATIONSZIELE UND KOMPETENZEN

#### **FACHKOMPETENZ**

Die Studierenden haben mit Abschluss des Moduls die Kompetenz erworben, Bauteile zu gestalten, zu berechnen und zu bewerten. Sie sind in der Lage ausgewählte Maschinenelemente zu dimensionieren. Sie können die Auswirkungen der Konstruktion auf den Produktionsprozess analysieren und vergleichen.

#### METHODENKOMPETENZ

Probleme, die sich im beruflichen Umfeld in den Themengebieten "Maschinenelemente & einfache Konstruktionen" ergeben, lösen sie zunehmend eigenständig und zielgerichtet, Die Studierenden sind in der Lage, in einem Team aktiv mitzuarbeiten und beginnen zu Einzelproblemen einen eigenständigen und sachgerechten Beitrag zu leisten in dem sie erlernte Methoden zunehmend adäquat anwenden.

#### PERSONALE UND SOZIALE KOMPETENZ

Die Studierenden haben mit Abschluss des Moduls die Kompetenzen erworben, bei Entscheidungen im Berufsalltag auch gesellschaftliche und ethische Erkenntnisse zu berücksichtigen und sich (auf Basis dieser Erkenntnisse) zunehmend zivilgesellschaftlich zu engagieren.

#### ÜBERGREIFENDE HANDLUNGSKOMPETENZ

Die Studierenden können mit Abschluss des Moduls einfache Konstruktionen gemäß einer vorgegebenen Aufgabenstellung erstellen und ausgewählte Maschinenelemente berechnen. Sie können fehlende Informationen aus vorgegebenen und anderen Quellen beschaffen und sind in der Lage die Konstruktion in einem Fachgespräch zu rechtfertigen. Durch die Einbindung in die Praxis verfügen die Studierenden zunehmend über Prozessverständnis

#### LERNEINHEITEN UND INHALTE

| LEHR- UND LERNEINHEITEN | PRÄSENZZEIT | SELBSTSTUDIUM |
|-------------------------|-------------|---------------|
| Konstruktion 2          | 60          | 90            |

Stand vom 01.10.2025 T3MB1008 // Seite 19

#### LEHR- UND LERNEINHEITEN **PRÄSENZZEIT** SELBSTSTUDIUM

#### Konstruktionslehre 2:

- Einführung in die Konstruktionssystematik.
- Verbindungselemente: formschlüssig (Bolzen und Stifte, Schrauben); stoffschlüssig

(Schweißen); elastisch (Federn). Konstruktionsentwurf 2:

- Anwendung der Gestaltungslehre: verfahrensspezifische Detaillierung von Bauteilen (z.B. Gussteil, Schweißteil).
- Selbstständiges und systematisches Erarbeiten von Lösungen durch Anwendung einzelner

Ansätze der Konstruktionssystematik für einfache Geräte und Vorrichtungen.

- Auslegung und Berechnung von ausgewählten Maschinenelementen.

#### CAD-Techniken:

- Vorgehensweisen zur Erstellung von Einzelteil-Volumenmodellen.
- Grundlagen der Zeichnungsableitung.
- Normteile: Anwendung und Konstruktion; Normteil-Bibliotheken.
- Grundlagen des Datenmanagements.
- Erstellen von Baugruppen; Baugruppenzeichnungen.
- Systematische, objektorientierte Teilekonstruktion.
- Arbeiten mit voneinander abhängigen Bauteilen.
- Anwendung von Hilfsprogrammen in der CAD-Umgebung (z.B. Kollisionsbetrachtungen,

Bestimmung des Gewichts oder des Trägheitsmoments).

#### **BESONDERHEITEN**

#### VORAUSSETZUNGEN

#### LITERATUR

#### Maschinenelemente

- Schlecht: Maschinenelemente 1, Pearson.
- Decker: Maschinenelemente, Hanser.
- Roloff/Matek: Maschinenelemente, Springer.
- Haberhauer/ Bodenstein: Maschinenelemente, Springer.
- Schmid: Konstruktionslehre Maschinenbau, Europa.
- Niemann: Maschinenelemente 1, Springer.
- Köhler/ Rögnitz: Maschinenteile 1, Springer.

### Konstruktionssystematik

- Pahl/Beitz: Konstruktionslehre, Springer.
- Conrad: Grundlagen der Konstruktionslehre, Hanser.

#### Normen

- Klein: Einführung in die DIN-Normen, Springer.
- Taschenbuch Metall, Europa.

### Computer-Aided Design

- Wiegand/Hanel/Deubner: Konstruieren mit NX 10, Hanser.

#### englischsprachige Literatur

- Shigley: Mechanical Engineering Design, McGraw-Hill.
- Collins/Busby/Staab: Mechanical Design of Machine Elements and Machines, Wiley.
- Pahl/Beitz: Engineering Design, Springer.
- Ulrich/Eppinger: Product Design and Development, McGraw-Hill.
- Ullmann: The Mechanical Design Process, McGraw-Hill.
- Mechanical and Metal Trades Handbook, Europa.

Stand vom 01.10.2025 T3MB1008 // Seite 20 Studienbereich Technik // School of Engineering Maschinenbau // Mechanical Engineering Produktionstechnik // Production Engineering HORB



### Technische Mechanik + Festigkeitslehre II (T3MB1009)

### **Engineering Mechanics and Stress Analysis II**

#### FORMALE ANGABEN ZUM MODUL

MODULNUMMERVERORTUNG IM STUDIENVERLAUFMODULDAUER (SEMESTER)MODULVERANTWORTUNGSPRACHET3MB10091. Studienjahr1Prof. Dr.-lng. Petra BormannDeutsch

#### **EINGESETZTE LEHRFORMEN**

LEHRFORMEN LEHRMETHODEN

Vorlesung, Übung Lehrvortrag, Diskussion, Gruppenarbeit

#### **EINGESETZTE PRÜFUNGSFORMEN**

PRÜFUNGSLEISTUNGPRÜFUNGSUMFANG (IN MINUTEN)BENOTUNGKlausur120ja

#### WORKLOAD UND ECTS-LEISTUNGSPUNKTE

WORKLOAD INSGESAMT (IN H)DAVON PRÄSENZZEIT (IN H)DAVON SELBSTSTUDIUM (IN H)ECTS-LEISTUNGSPUNKTE15072785

#### QUALIFIKATIONSZIELE UND KOMPETENZEN

#### **FACHKOMPETENZ**

Die Studierenden können zuverlässig die Methoden der Newtonschen Mechanik und daraus abgeleiteter Methoden bei der Lösung dynamischer Aufgabenstellungen anwenden.

Sie beherrschen die Analyse und die Beschreibung der Kinematik von Punkten und Starrkörpern einfacher und zusammengesetzter Bewegungen in verschiedenen Koordinaten.

Die Studierenden erweitern ihre Kenntnisse zu Festigkeitsberechnungen von Konstruktionen sowohl unter statischer als auch zeitlich veränderlicher Belastung und können zuverlässig eine Sicherheitsbewertung vornehmen.

Sie erlernen den Einfluss von Kerbwirkung bei statischer und dynamischer Beanspruchung, sowie den Einfluss von Temperaturänderungen.

Die Studierenden erwerben vertieftes Wissen zu den Grundbeanspruchungsarten, wie beispielsweise schiefe Biegung, Durchbiegung von Balken, wölbkraftfreie Torsion dünnwandiger Profile, Querkraftschub und Schubmittelpunkt.

#### METHODENKOMPETENZ

Die Studierenden können komplexe Aufgabenstellungen analysieren und durch Wahl geeigneter Ansätze und Methoden zielgerichtet lösen.

#### PERSONALE UND SOZIALE KOMPETENZ

Die Studierenden sind in der Lage, durch selbständig zu erarbeitende Aufgabenkomplexe Transferwissen zu erwerben . Sie können sich dabei als kleines Team selbständig organisieren.

#### ÜBERGREIFENDE HANDLUNGSKOMPETENZ

#### LERNEINHEITEN LIND INHALTE

| EERICEITER OND HAIVETE                   |             |               |
|------------------------------------------|-------------|---------------|
| LEHR- UND LERNEINHEITEN                  | PRÄSENZZEIT | SELBSTSTUDIUM |
| Technische Mechanik + Festigkeitslehre 2 | 72          | 78            |

Stand vom 01.10.2025 T3MB1009 // Seite 21

#### LERNEINHEITEN UND INHALTE

### LEHR- UND LERNEINHEITEN PRÄSENZZEIT SELBSTSTUDIUM

- -Kinematik des Punktes, starrer Körper und Körpersysteme
- -Allgemeine Starrkörperbewegung
- -Dynamisches Grundgesetz
- -Sätze der Dynamik
- -Kerbwirkung
- -Schwingende Beanspruchung, Dauerfestigkeitsschaubild
- -Thermische Spannung
- -Flächenmomente
- -Schiefe Biegung
- -Biegelinie
- -Torsion dünnwandiger Profile, Wölbkraftfreie Torsion
- -Querkraftschub

#### BESONDERHEITEN

Die Sachkompetenz kann durch z.B. zusätzliche Tutorien gestärkt werden.

#### VORAUSSETZUNGEN

\_

#### LITERATUR

- Dankert/Dankert: Technische Mechanik, Springer Verlag
- Gross, Hauger, Schröder, Wall: Technische Mechanik 2,3, Springer Hibbeler: Technische Mechanik 2,3, Pearson Studium
- Issler, Ruoß, Häfele: Festigkeitslehre-Grundlagen, Springer Verlag Läpple: Einführung in die Festigkeitslehre, Vieweg Alle Bücher liegen als ebook vor.

In Papierform sind die neuesten Auflagen zu verwenden.

Stand vom 01.10.2025 T3MB1009 // Seite 22



### Mathematik II (T3MB1010)

#### Mathematics II

#### FORMALE ANGABEN ZUM MODUL

| MODULNUMMER | VERORTUNG IM STUDIENVERLAUF | MODULDAUER (SEMESTER) | MODULVERANTWORTUNG         | SPRACHE |
|-------------|-----------------------------|-----------------------|----------------------------|---------|
| T3MB1010    | 1. Studienjahr              | 1                     | Prof. DrIng. Nico Blessing | Deutsch |

#### **EINGESETZTE LEHRFORMEN**

| LEHRFORMEN | LEHRMETHODEN            |
|------------|-------------------------|
| Vorlesung  | Lehrvortrag, Diskussion |

#### **EINGESETZTE PRÜFUNGSFORMEN**

| PRÜFUNGSLEISTUNG | PRÜFUNGSUMFANG (IN MINUTEN) | BENOTUNG |
|------------------|-----------------------------|----------|
| Klausur          | 120                         | ja       |

#### WORKLOAD UND ECTS-LEISTUNGSPUNKTE

| WORKLOAD INSGESAMT (IN H) | DAVON PRÄSENZZEIT (IN H) | DAVON SELBSTSTUDIUM (IN H) | ECTS-LEISTUNGSPUNKTE |
|---------------------------|--------------------------|----------------------------|----------------------|
| 150                       | 60                       | 90                         | 5                    |

#### QUALIFIKATIONSZIELE UND KOMPETENZEN

#### FACHKOMPETENZ

Sicheres Anwenden der mathematischen Methoden auf dem Gebiet der Differenzial- und Integralrechnung, Unendliche Reihen, Differentiation von Funktionen mit mehreren unabhängigen Variablen und Numerische Methoden der Mathematik. Übertragung der theoretischen Inhalte auf praktische Problemstellungen. Eventuell Anwendung von computergestützten Berechnungsmethoden auf praktische Aufgabenstellungen.

#### METHODENKOMPETENZ

Die Studierenden kennen mit Abschluss des Moduls die in den Modulinhalten aufgeführten mathematischen Verfahren und Lösungsalgorithmen und sind in der Lage, unter Einsatz/Anwendung dieser Methoden fachübergreifende Problemstellungen zu analysieren und zu lösen.

#### PERSONALE UND SOZIALE KOMPETENZ

#### ÜBERGREIFENDE HANDLUNGSKOMPETENZ

Fächer übergreifende Anwendung der gelernten mathematischen Methoden, Anwendung der theoretischen, mathematischen Inhalte auf praktische Aufgabenstellungen.

#### LERNEINHEITEN UND INHALTE

| LEHR- UND LERNEINHEITEN | PRÄSENZZEIT | SELBSTSTUDIUM |
|-------------------------|-------------|---------------|
| Mathematik 2            | 60          | 90            |

Didaktisch geeignete Auswahl aus folgenden Lehrinhalten:

- Folgen, Grenzwerte und Stetigkeit
- Funktionen einer und mehrerer unabhängigen Variablen
- Stetigkeitsbegriff und Konvergenz bei Funktionen
- Differentialrechnung bei Funktionen mit einer und mehreren unabhängigen Variablen
- Unendliche Reihen

Optional können weitere Inhalte gewählt werden:

- Numerische Methoden der Mathematik
- Interpolationstechniken
- Potenzreihenentwicklung
- Fehlerrechnung
- Extremwertprobleme
- ggf. weitere

Stand vom 01.10.2025 T3MB1010 // Seite 23

#### LERNEINHEITEN UND INHALTE

LEHR- UND LERNEINHEITEN PRÄSENZZEIT SELBSTSTUDIUM

#### BESONDERHEITEN

Eine Laborveranstaltung zur Vermittlung von Lerninhalten der numerischen Mathematik kann integriert werden.

#### VORAUSSETZUNGEN

\_

#### LITERATUR

- L. Papula: Mathematik für Ingenieure und Naturwissenschaftler. Bd. 1 und 2, Vieweg + Teubner
- I. N. Bronstein: Taschenbuch der Mathematik, Deutsch
- M. Hanke-Bourgeois: Grundlagen der Numerischen Mathematik und des Wissenschaftlichen Rechnens, Vieweg + Teubner

Stand vom 01.10.2025 T3MB1010 // Seite 24

Studienbereich Technik // School of Engineering
Maschinenbau // Mechanical Engineering
Produktionstechnik // Production Engineering
HORB



### Technische Mechanik + Festigkeitslehre III (T3MB2001)

### **Engineering Mechanics and Stress Analysis III**

#### FORMALE ANGABEN ZUM MODUL

MODULNUMMERVERORTUNG IM STUDIENVERLAUFMODULDAUER (SEMESTER)MODULVERANTWORTUNGSPRACHET3MB20012. Studienjahr1Prof. Dr.-Ing. Petra BormannDeutsch

#### **EINGESETZTE LEHRFORMEN**

 LEHRFORMEN
 LEHRMETHODEN

 Vorlesung, Übung
 Lehrvortrag, Diskussion, Gruppenarbeit

#### **EINGESETZTE PRÜFUNGSFORMEN**

PRÜFUNGSLEISTUNGPRÜFUNGSUMFANG (IN MINUTEN)BENOTUNGKlausur120ja

#### WORKLOAD UND ECTS-LEISTUNGSPUNKTE

WORKLOAD INSGESAMT (IN H)DAVON PRÄSENZZEIT (IN H)DAVON SELBSTSTUDIUM (IN H)ECTS-LEISTUNGSPUNKTE15072785

#### QUALIFIKATIONSZIELE UND KOMPETENZEN

#### FACHKOMPETENZ

Die Studierenden können dynamische und schwingende mechanische Systeme analysieren, berechnen und bewerten.

Sie können zuverlässig die Sicherheit für mechanische Konstruktionen unter komplexer Beanspruchung beurteilen. Dafür wählen Sie die jeweilige Methode zielsicher und selbständig aus.

Sie erlernen Methoden der Stabilitätstheorie und können die Stabilität von Stäben unter Knickbeanspruchung bewerten.

### METHODENKOMPETENZ

Die Studierenden können komplexe Aufgabenstellungen analysieren und wählen bewusst einen ganzheitlichen, ingenieurgemäßen Ansatz für eine zielgerichtete Lösung. Sie sind in der Lage, Lösungsansätze und Ergebnisse kritisch zu reflektieren sowie gegebenenfalls Fehler zu erkennen und selbst zu beheben.

#### PERSONALE UND SOZIALE KOMPETENZ

Die Studierenden sind in der Lage, verantwortungsbewusst und zuverlässig komplexe Probleme durch selbständiges systematisches Arbeiten zu lösen. Sie können sich dafür notwendiges Wissen selbständig erarbeiten und kritisch werten. Gegebenenfalls organisieren sie sich dabei zur Verbesserung der Effektivität als kleines Team.

#### ÜBERGREIFENDE HANDLUNGSKOMPETENZ

#### LERNEINHEITEN UND INHALTE

LEHR- UND LERNEINHEITENPRÄSENZZEITSELBSTSTUDIUMTechnische Mechanik + Festigkeitslehre 37278

- -Stoß und Drehstoß
- -Vertiefung Starrkörperbewegung
- -Mechanische Schwingungen mit einem Freiheitsgrad
- -Querkraftschub dünnwandiger Profile, Schubmittelpunkt
- -Allgemeiner Spannungs- und Verzerrungszustand
- $\hbox{-} Festigke its hypothesen$
- -Dünnwandige Behälter unter Innendruck
- -Stabknickung
- -Formänderungsenergie

Stand vom 01.10.2025 T3MB2001 // Seite 25

#### BESONDERHEITEN

Die Sachkompetenz kann durch z.B. zusätzliche Tutorien gestärkt werden.

#### VORAUSSETZUNGEN

#### LITERATUR

- Dankert/Dankert: Technische Mechanik, Springer Verlag
   Gross, Hauger, Schröder, Wall: Technische Mechanik 2,3, Springer
   Hibbeler: Technische Mechanik 2,3, Pearson Studium
   Issler, Ruoß, Häfele: Festigkeitslehre-Grundlagen, Springer Verlag
   Läpple: Einführung in die Festigkeitslehre, Vieweg Alle Bücher liegen als ebook vor. In Papierform sind die neuesten Auflagen zu verwenden.

Stand vom 01.10.2025 T3MB2001 // Seite 26 Studienbereich Technik // School of Engineering
Maschinenbau // Mechanical Engineering
Produktionstechnik // Production Engineering
HORR



### Thermodynamik (T3MB2002)

### **Thermodynamics**

#### FORMALE ANGABEN ZUM MODUL

MODULNUMMERVERORTUNG IM STUDIENVERLAUFMODULDAUER (SEMESTER)MODULVERANTWORTUNGSPRACHET3MB20022. Studienjahr2Prof. Dr.-lng. Stephan EngelkingDeutsch

#### **EINGESETZTE LEHRFORMEN**

LEHRFORMENLEHRMETHODENVorlesung, ÜbungLehrvortrag, Diskussion, Gruppenarbeit

#### EINGESETZTE PRÜFUNGSFORMEN

PRÜFUNGSLEISTUNGPRÜFUNGSUMFANG (IN MINUTEN)BENOTUNGUnbenotete PrüfungsleistungSiehe PruefungsordnungBestanden/ Nicht-BestandenKlausur120ja

#### WORKLOAD UND ECTS-LEISTUNGSPUNKTE

WORKLOAD INSGESAMT (IN H)DAVON PRÄSENZZEIT (IN H)DAVON SELBSTSTUDIUM (IN H)ECTS-LEISTUNGSPUNKTE15060905

#### QUALIFIKATIONSZIELE UND KOMPETENZEN

#### FACHKOMPETENZ

Die Studierenden haben die Grundlagen der Thermodynamik verstanden und sind in der Lage relevante Informationen zu sammeln, zu verdichten und daraus mit wissenschaftlichen Methoden Ergebnisse abzuleiten.

#### METHODENKOMPETENZ

Die Studierenden sind mit Abschluss des Moduls in der Lage, für komplexe Anwendungen angemessene Methoden auszuwählen und anzuwenden. So können die Möglichkeiten, Praktikabilität und Grenzen der eingesetzten Methode einschätzen und sind in der Lage, Handlungsalternativen aufzuzeigen.

#### PERSONALE UND SOZIALE KOMPETENZ

-

### ÜBERGREIFENDE HANDLUNGSKOMPETENZ

-

#### LERNEINHEITEN UND INHALTE

| LEHR- UND LERNEINHEITEN    | PRÄSENZZEIT | SELBSTSTUDIUM |
|----------------------------|-------------|---------------|
| Thermodynamik Grundlagen 1 | 30          | 45            |
| -                          |             |               |
|                            |             |               |
| Thermodynamik Grundlagen 2 | 30          | 45            |

### Grundlagen der Thermodynamik

- Der thermische Zustand, Zustangsgleichung des idealen Gases
- Hauptsätze der Thermodynamik
- Zustandsdiagramme
- Zustandsänderungen (isochor, isobar, isotherm und isentrop)
- Dampfdruckverhalten (Dampfdruckkurve)
- $\hbox{-} Grundlagen \ der \ thermodynamischen \ Kreisprozesse.$

Stand vom 01.10.2025 T3MB2002 // Seite 27

#### **BESONDERHEITEN**

Dieses Modul kann über ein oder zwei Semester gehalten werden. Wird es einsemestrig gehalten, bietet sich das Modul Thermodynamik Vertiefung als Folgevorlesung im 4. Semester an.

Die Vorlesung kann durch Laborarbeit ergänzt werden. Dabei dürfen Laborberichte auch als Prüfungsleistung herangezogen werden.

#### VORAUSSETZUNGEN

#### LITERATUR

Baehr, H. D.; Kabelac, S.: Thermodynamik, Springer-Verlag -Hahne, E.: Technische Thermodynamik, Oldenbourg -Elsner, N.: Grundlagen der Technischen Thermodynamik, Bd. 1 + 2, Akademie Verlag -Bosnjakovic, F.: Technische Thermodynamik, Bd. 1 + 2, Steinkopff-Verlag -Stephan, K.: Thermodynamik, Bd. 1: Einstoffsysteme, Springer Verlag -Langeheinecke, K.: Thermodynamik für Ingenieure, Teubner-Verlag -Labuhn, D.; Romberg, O.: Keine Panik vor Thermodynamik, Vieweg -Papula, L.: Mathematik für Ingenieure und Naturwissenschaftler. Bd. 1 und 2, Vieweg -Bronstein, I. N.: Taschenbuch der Mathematik, Deutsch

Stand vom 01.10.2025 T3MB2002 // Seite 28



### Mathematik III (T3MB2003)

#### Mathematics III

#### FORMALE ANGABEN ZUM MODUL

| MODULNUMMER | VERORTUNG IM STUDIENVERLAUF | MODULDAUER (SEMESTER) | MODULVERANTWORTUNG         | SPRACHE |
|-------------|-----------------------------|-----------------------|----------------------------|---------|
| T3MB2003    | 2. Studienjahr              | 1                     | Prof. DrIng. Nico Blessing | Deutsch |

#### **EINGESETZTE LEHRFORMEN**

| LEHRFORMEN       | LEHRMETHODEN            |
|------------------|-------------------------|
| Vorlesung, Labor | Lehrvortrag, Diskussion |

#### **EINGESETZTE PRÜFUNGSFORMEN**

| PRÜFUNGSLEISTUNG | PRÜFUNGSUMFANG (IN MINUTEN) | BENOTUNG |
|------------------|-----------------------------|----------|
| Klausur          | 120                         | ja       |

#### WORKLOAD UND ECTS-LEISTUNGSPUNKTE

| WORKLOAD INSGESAMT (IN H) | DAVON PRÄSENZZEIT (IN H) | DAVON SELBSTSTUDIUM (IN H) | ECTS-LEISTUNGSPUNKTE |
|---------------------------|--------------------------|----------------------------|----------------------|
| 150                       | 60                       | 90                         | 5                    |

#### QUALIFIKATIONSZIELE UND KOMPETENZEN

#### **FACHKOMPETENZ**

Sicheres Anwenden der mathematischen Methoden auf den Gebieten der Integralrechnung mit Funktionen mehrerer unabhängiger Variablen, den Gewöhnlichen Differenzialgleichungen, den numerischen Methoden der Mathematik. Übertragung der theoretischen Inhalte auf praktische Problemstellungen. Eventuell Anwendung von computergestützten Berechnungsmethoden auf praktische Aufgabenstellungen.

#### METHODENKOMPETENZ

Die Studierenden kennen mit Abschluss des Moduls die in den Modulinhalten aufgeführten mathematischen Verfahren und Lösungsalgorithmen und sind in der Lage, unter Einsatz/Anwendung dieser Methoden fachübergreifende Problemstellungen zu analysieren und zu lösen.

#### PERSONALE UND SOZIALE KOMPETENZ

### ÜBERGREIFENDE HANDLUNGSKOMPETENZ

Fächer übergreifende Anwendung der gelernten mathematischen Methoden, Anwendung der theoretischen, mathematischen Inhalte auf praktische Aufgabenstellungen.

#### LERNEINHEITEN UND INHALTE

| LEHR- UND LERNEINHEITEN | PRÄSENZZEIT | SELBSTSTUDIUM |
|-------------------------|-------------|---------------|
| Mathematik 3            | 60          | 90            |

Didaktisch geeignete Auswahl aus folgenden Lerninhalten:

- Integralrechnung
- Gewöhnliche Differenzialgleichungen
- Integration von Funktionen mit mehreren unabhängigen Variablen (Doppel- und Drefachintegrale)

Optional können weitere Inhalte gewählt werden:

- Numerische Methoden der Mathematik
- ggf. weitere

#### BESONDERHEITEN

Eine Laborveranstaltung zur Vermittlung von Lerninhalten der numerischen Mathematik kann integriert werden.

Stand vom 01.10.2025 T3MB2003 // Seite 29

#### VORAUSSETZUNGEN

#### LITERATUR

- L. Papula: Mathematik für Ingenieure und Naturwissenschaftler. Bd. 1 und 2, Vieweg + Teubner I. N. Bronstein: Taschenbuch der Mathematik, Deutsch M. Hanke-Bourgeois: Grundlagen der Numerischen Mathematik und des Wissenschaftlichen Rechnens, Vieweg + Teubner

Stand vom 01.10.2025 T3MB2003 // Seite 30



### Praxisprojekt I (T3\_1000)

### Work Integrated Project I

#### FORMALE ANGABEN ZUM MODUL

MODULNUMMERVERORTUNG IM STUDIENVERLAUFMODULDAUER (SEMESTER)MODULVERANTWORTUNGSPRACHET3\_10001. Studienjahr2Prof. Dr.-Ing. Joachim FrechDeutsch

#### **EINGESETZTE LEHRFORMEN**

LEHRFORMENLEHRMETHODENPraktikum, SeminarLehrvortrag, Diskussion, Projekt

#### EINGESETZTE PRÜFUNGSFORMEN

PRÖFUNGSLEISTUNGPRÖFUNGSUMFANG (IN MINUTEN)BENOTUNGProjektarbeitSiehe PruefungsordnungBestanden/ Nicht-BestandenAblauf- und ReflexionsberichtSiehe PruefungsordnungBestanden/ Nicht-Bestanden

#### WORKLOAD UND ECTS-LEISTUNGSPUNKTE

WORKLOAD INSGESAMT (IN H)DAVON PRÄSENZZEIT (IN H)DAVON SELBSTSTUDIUM (IN H)ECTS-LEISTUNGSPUNKTE600459620

#### QUALIFIKATIONSZIELE UND KOMPETENZEN

#### FACHKOMPETENZ

Die Absolventinnen und Absolventen erfassen industrielle Problemstellungen in ihrem Kontext und in angemessener Komplexität. Sie analysieren kritisch, welche Einflussfaktoren

zur Lösung des Problems beachtet werden müssen und beurteilen, inwiefern einzelne theoretische Modelle einen Beitrag zur Lösung des Problems leisten können.

Die Studierenden kennen die zentralen manuellen und maschinellen Grundfertigkeiten des jeweiligen Studiengangs, sie

können diese an praktischen Aufgaben anwenden und haben deren Bedeutung für die Prozesse im Unternehmen kennen gelernt.

Sie kennen die wichtigsten technischen und organisatorischen Prozesse in Teilbereichen ihres Ausbildungsunternehmens und können deren Funktion darlegen.

Die Studierenden können grundsätzlich fachliche Problemstellungen des jeweiligen Studiengangs beschreiben und fachbezogene Zusammenhänge erläutern.

#### METHODENKOMPETENZ

Absolventinnen und Absolventen kennen übliche Vorgehensweisen der industriellen Praxis und können diese selbstständig umsetzen. Dabei bauen sie auf ihr theoretisches Wissen sowie ihre Berufserfahrung auf.

#### PERSONALE UND SOZIALE KOMPETENZ

Die Relevanz von Personalen und Sozialen Kompetenz ist den Studierenden für den reibungslosen Ablauf von industriellen Prozessen bewusst und sie können eigene Stärken und Schwächen benennen. Den Studierenden gelingt es, aus Erfahrungen zu lernen, sie übernehmen Verantwortung für die übertragene Aufgaben, mit denen sie sich auch persönlich identifizieren. Die Studierenden übernehmen Verantwortung im Team, integrieren und tragen durch ihr Verhalten zur gemeinsamen Zielerreichung bei.

#### ÜBERGREIFENDE HANDLUNGSKOMPETENZ

Die Studierenden zeigen Handlungskompetenz, indem sie

ihr theoretisches Fachwissen nutzen, um in berufspraktischen Situationen angemessen, authentisch und erfolgreich zu agieren.

Dazu gehören auch das eigenständige kritische Beobachten, das systematische Suchen alternativer Lösungsansätze sowie eine erste Einschätzung der Anwendbarkeit von Theorien für Praxis.

#### LERNEINHEITEN UND INHALTE

| LEHR- UND LERNEINHEITEN | PRÄSENZZEIT | SELBSTSTUDIUM |
|-------------------------|-------------|---------------|
| Projektarbeit 1         | 0           | 560           |

Stand vom 01.10.2025 T3\_1000 // Seite 31

#### LERNEINHEITEN UND INHALTE

| LEHR- UND LERNEINHEITEN                                                                | PRÄSENZZEIT | SELBSTSTUDIUM |
|----------------------------------------------------------------------------------------|-------------|---------------|
| Es wird auf die jeweiligen Praxispläne der Studiengänge der Fakultät Technik verwiesen |             |               |
|                                                                                        |             |               |
| Wissenschaftliches Arbeiten 1                                                          | 4           | 36            |

Das Seminar "Wissenschaftliches Arbeiten I" findet während der Theoriephase statt. Eine Durchführung im gesamten Umfang in einem Semester oder die Aufteilung auf zwei Semester ist möglich. Für einige Grundlagen kann das WBT "Wissenschaftliches Arbeiten" der DHBW genutzt werden.

- Leitlinien des wissenschaftlichen Arbeitens
- Themenwahl und Themenfindung bei der T1000 Arbeit
- Typische Inhalte und Anforderungen an eine T1000 Arbeit
- Aufbau und Gliederung einer T1000 Arbeit
- Literatursuche, -beschaffung und -auswahl
- Nutzung des Bibliotheksangebots der DHBW
- Form einer wissenschaftlichen Arbeit (z.B. Zitierweise, Literaturverzeichnis)
- Hinweise zu DV-Tools (z.B. Literaturverwaltung und Generierung von Verzeichnissen in der Textverarbeitung)

#### **BESONDERHEITEN**

Es wird auf die "Leitlinien für die Bearbeitung und Dokumentation der Module Praxisprojekt I bis III, Studienarbeit und Bachelorarbeit" der Fachkommission Technik der Dualen Hochschule Baden-Württemberg hingewiesen.

Der Absatz "1.2 Abweichungen" aus Anlage 1 zur Studien- und Prüfungsordnung für die Bachelorstudiengänge im Studienbereich Technik der Dualen Hochschule Baden-Württemberg

(DHBW) bei den Prüfungsleistungen dieses Moduls keine Anwendung.

#### VORAUSSETZUNGEN

### LITERATUR

- Web-based Training "Wissenschaftliches Arbeiten"
- Kornmeier, M., Wissenschaftlich schreiben leicht gemacht für Bachelor, Master und Dissertation, Bern

Stand vom 01.10.2025 T3\_1000 // Seite 32



### Praxisprojekt II (T3\_2000)

### **Work Integrated Project II**

#### FORMALE ANGABEN ZUM MODUL

| MODULNUMMER | VERORTUNG IM STUDIENVERLAUF | MODULDAUER (SEMESTER) | MODULVERANTWORTUNG         | SPRACHE |
|-------------|-----------------------------|-----------------------|----------------------------|---------|
| T3_2000     | 2. Studienjahr              | 2                     | Prof. DrIng. Joachim Frech | Deutsch |

#### **EINGESETZTE LEHRFORMEN**

| LEHRFORMEN           | LEHRMETHODEN                                    |
|----------------------|-------------------------------------------------|
| Praktikum, Vorlesung | Lehrvortrag, Diskussion, Gruppenarbeit, Projekt |

#### **EINGESETZTE PRÜFUNGSFORMEN**

| PRÜFUNGSLEISTUNG              | PRÜFUNGSUMFANG (IN MINUTEN) | BENOTUNG                   |
|-------------------------------|-----------------------------|----------------------------|
| Projektarbeit                 | Siehe Pruefungsordnung      | ja                         |
| Ablauf- und Reflexionsbericht | Siehe Pruefungsordnung      | Bestanden/ Nicht-Bestanden |
| Mündliche Prüfung             | 30                          | ja                         |

#### WORKLOAD LIND ECTS-LEISTLINGSPLINKTE

| WORKLOAD UND ECIS-LEISTUNGSFUNKTE |                          |                            |                      |
|-----------------------------------|--------------------------|----------------------------|----------------------|
| WORKLOAD INSGESAMT (IN H)         | DAVON PRÄSENZZEIT (IN H) | DAVON SELBSTSTUDIUM (IN H) | ECTS-LEISTUNGSPUNKTE |
| 600                               | 5                        | 595                        | 20                   |

#### QUALIFIKATIONSZIELE UND KOMPETENZEN

#### **FACHKOMPETENZ**

Die Studierenden erfassen industrielle Problemstellungen in einem angemessenen Kontext und in angemessener Komplexität. Sie analysieren kritisch, welche Einflussfaktoren zur Lösung des Problems beachtet werden müssen und können beurteilen, inwiefern theoretische Modelle einen Beitrag zur Lösung des Problems

#### METHODENKOMPETENZ

Die Studierenden kennen die im betrieblichen Umfeld üblichen Methoden, Techniken und Fertigkeiten und können bei der Auswahl deren Stärken und Schwächen einschätzen, so dass sie die Methoden sachangemessen und situationsgerecht auswählen. Die ihnen übertragenen Aufgaben setzen die Studierenden durch durchdachte Konzepte, fundierte Planung und gutes Projektmanagement erfolgreich um. Dabei bauen sie auf ihr theoretisches Wissen sowie ihre wachsende Berufserfahrung auf.

#### PERSONALE UND SOZIALE KOMPETENZ

Den Studierenden ist die Relevanz von Personalen und Sozialen Kompetenz für den reibungslosen Ablauf von industriellen Prozessen sowie ihrer eigenen Karriere bewusst; sie können eigene Stärken und Schwächen benennen. Den Studierenden gelingt es, aus Erfahrungen zu lernen, sie übernehmen selbstständig Verantwortung für die übertragene Aufgaben, mit denen sie sich auch persönlich identifizieren. Die Studierenden übernehmen Verantwortung im Team, integrieren andere und tragen durch ihr überlegtes Verhalten zur gemeinsamen Zielerreichung bei.

#### ÜBERGREIFENDE HANDLUNGSKOMPETENZ

Die Studierenden zeigen wachsende Handlungskompetenz, indem sie ihr theoretisches Fachwissen und ihr wachsendes Erfahrungswissen nutzen, um in sozialen berufspraktischen Situationen angemessen und erfolgreich zu agieren.

Dazu gehören auch das eigenständige kritische Beobachten, das systematische Suchen alternativer Denk- und Lösungsansätze sowie das Hinterfragen von bisherigen Vorgehensweisen. Die Studierenden zeichnen sich durch Eigenverantwortung und Tatkraft aus, sie sind auch im Kontext einer globalisierten Arbeitswelt handlungsfähig.

| LERNEINHEITEN OND INHALTE |             |               |
|---------------------------|-------------|---------------|
| LEHR- UND LERNEINHEITEN   | PRÄSENZZEIT | SELBSTSTUDIUM |
| Projektarbeit 2           | 0           | 560           |

Es wird auf die jeweiligen Praxispläne der Studiengänge der Fakultät Technik verwiesen.

Stand vom 01.10.2025 T3\_2000 // Seite 33

#### LERNEINHEITEN UND INHALTE

| LEHR- UND LERNEINHEITEN       | PRÄSENZZEIT | SELBSTSTUDIUM |
|-------------------------------|-------------|---------------|
| Wissenschaftliches Arbeiten 2 | 4           | 26            |

Das Seminar "Wissenschaftliches Arbeiten II" findet während der Theoriephase statt. Eine Durchführung im gesamten Umfang in einem Semester oder die Aufteilung auf zwei Semester ist möglich. Für einige Grundlagen kann das WBT "Wissenschaftliches Arbeiten" der DHBW genutzt werden.

- Leitlinien des wissenschaftlichen Arbeitens
- Themenwahl und Themenfindung bei der T2000 Arbeit
- Typische Inhalte und Anforderungen an eine T2000 Arbeit
- Aufbau und Gliederung einer T2000 Arbeit
- Vorbereitung der Mündlichen T2000 Prüfung

| Mündliche Prüfung | 1 | 9 |
|-------------------|---|---|
| 3                 |   |   |

#### BESONDERHEITEN

Entsprechend der jeweils geltenden Studien- und Prüfungsordnung für die Bachelorstudiengänge im Studienbereich Technik der Dualen Hochschule Baden-Württemberg (DHBW) sind die mündliche Prüfung und die Projektarbeit separat zu bestehen. Die Modulnote wird aus diesen beiden Prüfungsleistungen mit der Gewichtung 50:50 berechnet.

Es wird auf die "Leitlinien für die Bearbeitung und Dokumentation der Module Praxisprojekt I bis III, Studienarbeit und Bachelorarbeit" der Fachkommission Technik der Dualen Hochschule Baden-Württemberg hingewiesen.

| VORAUSSETZUNGEN |  |  |
|-----------------|--|--|
| -               |  |  |
|                 |  |  |
|                 |  |  |
| LITERATUR       |  |  |

Stand vom 01.10.2025 T3\_2000 // Seite 34



### Studienarbeit (T3\_3101)

### Student Research Projekt

#### FORMALE ANGABEN ZUM MODUL

MODULNUMMERVERORTUNG IM STUDIENVERLAUFMODULDAUER (SEMESTER)MODULVERANTWORTUNGSPRACHET3\_31013. Studienjahr2Prof. Dr.-Ing. Joachim FrechDeutsch

#### EINGESETZTE LEHRFORMEN

LEHRFORMENLEHRMETHODENIndividualbetreuungProjekt

#### **EINGESETZTE PRÜFUNGSFORMEN**

PRÜFUNGSLEISTUNGPRÜFUNGSUMFANG (IN MINUTEN)BENOTUNGStudienarbeitSiehe Pruefungsordnungja

#### WORKLOAD UND ECTS-LEISTUNGSPUNKTE

WORKLOAD INSGESAMT (IN H)DAVON PRÄSENZZEIT (IN H)DAVON SELBSTSTUDIUM (IN H)ECTS-LEISTUNGSPUNKTE3001228810

#### QUALIFIKATIONSZIELE UND KOMPETENZEN

#### **FACHKOMPETENZ**

Die Studierenden können sich unter begrenzter Anleitung in ein komplexes, aber eng umgrenztes Gebiet vertiefend einarbeiten und den allgemeinen Stand des Wissens erwerben.

Sie können selbstständig Lösungen entwickeln und Alternativen bewerten. Dazu nutzen sie bestehendes Fachwissen und bauen es selbständig im Thema der Studienarbeit aus.

Die Studierenden kennen und verstehen die Notwendigkeit des wissenschaftlichen Recherchierens und Arbeitens. Sie sind in der Lage eine wissenschaftliche Arbeit effizient zu steuern und wissenschaftlich korrekt und verständlich zu dokumentieren.

#### METHODENKOMPETENZ

Die Studierenden haben die Kompetenz erworben, relevante Informationen mit wissenschaftlichen Methoden zu sammeln und unter der Berücksichtigung wissenschaftlicher Erkenntnisse zu interpretieren.

#### PERSONALE UND SOZIALE KOMPETENZ

Die Studierenden können ausdauernd und beharrlich auch größere Aufgaben selbstständig ausführen. Sie können sich selbst managen und Aufgaben zum vorgesehenen Termin erfüllen.

Sie können stichhaltig und sachangemessen argumentieren, Ergebnisse plausibel darstellen und auch komplexe Sachverhalte nachvollziehbar begründen.

#### ÜBERGREIFENDE HANDLUNGSKOMPETENZ

LERNEINHEITEN UND INHALTE

| LEHR- UND LERNEINHEITEN | PRÄSENZZEIT | SELBSTSTUDIUM |
|-------------------------|-------------|---------------|
| Studienarbeit           | 12          | 288           |

Stand vom 01.10.2025 T3\_3101 // Seite 35

#### BESONDERHEITEN

Es wird auf die "Leitlinien für die Bearbeitung und Dokumentation der Module Praxisprojekt I bis III, Studienarbeit und Bachelorarbeit" der Fachkommission Technik der Dualen Hochschule Baden-Württemberg hingewiesen.

Die "Große Studienarbeit" kann nach Vorgaben der Studien- und Prüfungsordnung als vorgesehenes Modul verwendet werden. Ergänzend kann die "Große Studienarbeit" auch nach Freigabe durch die Studiengangsleitung statt der Module "Studienarbeit II" und "Studienarbeit II" verwendet werden.

#### VORAUSSETZUNGEN

#### LITERATUR

Kornmeier, M., Wissenschaftlich schreiben leicht gemacht für Bachelor, Master und Dissertation, Bern

Stand vom 01.10.2025 T3\_3101 // Seite 36



## Studienarbeit (T3\_3100)

### Student Research Project

### FORMALE ANGABEN ZUM MODUL

MODULNUMMERVERORTUNG IM STUDIENVERLAUFMODULDAUER (SEMESTER)MODULVERANTWORTUNGSPRACHET3\_31003. Studienjahr1Prof. Dr.-Ing. Joachim FrechDeutsch

#### **EINGESETZTE LEHRFORMEN**

LEHRFORMENLEHRMETHODENIndividualbetreuungProjekt

#### **EINGESETZTE PRÜFUNGSFORMEN**

PRÜFUNGSLEISTUNGPRÜFUNGSUMFANG (IN MINUTEN)BENOTUNGStudienarbeitSiehe Pruefungsordnungja

#### WORKLOAD UND ECTS-LEISTUNGSPUNKTE

WORKLOAD INSGESAMT (IN H)DAVON PRÄSENZZEIT (IN H)DAVON SELBSTSTUDIUM (IN H)ECTS-LEISTUNGSPUNKTE15061445

### QUALIFIKATIONSZIELE UND KOMPETENZEN

#### **FACHKOMPETENZ**

Die Studierenden können sich unter begrenzter Anleitung in ein recht komplexes, aber eng umgrenztes Gebiet vertiefend einarbeiten und den allgemeinen Stand des Wissens erwerben.

Sie können sich Lösungen entwickeln und Alternativen bewerten. Dazu nutzen sie bestehendes Fachwissen und bauen es selbständig im Thema der Studienarbeit aus.

Die Studierenden kennen und verstehen die Notwendigkeit des wissenschaftlichen Recherchierens und Arbeitens. Sie sind in der Lage eine wissenschaftliche Arbeit zu steuern und wissenschaftlich korrekt und verständlich zu dokumentieren.

### METHODENKOMPETENZ

Die Studierenden haben die Kompetenz erworben, relevante Informationen mit wissenschaftlichen Methoden zu sammeln und unter der Berücksichtigung wissenschaftlicher Erkenntnisse zu interpretieren.

### PERSONALE UND SOZIALE KOMPETENZ

Die Studierenden können ausdauernd und beharrlich auch größere Aufgaben selbstständig ausführen. Sie können sich selbst managen und Aufgaben zum vorgesehenen Termin erfüllen.

Sie können stichhaltig und sachangemessen argumentieren, Ergebnisse plausibel darstellen und auch komplexe Sachverhalte nachvollziehbar begründen.

### ÜBERGREIFENDE HANDLUNGSKOMPETENZ

LERNEINHEITEN UND INHALTE

| LEHR- UND LERNEINHEITEN | PRÄSENZZEIT | SELBSTSTUDIUM |
|-------------------------|-------------|---------------|
| Studienarbeit           | 6           | 144           |

### BESONDERHEITEN

Es wird auf die "Leitlinien für die Bearbeitung und Dokumentation der Module Praxisprojekt I bis III, Studienarbeit und Bachelorarbeit" der Fachkommission Technik der Dualen Hochschule Baden-Württemberg hingewiesen.

Stand vom 01.10.2025 T3\_3100 // Seite 37

### LITERATUR

Kornmeier, M., Wissenschaftlich schreiben leicht gemacht für Bachelor, Master und Dissertation, Bern

Stand vom 01.10.2025 T3\_3100 // Seite 38



## Studienarbeit II (T3\_3200)

## Student Research Project II

### FORMALE ANGABEN ZUM MODUL

MODULNUMMERVERORTUNG IM STUDIENVERLAUFMODULDAUER (SEMESTER)MODULVERANTWORTUNGSPRACHET3\_32003. Studienjahr1Prof. Dr.-Ing. Joachim FrechDeutsch

#### **EINGESETZTE LEHRFORMEN**

LEHRFORMENLEHRMETHODENIndividualbetreuungProjekt

#### **EINGESETZTE PRÜFUNGSFORMEN**

PRÜFUNGSLEISTUNGPRÜFUNGSUMFANG (IN MINUTEN)BENOTUNGStudienarbeitSiehe Pruefungsordnungja

#### WORKLOAD UND ECTS-LEISTUNGSPUNKTE

WORKLOAD INSGESAMT (IN H)DAVON PRÄSENZZEIT (IN H)DAVON SELBSTSTUDIUM (IN H)ECTS-LEISTUNGSPUNKTE15061445

### QUALIFIKATIONSZIELE UND KOMPETENZEN

### **FACHKOMPETENZ**

Die Studierenden können sich unter begrenzter Anleitung in ein komplexes, aber eng umgrenztes Gebiet vertiefend einarbeiten und den allgemeinen Stand des Wissens erwerben.

Sie können selbstständig Lösungen entwickeln und Alternativen bewerten. Dazu nutzen sie bestehendes Fachwissen und bauen es selbständig im Thema der Studienarbeit aus.

Die Studierenden kennen und verstehen die Notwendigkeit des wissenschaftlichen Recherchierens und Arbeitens. Sie sind in der Lage eine wissenschaftliche Arbeit effizient zu steuern und wissenschaftlich korrekt und verständlich zu dokumentieren.

### METHODENKOMPETENZ

Die Studierenden haben die Kompetenz erworben, relevante Informationen mit wissenschaftlichen Methoden zu sammeln und unter der Berücksichtigung wissenschaftlicher Erkenntnisse zu interpretieren.

### PERSONALE UND SOZIALE KOMPETENZ

Die Studierenden können ausdauernd und beharrlich auch größere Aufgaben selbstständig ausführen. Sie können sich selbst managen und Aufgaben zum vorgesehenen Termin erfüllen.

Sie können stichhaltig und sachangemessen argumentieren, Ergebnisse plausibel darstellen und auch komplexe Sachverhalte nachvollziehbar begründen.

### ÜBERGREIFENDE HANDLUNGSKOMPETENZ

LERNEINHEITEN UND INHALTE

| LEHR- UND LERNEINHEITEN | PRÄSENZZEIT | SELBSTSTUDIUM |
|-------------------------|-------------|---------------|
| Studienarbeit 2         | 6           | 144           |

### BESONDERHEITEN

Es wird auf die "Leitlinien für die Bearbeitung und Dokumentation der Module Praxisprojekt I bis III, Studienarbeit und Bachelorarbeit" der Fachkommission Technik der Dualen Hochschule Baden-Württemberg hingewiesen.

Stand vom 01.10.2025 T3\_3200 // Seite 39

### VORAUSSETZUNGEN

### LITERATUR

Kornmeier, M., Wissenschaftlich schreiben leicht gemacht für Bachelor, Master und Dissertation, Bern

Stand vom 01.10.2025 T3\_3200 // Seite 40



## Praxisprojekt III (T3\_3000)

## Work Integrated Project III

### FORMALE ANGABEN ZUM MODUL

| MODULNUMMER | VERORTUNG IM STUDIENVERLAUF | MODULDAUER (SEMESTER) | MODULVERANTWORTUNG         | SPRACHE |
|-------------|-----------------------------|-----------------------|----------------------------|---------|
| T3_3000     | 3. Studienjahr              | 1                     | Prof. DrIng. Joachim Frech | Deutsch |

#### **EINGESETZTE LEHRFORMEN**

| LEHRFORMEN         | LEHRMETHODEN                     |
|--------------------|----------------------------------|
| Praktikum, Seminar | Lehrvortrag, Diskussion, Projekt |

#### **EINGESETZTE PRÜFUNGSFORMEN**

| PRÜFUNGSLEISTUNG              | PRÜFUNGSUMFANG (IN MINUTEN) | BENOTUNG                   |
|-------------------------------|-----------------------------|----------------------------|
| Hausarbeit                    | Siehe Pruefungsordnung      | Bestanden/ Nicht-Bestanden |
| Ablauf- und Reflexionsbericht | Siehe Pruefungsordnung      | Bestanden/ Nicht-Bestanden |

### WORKLOAD UND ECTS-LEISTUNGSPUNKTE

| WORKLOAD INSGESAMT (IN H) | DAVON PRÄSENZZEIT (IN H) | DAVON SELBSTSTUDIUM (IN H) | ECTS-LEISTUNGSPUNKTE |
|---------------------------|--------------------------|----------------------------|----------------------|
| 240                       | 4                        | 236                        | 8                    |

### QUALIFIKATIONSZIELE UND KOMPETENZEN

### FACHKOMPETENZ

Die Studierenden erfassen industrielle Problemstellungen in einem breiten Kontext und in moderater Komplexität. Sie haben ein gutes Verständnis von organisatorischen und inhaltlichen Zusammenhängen sowie von Organisationsstrukturen, Produkten, Verfahren, Maßnahmen, Prozessen, Anforderungen und gesetzlichen Grundlagen. Sie analysieren kritisch, welche Einflussfaktoren zur Lösung des Problems beachtet werden müssen und können beurteilen, inwiefern theoretische Modelle einen Beitrag zur Lösung des Problems leisten können.

### METHODENKOMPETENZ

Die Studierenden kennen die im betrieblichen Umfeld üblichen Methoden, Techniken und Fertigkeiten und können bei der Auswahl deren Stärken und Schwächen einschätzen, so dass sie die Methoden sachangemessen, situationsgerecht und umsichtig auswählen. Die ihnen übertragenen Aufgaben setzen die Studierenden durch durchdachte Konzepte, fundierte Planung und gutes Projektmanagement auch bei sich häufig ändernden Anforderungen systematisch und erfolgreich um. Dabei bauen sie auf ihr theoretisches Wissen sowie ihre wachsende Berufserfahrung auf.

### PERSONALE UND SOZIALE KOMPETENZ

Die Studierenden weisen auch im Hinblick auf ihre persönlichen personalen und sozialen Kompetenzen einen hohen Grad an Reflexivität auf, was als Grundlage für die selbstständige persönliche Weiterentwicklun genutzt wird.

Den Studierenden gelingt es, aus Erfahrungen zu lernen, sie übernehmen selbstständig Verantwortung für die übertragene Aufgaben, mit denen sie sich auch persönlich identifizieren.

Die Studierenden übernehmen Verantwortung für sich und andere. Sie sind konflikt und kritikfähig.

### ÜBERGREIFENDE HANDLUNGSKOMPETENZ

Die Studierenden zeigen umfassende Handlungskompetenz, indem sie ihr theoretisches Fachwissen und ihr wachsendes Erfahrungswissen nutzen, um in berufspraktischen Situationen angemessen und erfolgreich zu agieren.

Dazu gehören auch das eigenständige kritische Beobachten, das systematische Suchen alternativer Denk- und Lösungsansätze sowie das Hinterfragen von bisherigen Vorgehensweisen. Die Studierenden zeichnen sich durch Eigenverantwortung und Tatkraft aus, sie sind auch im Kontext einer globalisierten Arbeitswelt handlungsfähig. Sie weisen eine reflektierte Haltung zu gesellschaftlichen, soziale und ökologischen Implikationen des eigenen Handelns auf.

### LERNEINHEITEN UND INHALTE

| LEHR- UND LERNEINHEITEN | PRÄSENZZEIT | SELBSTSTUDIUM |
|-------------------------|-------------|---------------|
| Projektarbeit 3         | 0           | 220           |

Es wird auf die jeweiligen Praxispläne der Studiengänge der Fakultät Technik verwiesen

Stand vom 01.10.2025 T3\_3000 // Seite 41

#### LERNEINHEITEN UND INHALTE

LEHR- UND LERNEINHEITENPRÄSENZZEITSELBSTSTUDIUMWissenschaftliches Arbeiten 3416

Das Seminar "Wissenschaftliches Arbeiten III" findet während der Theoriephase statt. Eine Durchführung im gesamten Umfang in einem Semester oder die Aufteilung auf zwei Semester ist möglich. Für einige Grundlagen kann das WBT "Wissenschaftliches Arbeiten" der DHBW genutzt werden.

- Was ist Wissenschaft?
- Theorie und Theoriebildung
- Überblick über Forschungsmethoden (Interviews, etc.)
- Gütekriterien der Wissenschaft
- Wissenschaftliche Erkenntnisse sinnvoll nutzen (Bezugssystem, Stand der Forschung/Technik)
- Aufbau und Gliederung einer Bachelorarbeit
- Projektplanung im Rahmen der Bachelorarbeit
- Zusammenarbeit mit Betreuern und Beteiligten

#### BESONDERHEITEN

Es wird auf die "Leitlinien für die Bearbeitung und Dokumentation der Module Praxisprojekt I bis III, Studienarbeit und Bachelorarbeit" der Fachkommission Technik der Dualen Hochschule Baden-Württemberg hingewiesen.

### VORAUSSETZUNGEN

### LITERATUR

- Web-based Training "Wissenschaftliches Arbeiten"
- Kornmeier, M., Wissenschaftlich schreiben leicht gemacht für Bachelor, Master und Dissertation,, Bern
- Minto, B., The Pyramid Principle: Logic in Writing, Thinking and Problem Solving, London
- Zelazny, G., Say It With Charts: The Executives's Guide to Visual Communication, Mcgraw-Hill Professional.

Kornmeier, M., Wissenschaftlich schreiben leicht gemacht für Bachelor, Master und Dissertation, Bern

Stand vom 01.10.2025 T3\_3000 // Seite 42



### Konstruktion III (T3MB2101)

### **Engineering Design III**

### FORMALE ANGABEN ZUM MODUL

| MODULNUMMER | VERORTUNG IM STUDIENVERLAUF | MODULDAUER (SEMESTER) | MODULVERANTWORTUNG             | SPRACHE |
|-------------|-----------------------------|-----------------------|--------------------------------|---------|
| T3MR2101    | 2 Studieniahr               | 1                     | Prof Dr -Ing Michael Sternberg | Deutsch |

#### **EINGESETZTE LEHRFORMEN**

 LEHRFORMEN
 LEHRMETHODEN

 Vorlesung, Übung, Labor
 Lehrvortrag, Diskussion, Fallstudien

#### **EINGESETZTE PRÜFUNGSFORMEN**

PRÜFUNGSLEISTUNGPRÜFUNGSUMFANG (IN MINUTEN)BENOTUNGKombinierte Prüfung - Klausurarbeit (< 50 %) und Konstruktionsentwurf</td>120ja

#### WORKLOAD UND ECTS-LEISTUNGSPUNKTE

| WORKLOAD INSGESAMT (IN H) | DAVON PRÄSENZZEIT (IN H) | DAVON SELBSTSTUDIUM (IN H) | ECTS-LEISTUNGSPUNKTE |
|---------------------------|--------------------------|----------------------------|----------------------|
| 150                       | 60                       | 90                         | 5                    |

### QUALIFIKATIONSZIELE UND KOMPETENZEN

#### **FACHKOMPETENZ**

Die Studierenden haben mit Abschluss des Moduls die Kompetenz erworben, ausgehend von einem als geeignet ausgewählten Wirkprinzip einfache Baugruppen zu gestalten und zu bewerten. Sie können alle wichtigen Maschinenelemente auswählen und dimensionieren. Sie sind in der Lage die Wechselwirkungen zwischen Konstruktions- und Produktionsprozess zu beschreiben, fertigungsbedingte Kosten einzuordnen und Interaktionen der Konstruktion mit benachbarten Baugruppen zu analysieren.

### METHODENKOMPETENZ

Probleme, die sich im beruflichen Umfeld in den Themengebieten "Maschinenelemente & einfache Baugruppen" ergeben, lösen sie zielgerichtet, Die Studierenden sind in der Lage, in einem Team aktiv mitzuarbeiten und durch adäquate Anwendung der erlernten Methoden einen eigenständigen und sachgerechten Beitrag zu leisten.

### PERSONALE UND SOZIALE KOMPETENZ

Die Studierenden haben mit Abschluss des Moduls umfassende Kompetenzen erworben, bei Entscheidungen im Berufsalltag auch gesellschaftliche und ethische Erkenntnisse zu berücksichtigen und sich zivilgesellschaftlich zu engagieren. Sie nehmen eigene und fremde Erwartungen, Normen und Werte wahr, können zunehmend unterschiedliche Situationen besser einschätzen und mit eventuellen Konflikten umgehen und beginnen, sich mit eigenen Ansichten zu positionieren.

### ÜBERGREIFENDE HANDLUNGSKOMPETENZ

Die Studierenden können mit Abschluss des Moduls einfache Baugruppen gemäß einer vorgegebenen Aufgabenstellung erstellen und die dafür notwendigen Maschinenelemente auswählen und dimensionieren. Sie können fehlende Informationen aus geeigneten Quellen beschaffen, sind in der Lage die Konstruktion in einem Fachgespräch zu rechtfertigen und Fachverantwortung für die Konstruktion zu übernehmen. Durch die Einbindung in die Praxis verfügen die Studierenden zunehmend über gutes Prozessverständnis und können die Entwicklung unterstützende Maßnahmen (wie z.B. Versuche und Berechnungen) auswählen und koordinieren.

### LERNEINHEITEN UND INHALTE

| LEHR- UND LERNEINHEITEN | PRÄSENZZEIT | SELBSTSTUDIUM |
|-------------------------|-------------|---------------|
| Konstruktion 3          | 60          | 90            |

Stand vom 01.10.2025 T3MB2101 // Seite 43

LEHR- UND LERNEINHEITEN PRÄSENZZEIT SELBSTSTUDIUM

Konstruktionslehre 3:

- Maschinenelemente der drehenden Bewegung (Wellen, WNV)
- Lager
- Stirnradgetriebe

Konstruktionsentwurf 3:

- Selbstständiges und systematisches Erarbeiten von Lösungen durch Anwendung einzelner

Ansätze der Konstruktionssystematik für einfache Baugruppen und Bewerten der Lösungen.

- Erstellen von ebenen und perspektivischen Freihandskizzen der Lösungsvarianten.
- Beanspruchungsgerechtes Gestalten und Berechnen aller Einzelteile.
- Erstellen einer normgerechten Gesamtzeichnung (mit Bleistift).
- Umsetzung in ein 3D-CAD-Modell und Ableiten der Gesamtzeichnung sowie ausgewählter Einzelteilzeichnungen.

#### **BESONDERHEITEN**

Ein Konstruktionsentwurf (KE) soll die Vorlesung ergänzen. Empfehlung für die Zusammensetzung der benoteten Prüfungsleistung: Klausur (K, 90 Min.) und Konstruktionsentwurf (KE) mit einer Verrechnung von 70%(K): 30%(KE).

### VORAUSSETZUNGEN

#### LITERATUR

Maschinenelemente

- Schlecht: Maschinenelemente 1 und 2, Pearson.
- Decker: Maschinenelemente, Hanser.
- Roloff/Matek: Maschinenelemente, Springer.
- Haberhauer/ Bodenstein: Maschinenelemente, Springer.
- Schmid: Konstruktionslehre Maschinenbau, Europa.
- Niemann: Maschinenelemente 1 und 2, Springer.
- Köhler/ Rögnitz: Maschinenteile 1 und 2, Springer.
- Conrad; Grundlagen der Konstruktionslehre
- englischsprachige Literatur
- Shigley: Mechanical Engineering Design, McGraw-Hill.
- Collins/Busby/Staab: Mechanical Design of Machine Elements and Machines, Wiley.
- Mechanical and Metal Trades Handbook, Europa.

Stand vom 01.10.2025 T3MB2101 // Seite 44



# Fertigungstechnik II (T3MB2201)

## Manufacturing Engineering II

### FORMALE ANGABEN ZUM MODUL

MODULNUMMERVERORTUNG IM STUDIENVERLAUFMODULDAUER (SEMESTER)MODULVERANTWORTUNGSPRACHET3MB22012. Studienjahr1Prof. Dr. Manfred SchlatterDeutsch

### **EINGESETZTE LEHRFORMEN**

LEHRFORMEN LEHRMETHODEN

Vorlesung, Übung Lehrvortrag, Diskussion, Fallstudien

### **EINGESETZTE PRÜFUNGSFORMEN**

PRÜFUNGSLEISTUNGPRÜFUNGSUMFANG (IN MINUTEN)BENOTUNGKlausurarbeit oder Kombinierte Prüfung120ja

#### WORKLOAD UND ECTS-LEISTUNGSPUNKTE

WORKLOAD INSGESAMT (IN H)DAVON PRÄSENZZEIT (IN H)DAVON SELBSTSTUDIUM (IN H)ECTS-LEISTUNGSPUNKTE15060905

### QUALIFIKATIONSZIELE UND KOMPETENZEN

#### FACHKOMPETENZ

-Die Studierenden können ihr erworbenes Wissen aus der Theorie und Praxis dem Produktherstellungsprozess zuordnen und in einen globalen Zusammenhang bringen. -Des Weiteren können Sie sowohl strategische als auch operative Sachverhalte erkennen und auf einzelne Funktionsbereiche herunter brechen.

### METHODENKOMPETENZ

Die Studierenden sind mit Abschluss des Moduls in der Lage, Projekte durch durchdachte Konzepte, fundierte Planung und gute Kenntnisse des Produktionsablaufs allgemein, auch bei sich häufig ändernden Anforderungen erfolgreich umzusetzen. Dabei bauen sie auf ihr theoretisches Wissen sowie ihrer Praxiserfahrung auf.

### PERSONALE UND SOZIALE KOMPETENZ

-

### ÜBERGREIFENDE HANDI UNGSKOMPETENZ

\_

### LERNEINHEITEN UND INHALTE

| LEHR- UND LERNEINHEITEN | PRÄSENZZEIT | SELBSTSTUDIUM |
|-------------------------|-------------|---------------|
| Fertigungstechnik 2     | 60          | 90            |

Diese Unit enthält eine Auswahl aus folgenden Themen:

- -Fertigungsverfahren der DIN 8580, die in Fertigungstechnik I nicht näher behandelt wurden-Product-Lifecycle-Management (PLM) allgemein
- -Funktionsbereiche eines Unternehmens
- -Unternehmensziele, Strategieprozesse (Produkt- und Produktionsroadmap)
- -Grundlagen zur Arbeitsvorbereitung, Kpazitäötsplanung und Auftragssteuerung
- -Maschinen, Anlagen und Prozesse in der Produktion
- -CE-Zertifizierung von Maschinen und Anlagen
- -EDV im PLM Prozess (z. B. CAx, PPS- oder ERP-Systeme)

### BESONDERHEITEN

Die Prüfungsdauer bezieht sich auf die Klausur.

Stand vom 01.10.2025 T3MB2201 // Seite 45

### VORAUSSETZUNGEN

Fertigungstechnik I (T3MB1002)

### LITERATUR

- Eigner, M.; Stelzer, R.: Product Lifecycle, Springer, Berlin.
- Feldhusen, J.; Gebhardt, B.: Product Lifecycle Management für die Praxis, Springer, Berlin.
- Scheer, A.-W. et al.: Prozessorientiertes Product Lifecycle Management, Springer, Berlin.
- Weck, M.; Brecher, C.: Werkzeugmaschinen 1, Springer, Berlin.
- Fritz, A. H.; Schulze, G.: Fertigungstechnik. Springer, Berlin.
  Warnecke, H.-J.; Westkämper, E.: Einführung in die Fertigungstechnik, Springer Vieweg.
- Wiendahl, H.-P.: Betriebsorganisation für Ingenieure. Hanser Verlag.
- Spur, G.: Fabrikbetrieb. Hanser Verlag.
- Bauernhansel, T.: Fabrikbetriebslehre I. Springer Vieweg.
- Vajna, S. et al.: CAx für Ingenieure. Springer.
- Schneider, A.: Zertifizierung im Rahmen der CE-Kennzeichnung. Hüthig Verlag. Krey, V.; Kapoor, A.: Praxisleitfaden Produktsicherheitsrecht. Hanser Verlag.
- Waldy, N.: CE-Kennzeichnung von Maschinen. tredition Verlag.

T3MB2201 // Seite 46 Stand vom 01.10.2025

Studienbereich Technik // School of Engineering
Maschinenbau // Mechanical Engineering
Produktionstechnik // Production Engineering
HORB



## Antriebstechnik (T3MB2103)

## **Drive and Transmission Engineering**

### FORMALE ANGABEN ZUM MODUL

| MODULNUMMER | VERORTUNG IM STUDIENVERLAUF | MODULDAUER (SEMESTER) | MODULVERANTWORTUNG                | SPRACHE |
|-------------|-----------------------------|-----------------------|-----------------------------------|---------|
| T3MB2103    | 2. Studienjahr              | 1                     | Prof. DiplIng. Anton R. Schweizer | Deutsch |

### EINGESETZTE LEHRFORMEN

| LEHRFORMEN              | LEHRMETHODEN                                                                 |
|-------------------------|------------------------------------------------------------------------------|
| Vorlesung, Übung, Labor | Lehrvortrag, Diskussion, Fallstudien, Lehrvortrag, Diskussion, Gruppenarbeit |

#### EINGESETZTE PRÜFUNGSFORMEN

| PRÜFUNGSLEISTUNG | PRÜFUNGSUMFANG (IN MINUTEN) | BENOTUNG |
|------------------|-----------------------------|----------|
| Klausur          | 120                         | ja       |

#### WORKLOAD UND ECTS-LEISTUNGSPUNKTE

| WORKEDAD OND ECTS ELISTOREST ORKIE |                          |                            |                      |
|------------------------------------|--------------------------|----------------------------|----------------------|
| WORKLOAD INSGESAMT (IN H)          | DAVON PRÄSENZZEIT (IN H) | DAVON SELBSTSTUDIUM (IN H) | ECTS-LEISTUNGSPUNKTE |
| 150                                | 60                       | 90                         | 5                    |

#### QUALIFIKATIONSZIELE UND KOMPETENZEN

### **FACHKOMPETENZ**

Mit Abschluss des Moduls sind die Studierenden in der Lage, zu den Theorien, Modellen und Diskursen über elektrische und mechanische Antriebe detaillierte Analysen und Argumentationen aufzubauen. Sie können Zusammenhänge und Einflüsse innerhalb von Problemlagen differenzieren und darauf aufbauend neue Lösungsvorschläge entwickeln und diese kritisch evaluieren.

### METHODENKOMPETENZ

Praktische Anwendungsfälle zur Auslegung und Auswahl von elektrischen und mechanischen Antrieben können definiert, in ihrer Komplexität erfasst, analysiert und daraus wesentliche Einflussfaktoren abgeleitet werden, um darauf aufbauend Lösungsvorschläge zu entwickeln.

### PERSONALE UND SOZIALE KOMPETENZ

----

### ÜBERGREIFENDE HANDLUNGSKOMPETENZ

\_

### LERNEINHEITEN UND INHALTE

| LEHR- UND LERNEINHEITEN | PRÄSENZZEIT | SELBSTSTUDIUM |
|-------------------------|-------------|---------------|
| Antriebstechnik         | 60          | 90            |

### Unit Antriebstechnik:

- Physikalische Grundlagen elektrischer Antriebe als System von Motor, Getriebe und Steuerung, Bewegungsvorgänge
- Zusammenwirken von Motor und Arbeitsmaschine
- Elektrische Maschinen: Gleichstrom-, Wechselstrom- und Drehstrommotoren, Synchron-,

Asynchronmotoren, Linearantriebe

- Ansteuerung elektrischer Maschinen
- Getriebe als Baugruppe (Auswahl, Dimensionierung), Kopplung mit der Arbeitsmaschine, Schutzarten
- Auslegung eines Servoantriebes

Stand vom 01.10.2025 T3MB2103 // Seite 47

#### LERNEINHEITEN UND INHALTE

| LEHR- UND LERNEINHEITEN                  | PRÄSENZZEIT | SELBSTSTUDIUM |
|------------------------------------------|-------------|---------------|
| Antriebstechnik und Übertragungselemente | 60          | 90            |

Unit Antriebstechnik und Übertragungselemente:

Sinnvolle Auswahl aus folgenden Themenbereichen - Empfehlung zwei Fachbereiche mit entsprechender Aufteilung des Gesamtworkloads:

- (1) Elektrische Antriebe
- (2) Mechanische Antriebe
- (3) sonstige Antriebe
- (4) Übertragungselemente (u.a. Getriebe, Kupplungen, Differential, Achsen und Wellen)

### mit folgenden Inhalten:

### (1) Elektrische Antriebe:

- Grundlagen elektr. Antriebe
- Motoren, Getriebe, Steuerungen
- Elektromobilität

### (2) Mechanische Antriebe:

- Grundlagen Verbrennungsmotoren
- Kräfte- und Momente und deren Ausgleich
- Bauteile
- Bauarten

### (3) Sonstige Antriebe:

Grundlagen zur Funktion von z.B. Hybridantriebe, Brennstoffzellen, Strömungsmaschinen, alternative Antriebe

### (4) Übertragungseelemente:

- Getriebetechnik (Mechanische, Hydrodynamische, Hydrostatische und elektrische Getriebe)
- Kraft- und Momentenübertragung
- Kupplungen und weitere Komponenten
- Gestaltung, Eigenschaften und Arten von mechanischen Übertragungselementen zur rotatorischen Energieübertragung

### BESONDERHEITEN

- Es kann ein Labor vorgesehen werden
- Von den Units ist eines als Wahlmodul zu wählen. Daraus ergibt sich ein Modul-Workload von 150 h (60 h Präsenzzeit und 90h Selbststudium).

### VORAUSSETZUNGEN

Stand vom 01.10.2025 T3MB2103 // Seite 48

#### LITERATUR

#### (1)

- Farschtschi: Elektromaschinen in Theorie und Praxis, VDE-Verlag
- Fischer: Elektrische Maschinen, Hanser
- Hagl R.; Elektrische Antriebstechnik, Hanser,
- Schröder, Dirk: Elektrische Maschinen + Antriebe, Springer
- Seefried: Elektrische Maschinen und Antriebstechnik, Vieweg
- Weidauer, J.; Elektrische Antriebstechnik, Publicis Publishing

#### (2)

- Basshuysen (Hsg): Handbuch Verbrennungsmotor: Grundlagen, Komponenten, Systeme, Perspektiven, Vieweg+Teubner
- Grohe: Otto- und Dieselmotoren, Vogle Buchverlag, Würzburg
- Köhler: Verbrennungsmotoren: Motormechanik, Berechnung und Auslegung des Hubkolbenmotors, Vieweg+Teubner

### (3)

- Bauer: Automotive Handbook, Robert Bosch GmbH
- Gescheidle: Fachkunde Kraftfahrzeugtechnik, Europa-Lehrmittel
- Sigloch: Strömungsmaschinen, Hanser
- Pfleiderer, Petermann: Strömungsmaschinen, Springer

#### (4)

- Hagedorn/Thonfeld/Rankers: Konstruktive Getriebelehre, Springer
- Kerle, H., Pittschellis, R.: Einführung in die Getriebelehre, Teubner
- Klement, W.: Fahrzeuggetriebe, Hanser
- Merz, Hermann: Elektrische Maschinen und Antriebe, VDE
- Kremser, Andreas : Elektrische Antriebe und Maschinen, Vieweg+Teubner
- Schönfeld, Rolf: Elektrische Antriebe und Bewegungssteuerung, VDE
- Schröder, Dirk: Regelung von Antriebssystemen, Springer
- Schröder, Dirk: Elektrische Maschinen + Antriebe, Springer
- Füst, Klaus; Elektrische Antriebe, Vieweg + Teubner
- Linse, H.: Elektrotechnik für Maschinenbauer, Teubner
- Weidauer, J.: Elektrische Antriebstechnik, Publicis Publishing
- Brosch, P.: Praxis der Drehstromantriebe, Vogel Fachbuch
- Hagl R.: Elektrische Antriebstechnik, Hanser
- Garbrecht F.: Das 1x1 der Antriebsauslegung, VDE

Stand vom 01.10.2025 T3MB2103 // Seite 49

Studienbereich Technik // School of Engineering
Maschinenbau // Mechanical Engineering
Produktionstechnik // Production Engineering



# Regelungstechnik (T3MB3103)

## **Control Engineering**

### FORMALE ANGABEN ZUM MODUL

MODULNUMMERVERORTUNG IM STUDIENVERLAUFMODULDAUER (SEMESTER)MODULVERANTWORTUNGSPRACHET3MB31033. Studienjahr1Prof. Dr. Wilhelm BrixDeutsch/Englisch

### **EINGESETZTE LEHRFORMEN**

 LEHRFORMEN
 LEHRMETHODEN

 Labor, Vorlesung, Labor, Vorlesung, Übung, Labor
 Laborarbeit, Lehrvortrag, Diskussion, Gruppenarbeit

### EINGESETZTE PRÜFUNGSFORMEN

PRÜFUNGSLEISTUNGPRÜFUNGSUMFANG (IN MINUTEN)BENOTUNGKlausur120ja

#### WORKLOAD UND ECTS-LEISTUNGSPUNKTE

WORKLOAD INSGESAMT (IN H)DAVON PRÄSENZZEIT (IN H)DAVON SELBSTSTUDIUM (IN H)ECTS-LEISTUNGSPUNKTE15060905

### QUALIFIKATIONSZIELE UND KOMPETENZEN

### **FACHKOMPETENZ**

Die Studierenden können relevante Informationen zu regelungstechnischen Fragestellungen interpretieren, einordnen und formulieren und können Verknüpfungen zu anderen Fachgebieten herstellen. Sie kennen Grundideen, Vorgehensweisen und Beschreibungsformen der klassischen Regelungstechnik und können geeignete einfache Reglertypen auswählen, deren Einstellparameter bestimmen und unterschiedliche Regelungen kritisch vergleichen.

### METHODENKOMPETENZ

Die Studierenden sind mit Abschluss des Moduls dafür sensibilisiert, für die Lösung von Projektaufgaben der Regelungstechnik eine systematischen und methodisch fundierten Vorgehensweise zu wählen. Sie strukturieren ihre Aufgaben den Anforderungen der eingesetzten Methode und den Anforderungen der konkreten Anwendungssituation entsprechend und führen kleinere Projekte zum Abschluss.

### PERSONALE UND SOZIALE KOMPETENZ

ÜBERGREIFENDE HANDLUNGSKOMPETENZ

### LERNEINHEITEN UND INHALTE

LEHR- UND LERNEINHEITENPRÄSENZZEITSELBSTSTUDIUMRegelungstechnik3654

- Grundbegriffe der Mess- und Regelungstechnik
- Darstellung und Analyse des dynamischen Verhaltens im Zeit- und Frequenzbereich
- Stationäres Systemverhalten
- Stabilität und Stabilitätskriterien
- Entwurf und Optimierung einfacher Regelungen

Simulation 12 18

- Grundlagen der Simulation (optional)
- Simulation dynamischer Systeme z.B. mit MATLAB/Simulink

Stand vom 01.10.2025 T3MB3103 // Seite 50

#### LERNEINHEITEN UND INHALTE

| PRÄSENZZEIT | SELBSTSTUDIUM |
|-------------|---------------|
| 12          | 18            |
|             |               |
|             |               |
| 12          | 18            |
|             |               |
|             |               |
| 12          | 18            |
|             | 12            |

- Grundlagen der Automatisierungstechnik
- Labor Automatisierungstechnik

#### BESONDERHEITEN

Ausgiebiger Laborteil aus der Mess- und Regelungstechnik mit Automatisierungstechnik kann vorgesehen werden.

Elemente der Messtechnik, Steuerungstechnik und Simulationstechnik können optional integriert werden.

Modul besteht aus einer Pflichtunit (Regelungstechnik) und zwei zu wählenden Wahlunits aus einem Pool von vier.

### VORAUSSETZUNGEN

Sämtliche Mathematik-Module

#### LITERATUR

- Lunze, J. "Regelungstechnik 1: Systemtheoretische Grundlagen, Analyse und Entwurf einschleifiger Regelungen", Verlag Springer Vieweg
- Föllinger, O.: "Regelungstechnik: Einführung in die Methoden und ihre Anwendung", VDE Verlag
- Schulz, G. und Graf.K.: "Regelungstechnik 1", De Gruyter Oldenbourg
- Lunze, J.: Automatisierungstechnik. R. Oldenbourg Verlag
- Litz, L.: Grundlagen der Automatisierungstechnik. Regelungssysteme Steuerungssysteme Hybride Systeme. R. Oldenbourg Verlag
- Scherf, H.E.: "Modellbildung und Simulation dynamischer Systeme", De Gruyter Oldenbourg
- Schrüfer, E., Reindl, L.M. und Zagar.B.: "Elektrische Meßtechnik Messung elektrischer und nichtelektrischer Größen", Carl Hanser Verlag
- Seitz, M.: Speicherprogrammierbare Steuerungen. System- und Programmentwurf für die Fabrik- und Prozessautomatisierung, vertikale Integration. Fachbuchverlag im Carl Hanser Verlag,
- Zander, H.-J.: Steuerung ereignisdiskreter Prozesse. Neuartige Methoden zur Prozessbeschreibung und zum Entwurf von Steuerungsalgorithmen. Springer Vieweg Verlag

Stand vom 01.10.2025 T3MB3103 // Seite 51



## Qualitätsmanagement (T3MB3104)

### **Quality Management**

### FORMALE ANGABEN ZUM MODUL

MODULNUMMERVERORTUNG IM STUDIENVERLAUFMODULDAUER (SEMESTER)MODULVERANTWORTUNGSPRACHET3MB31043. Studienjahr1Prof. Dr.-Ing. Roland MingesDeutsch

### **EINGESETZTE LEHRFORMEN**

LEHRFORMENLEHRMETHODENVorlesung, Übung, LaborLehrvortrag, Diskussion, Gruppenarbeit

### EINGESETZTE PRÜFUNGSFORMEN

PRÜFUNGSLEISTUNGPRÜFUNGSUMFANG (IN MINUTEN)BENOTUNGKlausur120ja

#### WORKLOAD UND ECTS-LEISTUNGSPUNKTE

WORKLOAD INSGESAMT (IN H)
DAVON PRÄSENZZEIT (IN H)
DAVON SELBSTSTUDIUM (IN H)
ECTS-LEISTUNGSPUNKTE
90
5

### QUALIFIKATIONSZIELE UND KOMPETENZEN

#### **FACHKOMPETENZ**

Grundkenntnisse zu QM-relevanten Zusammenhängen, Abläufen und Methoden im industriellen Umfeld

### METHODENKOMPETENZ

erste eigene praktische Erfahrungen in der beispielhaften Anwendung einiger Methoden

### PERSONALE UND SOZIALE KOMPETENZ

Einschätzen der Auswirkung der QM-relevanten Maßnahmen (z. B. Planung, Dokumentation, u. ä.) auf Mitarbeiter sowie Kunden, Lieferanten und unbeteiligte Dritte.

### ÜBERGREIFENDE HANDLUNGSKOMPETENZ

Für das QM relevante Ziele und Zusammenhänge im betrieblichen Alltag erkennen, Methoden zuordnen, sowie exemplarisch anwenden können.

### LERNEINHEITEN UND INHALTE

LEHR- UND LERNEINHEITENPRÄSENZZEITSELBSTSTUDIUMQualitätsmanagement6090

- Rolle des Qualitätsmanagement im Unternehmen,
- Qualitätsmanagement-Handbuch (z. B. Aufbau und Einsatz von Prozesslandkarten,

Prozessbeschreibungen, Ablaufbeschreibungen u. ä.),

- Ziele und Inhalte der Qualitätsnormen beispielhaft kennen und anwenden lernen,
- Ausgewählte Methoden und Hilfsmittel (z. B. Design Review, DRBFM, Qualitätsbewertung,

Zuverlässigkeitstechnik, Toleranzmanagement, Design of Experiments, FMEA,

Qualitätsregelkarte, Prüfmittel, Maschinenprozessfähigkeit u. s. w.) kennen lernen und ggf. beispielhaft anwenden.

- Qualitätstechniken in den verschiedenen Unternehmensbereichen (z. B. Entwicklung, Beschaffung, Fertigung) kennen und exemplarisch anwenden lernen
- Qualität: Kosten und Nutzen.
- Verbindung zu Umweltschutz und Produkthaftung.

### **BESONDERHEITEN**

Ein Labor- und/oder Übungsanteil von bis zu 2 SWS wird empfohlen.

Exkursionen und auch Planspiele können einen sinnvollen Beitrag liefern, verschiedene Unternehmenssituationen kennen und einschätzen zu lernen.

Stand vom 01.10.2025 T3MB3104 // Seite 52

### LITERATUR

- Masing Handbuch Qualitätsmanagement

Tilo Pfeifer; Robert Schmitt.

München; Wien: Hanser, 2014 oder neuer.

- Handbuch QM-Methoden: die richtige Methode auswählen und erfolgreich umsetzen

Gerd F. Kamiske.

München: Hanser, 2015 oder neuer. - ABC des Qualitätsmanagements Gerd F. Kamiske, Jörg-Peter Brauer. München: Hanser, 2012 oder neuer.

- Qualitätsmanagement von A bis Z: Wichtige Begriffe des Qualitätsmanagements und ihre Bedeutung

Gerd F. Kamiske, Jörg-Peter Brauer. München: Hanser, 2011 oder neuer.

- Grundlagen Qualitätsmanagement: Einführung in Geschichte, Begriffe, Systeme und Konzepte

Hans-Dieter Zollondz.

München: Oldenbourg, 2011 oder neuer.

- Qualitätstechniken: Werkzeuge zur Problemlösung und ständigen Verbesserung

Philipp Theden; Hubertus Colsman. München: Hanser, 2013 oder neuer. - DIN EN ISO 9000:2015-11 oder neuer.

Beuth-Verlag

Stand vom 01.10.2025 T3MB3104 // Seite 53



## Handhabungstechnik und Automation (T3MB3201)

## **Industrial Handling and Automation**

### FORMALE ANGABEN ZUM MODUL

MODULNUMMERVERORTUNG IM STUDIENVERLAUFMODULDAUER (SEMESTER)MODULVERANTWORTUNGSPRACHET3MB32013. Studienjahr1Prof. Dipl.-Ing. Anton R. SchweizerDeutsch

#### **EINGESETZTE LEHRFORMEN**

LEHRFORMEN LEHRMETHODEN

Vorlesung, Labor Lehrvortrag, Diskussion, Fallstudien

#### **EINGESETZTE PRÜFUNGSFORMEN**

PRÜFUNGSLEISTUNGPRÜFUNGSUMFANG (IN MINUTEN)BENOTUNGKlausur120ja

#### WORKLOAD UND ECTS-LEISTUNGSPUNKTE

WORKLOAD INSGESAMT (IN H)
DAVON PRÄSENZZEIT (IN H)
DAVON SELBSTSTUDIUM (IN H)
ECTS-LEISTUNGSPUNKTE
90
5

### QUALIFIKATIONSZIELE UND KOMPETENZEN

#### **FACHKOMPETENZ**

Mit Abschluss des Moduls sind die Studierenden in der Lage, zu den Theorien, Modellen und Diskursen über Handlingssysteme und Automationslösungen detaillierte Analysen und Argumentationen aufzubauen. Sie können Zusammenhänge und Einflüsse innerhalb von Problemlagen differenzieren und darauf aufbauend neue Lösungsvorschläge entwickeln und diese kritisch evaluieren.

### METHODENKOMPETENZ

Praktische Anwendungsfälle zur Auslegung und Auswahl von Handlingssystemen und Automationslösungen sowie deren Komponenten können definiert, in ihrer Komplexität erfasst, analysiert und daraus wesentliche Einflussfaktoren abgeleitet werden, um darauf aufbauend Lösungsvorschläge zu entwickeln.

### PERSONALE UND SOZIALE KOMPETENZ

ÜBERGREIFENDE HANDLUNGSKOMPETENZ

### LERNEINHEITEN UND INHALTE

LEHR- UND LERNEINHEITENPRÄSENZZEITSELBSTSTUDIUMHandhabungstechnik und Automation6090

- Grundlagen Materialflusstechnik bei verschiedenen Produktionssystemen (Werkstattfertigung, Taylor, TPS, 6Sigma, one piece flow, ...)
- Methoden der Fertigungs- bzw. Materialflusssteuerung (Push/Pull, Kanban, ERP/MRP, belastungsorientierte Auftragsfreigabe BoA, Netzplantechnik, TOC, ...)
- Materialflusssysteme: Beschickungs-, Förder- und Lagertechniken
- Automationssysteme in der Fertigung / in der Montage
- Industrieroboter: Einsatzfelder, Typen, Aufbau, Steuerung, Programmierarten, Simulation, Programmierung ...
- Digitale Vernetzung von Arbeitsprozessen: Produktionsdaten, Produktdaten, Prozesssteuerung und Prozessüberwachung

### BESONDERHEITEN

Labore können vorgesehen werden

Stand vom 01.10.2025 T3MB3201 // Seite 54

### VORAUSSETZUNGEN

Konstruktion I-III; Fertigungstechnik

### LITERATUR

- Schuh, Günther: Produktionsplanung und Steuerung, Bd. 1-2, Springer Weck, M., Brecher C. : Werkzeugmaschinen, Fertigungssysteme, Bd.1,3,4, Springer
- Brunner, Franz J.: Japanische Erfolgskonzepte, Hanser Ohno, Taiichi: Das Toyota-Produktionssystem, Campus-Verlag
- Takeda, Hitoshi : Das synchrone Produktionssystem, Verlag Vahlen Vogel-Heuser, Birgit : Handbuch Industrie 4.0 Bd.1: Produktion, Springer
- Arnold, Dieter : Materialfluss in Logistiksystemen, Springer
- ten Hompel, Michael : Materialflusssysteme: Förder- und Lagertechnik, Springer
- Kief, H.: CNC-Handbuch 2015/2016, Hanser
   Hesse, Stefan: Robotik Montage Handhabung, Hanser
- Weber, Wolfgang : Industrieroboter: Methoden der Steuerung und Regelung, Hanser
- Maier, Helmut : Grundlagen der Robotik, VDE-Verlag

T3MB3201 // Seite 55 Stand vom 01.10.2025

Studienbereich Technik // School of Engineering
Maschinenbau // Mechanical Engineering
Produktionstechnik // Production Engineering
HORR



## Produktionsplanung (T3MB3202)

### **Production Planning**

### FORMALE ANGABEN ZUM MODUL

| MODULNUMMER | VERORTUNG IM STUDIENVERLAUF | MODULDAUER (SEMESTER) | MODULVERANTWORTUNG        | SPRACHE |
|-------------|-----------------------------|-----------------------|---------------------------|---------|
| T3MB3202    | 3. Studienjahr              | 1                     | Prof. DrIng. Lars Ruhbach | Deutsch |

### **EINGESETZTE LEHRFORMEN**

LEHRFORMEN LEHRMETHODEN

Vorlesung, Labor Lehrvortrag, Diskussion, Gruppenarbeit

### **EINGESETZTE PRÜFUNGSFORMEN**

PRÜFUNGSLEISTUNGPRÜFUNGSUMFANG (IN MINUTEN)BENOTUNGKlausur120ja

#### WORKLOAD UND ECTS-LEISTUNGSPUNKTE

| WORKLOAD INSGESAMT (IN H) | DAVON PRÄSENZZEIT (IN H) | DAVON SELBSTSTUDIUM (IN H) | ECTS-LEISTUNGSPUNKTE |
|---------------------------|--------------------------|----------------------------|----------------------|
| 150                       | 60                       | 90                         | 5                    |

### QUALIFIKATIONSZIELE UND KOMPETENZEN

#### FACHKOMPETENZ

Die Studierenden sind mit Abschluss des Moduls in der Lage, Problemstellungen zu erkennen und durch durchdachte Konzepte, fundierte Planung und gutes Projektmanagement auch bei sich häufig ändernden Anforderungen erfolgreich umzusetzen. Dabei bauen sie auf ihr theoretisches Wissen sowie ihrer Erfahrung aus den Praxisphasen auf. Aus den erworbenen Kenntnissen heraus können wissenschaftliche Bewertungen abgeleitet und Verbesserungspotenziale in der Praxis erkannt werden.

### METHODENKOMPETENZ

Die Studierenden sind mit Abschluss des Moduls in der Lage, für komplexe Praxisanwendungen eine angemessene Methode auszuwählen und anzuwenden. So können die Möglichkeiten, Praktikabilität und Grenzen der eingesetzten Methode einschätzen und sind in der Lage, Handlungsalternativen aufzuzeigen.

### PERSONALE UND SOZIALE KOMPETENZ

Die Studierenden können sowohl eigentändig als auch im Team zielorientiert und nachhaltig handeln. Sie sind sich ihrer Verantwortung im Unternehmen bewusst und können theoretische, wirtschaftlich und ökologische Fragestellungen gegeneinander abwägen.

### ÜBERGREIFENDE HANDLUNGSKOMPETENZ

-

### LERNEINHEITEN UND INHALTE

| LEHR- UND LERNEINHEITEN | PRÄSENZZEIT | SELBSTSTUDIUM |
|-------------------------|-------------|---------------|
| Produktionsplanung      | 60          | 90            |

Stand vom 01.10.2025 T3MB3202 // Seite 56

#### LEHR- UND LERNEINHEITEN PRÄSENZZEIT SELBSTSTUDIUM

- Produktionssysteme und deren Ebenen
- Fertigungs- und Auftragstypen
- PPS-Systeme
- Primär- und Sekundärbedarfsplanung
- Bedarfsermittlung und abgleich
- Materialdisposition
- Auftragsfreigabe
- Neue Ansätze der Produktionsplanung und -steuerung
- Lagerkonzepte und Lagersysteme
- Transportsysteme
- Behälterkonzepte und deren Einfluss auf die Produktion
- Ship-to-Stock und Ship-to-Line-Konzepte
- Strategische und operative Beschaffung
- Incoterms

### BESONDERHEITEN

Ggf. Labor, Übungen, Planspiele oder Gruppenarbeiten Ggf. Ergänzung um Lehreinheiten im begleiteten Selbststudium.

### VORAUSSETZUNGEN

-

### LITERATUR

Wiendahl, H.-P.: Betriebsorganisation für Ingenieure. Carl Hanser, München

Eversheim, W.; Schuh, G.: Betriebshütte \* Produktion und Management. Springer, Berlin

Schuh, G.; (Hrsg.): Produktionsplanung und -steuerung 1: Grundlagen der PPS. VDI-Buch, Springer Berlin

Dickersbach, J.T.; Keller, G.: Produktionsplanung und -steuerung mit SAP. SAP Press

Salvendy, G (Editor): Handbook of Industrial Engineering: Technology and Operations Management Verlag: Wiley-Interscience

Kletti, J.: MES - Manufacturing Execution System, Springer, Berlin

ten Hompel, M.; Jünemann: Materialflussystem: Förder- und Lagertechnik. VDI-Buch, Springer Berlin

Martin, H.: Materialfluß- und Lagerplanung. Springer Berlin

Stand vom 01.10.2025 T3MB3202 // Seite 57

Studienbereich Technik // School of Engineering
Maschinenbau // Mechanical Engineering
Produktionstechnik // Production Engineering
HORR



## Projektgruppenarbeit (T3MB9004)

## Research-Oriented Team Project

### FORMALE ANGABEN ZUM MODUL

| MODULNUMMER | VERORTUNG IM STUDIENVERLAUF | MODULDAUER (SEMESTER) | MODULVERANTWORTUNG         | SPRACHE |
|-------------|-----------------------------|-----------------------|----------------------------|---------|
| T3MB9004    | 3. Studienjahr              | 1                     | Prof. DrIng. Martin Bierer | Deutsch |

#### **EINGESETZTE LEHRFORMEN**

| LEHRFORMEN          | LEHRMETHODEN |
|---------------------|--------------|
| Individualbetreuung | Projekt      |

#### **EINGESETZTE PRÜFUNGSFORMEN**

| PRÜFUNGSLEISTUNG                       | PRÜFUNGSUMFANG (IN MINUTEN) | BENOTUNG |
|----------------------------------------|-----------------------------|----------|
| Klausurarbeit oder Kombinierte Prüfung | Siehe Pruefungsordnung      | ja       |

#### WORKLOAD UND ECTS-LEISTUNGSPUNKTE

| WORKLOAD INSGESAMT (IN H) | DAVON PRÄSENZZEIT (IN H) | DAVON SELBSTSTUDIUM (IN H) | ECTS-LEISTUNGSPUNKTE |
|---------------------------|--------------------------|----------------------------|----------------------|
| 150                       | 30                       | 120                        | 5                    |

### QUALIFIKATIONSZIELE UND KOMPETENZEN

#### FACHKOMPETENZ

Die Studierenden sind in der Lage, komplexe Problemstellungen aus der Praxis so zu analysieren und aufzuarbeiten, dass sie zu diesen entsprechende Konstruktionen und Berechnungen erstellen können. Sie gewinnen die für die Lösung relevanten Informationen, führen das Projekt in einem Team durch und diskutieren kritische Hinweise zur Belastbarkeit ihrer Ergebnisse.

### METHODENKOMPETENZ

Die Studierenden sind mit Abschluss des Moduls in der Lage, Projekte durch durchdachte Konzepte, fundierte Planung und gutes Projektmanagement auch bei sich ändernden Anforderungen erfolgreich umzusetzen. Dabei bauen sie auf ihr theoretisches Wissen sowie ihrer Berufserfahrung auf.

### PERSONALE UND SOZIALE KOMPETENZ

Die Studierenden lernen in Teamarbeit komplexe Fragestellungen zu diskutieren und zu erarbeiten. Sie organisieren das Team und verteilen die diversen Aufgaben selbstständig und zielorientiert. Die Studierenden agieren bewusst in verschiedenen zwischenmenschlichen Situationen. Sie können Konfliktsituationen erkennen und haben erste Lösungsstrategien erprobt.

### ÜBERGREIFENDE HANDLUNGSKOMPETENZ

Die Studierenden haben im Rahmen der Projektgruppenarbeit ihre bisher in Theorie und Praxis erworbenen Kenntnisse und Fähigkeiten einsetzt um in einem neu zusammengestellten Team gemeinsam das Projektziel zu erreichen.

### LERNEINHEITEN UND INHALTE

| LEHR- UND LERNEINHEITEN | PRÄSENZZEIT | SELBSTSTUDIUM |
|-------------------------|-------------|---------------|
| Projektgruppenarbeit    | 30          | 120           |

Stand vom 01.10.2025 T3MB9004 // Seite 58

LEHR- UND LERNEINHEITEN PRÄSENZZEIT SELBSTSTUDIUM

Die Aufgabenstellung für das jeweilige Semester wird in einem separaten Aufgabenblatt beschrieben. Das Funktionsmodell ist bezüglich Gestehungskosten, Abmessungen und ggf. Gewicht beschränkt.

### Leistungsumfang:

- Erfinderisches Brainstorming mit mehreren Lösungsoptionen
- Professionelle (nachvollziehbare) Variantenauswahl
- Leistungsfähige Maschine oder Apparatur
- Detaillierte Kostenkalkulation für den Prototyp und die Serie
- Kreatives Werbeplakat (A2 Hochglanz, gerahmt)
- Werbefilm (z.B. Fernsehspot)
- Normgerechte Bedienungs- und Wartungsanleitung mit einer an die Maschinenrichtlinie
- angelehnten Konformitätserklärung
- Schriftliche Dokumentation

### BESONDERHEITEN

Die Studierenden sollen im Rahmen der Projektgruppenarbeit ihre bisher in Theorie und Praxis erworbenen Kenntnisse und Fähigkeiten einsetzen, um weitgehend selbständig und eigenverantwortlich das Projektziel zu erreichen.

Das Projekt wird in Teamarbeit durchgeführt. Die Gruppe wählt eigenverantwortlich einen Projektleiter und verteilt und organisiert die anfallenden Aufgaben autonom. Die Teamarbeit soll im Vordergrund stehen, wobei die Leistung jedes Einzelnen klar erkennbar bleiben muss.

Der Projektleiter koordiniert die Arbeiten im Team und ist Kontaktperson zum Projektbetreuer.

Ein Projektteam besteht aus 6 bis 8 Studierenden. Die Zusammensetzung des Teams wird von der Dualen Hochschule festgelegt. Hierbei wird darauf geachtet, dass alle Gruppen über Kurse, Studienrichtungen, Geschlecht und Nationalität gemischt sind. Die Prüfungsdauer richtet sich nach der Studien- und Prüfungsordnung.

### VORAUSSETZUNGEN

### LITERATUR

- Patzak G., Rattay G.: Projektmanagement (Leitfaden zum Management von Projekten, Projektportfolios und projektorientierten Unternehmen); Linde International

Stand vom 01.10.2025 T3MB9004 // Seite 59



## Produktionsmaschinen (T3MB9065)

### **Production Systems**

### FORMALE ANGABEN ZUM MODUL

MODULNUMMERVERORTUNG IM STUDIENVERLAUFMODULDAUER (SEMESTER)MODULVERANTWORTUNGSPRACHET3MB90653. Studienjahr1Prof. Dipl.-Ing. Anton R. SchweizerDeutsch

### **EINGESETZTE LEHRFORMEN**

LEHRFORMENLEHRMETHODENVorlesung, LaborLehrvortrag, Diskussion

#### EINGESETZTE PRÜFUNGSFORMEN

PRÜFUNGSLEISTUNGPRÜFUNGSUMFANG (IN MINUTEN)BENOTUNGKlausurarbeit oder Kombinierte Prüfung120ja

#### WORKLOAD UND ECTS-LEISTUNGSPUNKTE

WORKLOAD INSGESAMT (IN H)DAVON PRÄSENZZEIT (IN H)DAVON SELBSTSTUDIUM (IN H)ECTS-LEISTUNGSPUNKTE15060905

### QUALIFIKATIONSZIELE UND KOMPETENZEN

#### **FACHKOMPETENZ**

Mit Abschluss des Moduls sind die Studierenden in der Lage, zu den Theorien, Modellen und Diskursen über Produktionsmaschinen detaillierte Analysen und Argumentationen aufzubauen. Sie können Zusammenhänge und Einflüsse innerhalb von Problemlagen differenzieren und darauf aufbauend neue Lösungsvorschläge entwickeln und diese kritisch evaluieren.

### METHODENKOMPETENZ

Praktische Anwendungsfälle zur Auslegung und Auswahl von Produktionsmaschinen und deren Komponenten können definiert, in ihrer Komplexität erfasst, analysiert und daraus wesentliche Einflussfaktoren abgeleitet werden, um darauf aufbauend Lösungsvorschläge zu entwickeln.

### PERSONALE UND SOZIALE KOMPETENZ

-

### ÜBERGREIFENDE HANDLUNGSKOMPETENZ

-

### LERNEINHEITEN UND INHALTE

LEHR- UND LERNEINHEITENPRÄSENZZEITSELBSTSTUDIUMProduktionsmaschinen6090

- Leistungs-, Genauigkeits- u. Automatisierungsanforderungen
- geometrische, statische, dynamische, thermische Eigenschaften
- Kinematik und Bauformen, vergleichende Bewertungen
- Konstruktive Gestaltung und Dimensionierung wesentlicher Funktionsbaugruppen
- mechanische und steuerungstechnische Komponenten
- Mess-, steuer- und regelungstechnische Einflüsse auf das Arbeitsverhalten
- Automationslösungen und Möglichkeiten digitaler Anwendungen/Vernetzungen
- Kühlschmiertechniken und Peripheriekomponenten

### BESONDERHEITEN

Vorlesungen mit Labor

Die Prüfungsdauer bezieht sich auf die Klausur.

Stand vom 01.10.2025 T3MB9065 // Seite 60

### LITERATUR

- Weck, M., Brecher C.: Werkzeugmaschinen, Fertigungssysteme, Bd.1 bis 5, Springer
- Neugebauer, R.: Werkzeugmaschinen: Aufbau, Funktion und Anwendung von spanenden und abtragenden Werkzeugmaschinen, Springer
- Hirsch, A.: Werkzeugmaschinen: Grundlagen, Auslegung, Ausführungsbeispiele, Springer
   Conrad, K.-J. Taschenbuch der Werkzeugmaschinen, Hanser
- Kief, H., Roschiwal, H., Schwarz, K.: CNC-Handbuch 2015/2016, Hanser

Stand vom 01.10.2025 T3MB9065 // Seite 61



## Messtechnik & Statistik (T3MB9038)

## **Measuring Technology and Statistics**

### FORMALE ANGABEN ZUM MODUL

| MODULNUMMER | VERORTUNG IM STUDIENVERLAUF | MODULDAUER (SEMESTER) | MODULVERANTWORTUNG         | SPRACHE |
|-------------|-----------------------------|-----------------------|----------------------------|---------|
| T3MB9038    | 3. Studienjahr              | 1                     | Prof. DrIng. Martin Bierer | Deutsch |

### **EINGESETZTE LEHRFORMEN**

 LEHRFORMEN
 LEHRMETHODEN

 Vorlesung, Labor
 Lehrvortrag, Diskussion, Gruppenarbeit

### **EINGESETZTE PRÜFUNGSFORMEN**

PRÜFUNGSLEISTUNGPRÜFUNGSUMFANG (IN MINUTEN)BENOTUNGKlausurarbeit oder Kombinierte Prüfung120ja

#### WORKLOAD UND ECTS-LEISTUNGSPUNKTE

| WORKLOAD INSGESAMT (IN H) | DAVON PRÄSENZZEIT (IN H) | DAVON SELBSTSTUDIUM (IN H) | ECTS-LEISTUNGSPUNKTE |
|---------------------------|--------------------------|----------------------------|----------------------|
| 150                       | 60                       | 90                         | 5                    |

### QUALIFIKATIONSZIELE UND KOMPETENZEN

#### **FACHKOMPETENZ**

- Verstehen der messtechnischen Grundlagen
- Analyse und Bewertung verschiedener Messprinzipien, Messverfahren und Messmethoden
- Fähigkeit zur Auswahl von geeigneten Messmethoden für industrielle Messaufgaben
- Qualifizierte Auswahl und Änwendung von Messwertgebern für verschiedene Messaufgaben
- Bestimmung und Analyse systematischer und zufälliger Messunsicherheiten und deren Auswirkung auf das Messergebnis

### METHODENKOMPETENZ

Fähigkeit zur Lösung verschiedenster Messaufgaben im beruflichen Umfeld eines Ingenieurs. Analyse der dabei auftretenden Herausforderungen und Bewertungen der erzielten und erzielbaren Messgenauigkeiten.

### PERSONALE UND SOZIALE KOMPETENZ

Die Studierenden können sowohl eigenständig, also auch im Team zielorientiert und nachhaltig handeln.

### ÜBERGREIFENDE HANDLUNGSKOMPETENZ

Die Absolventen sind auf eine komplexe Arbeitswelt vorbereitet. Sie finden sich schnell in neuen Bereichen zurecht. Sie haben gelernt, die eigenen Fähigkeiten selbständig auf die sich ständig verändernden Anforderungen anzupassen. Durch die starke Einbindung in die Praxis verfügen die Studierenden über ein hohes Verständnis im Ingenieurumfeld.

### LERNEINHEITEN UND INHALTE

| LEHR- UND LERNEINHEITEN   | PRÄSENZZEIT | SELBSTSTUDIUM |
|---------------------------|-------------|---------------|
| Messtechnik und Statistik | 60          | 90            |

Stand vom 01.10.2025 T3MB9038 // Seite 62

#### LEHR- UND LERNEINHEITEN PRÄSENZZEIT SELBSTSTUDIUM

- Grundlagen der Messtechnik
- Wichtige Sensoren und Messverfahren
- Messsignalerfassung, -verarbeitung und -analyse
- Grundlagen der Messfehlerbetrachtungen (systematische und zufällige Abweichungen)
- Statistische Auswertung und Fehlerfortpflanzung

Optional kann in einigen Gebieten besonders vertieft werden. Zum Beispiel:

- Aktuatorik,
- Prüfmittelgenauigkeit,
- Fertigungsmesstechnik,
- Verstärker- und Übertragungstechnik,
- Oberflächen- sowie Form- und Lageprüftechnik,
- Sensorprinzipien

(Resistive, Induktive, Kapazitive Aufnehmer, Piezoelektrik,

Kraft-, Druck- und Temperaturaufnehmer)

- Anwendungsbeispiele in vom Dozenten frei gewählten Anwendungen, also z.B. Kraftfahrzeugen, GPS, etc.

### **BESONDERHEITEN**

Zu verschiedenen Teilgebieten kann ein eigenständiges Labor oder Präsentationen im Labor vorgesehen werden. Die Prüfungsdauer bezieht sich auf die Klausur.

### VORAUSSETZUNGEN

### LITERATUR

- Hoffmann, J.: Taschenbuch der Messtechnik; Hanser Fachbuch-verlag.
- Lerch, R.: Elektrische Messtechnik; Springer.
- Schiessle, E.: Industriesensorik; Vogel Verlag.
- Giesecke, P.: Industrielle Messtechnik; Hüthig-Verlag.
- Profos, P., Pfeifer, T.: Grundlagen der Messtechnk; Oldenbourg-Verlag.
- Parthier, R.: Messtechnik Grundlagen und Anwendungen der elektrischen Messtechnik; Springer Vieweg.

Stand vom 01.10.2025 T3MB9038 // Seite 63

Studienbereich Technik // School of Engineering
Maschinenbau // Mechanical Engineering
Produktionstechnik // Production Engineering
HORB



## Messtechnik (T3MB9074)

## **Measuring Methods**

### FORMALE ANGABEN ZUM MODUL

 MODULNUMMER
 VERORTUNG IM STUDIENVERLAUF
 MODULDAUER (SEMESTER)
 MODULVERANTWORTUNG
 SPRACHE

 T3MB9074
 2. Studienjahr
 1
 Prof. Christian Stanske # nicht mehr verwenden #
 Deutsch

**EINGESETZTE LEHRFORMEN** 

LEHRFORMEN LEHRMETHODEN

Vorlesung, Übung Lehrvortrag, Diskussion, Gruppenarbeit

EINGESETZTE PRÜFUNGSFORMEN

PRÜFUNGSLEISTUNGPRÜFUNGSUMFANG (IN MINUTEN)BENOTUNGKlausurarbeit oder Kombinierte Prüfung120ja

WORKLOAD UND ECTS-LEISTUNGSPUNKTE

WORKLOAD INSGESAMT (IN H)DAVON PRÄSENZZEIT (IN H)DAVON SELBSTSTUDIUM (IN H)ECTS-LEISTUNGSPUNKTE15060905

### QUALIFIKATIONSZIELE UND KOMPETENZEN

### **FACHKOMPETENZ**

Die Studierenden sind in der Lage, Messungen zielgerichtet zu planen und unter Einsatz der geeigneten Geräte richtig durchzuführen sowie die Ergebnisse auszuwerten und zu beurteilen. Hieraus können sie Konsequenzen für einzuleitende Maßnahmen ableiten.

METHODENKOMPETENZ

-

PERSONALE UND SOZIALE KOMPETENZ

-

ÜBERGREIFENDE HANDLUNGSKOMPETENZ

\_

### LERNEINHEITEN UND INHALTE

LEHR- UND LERNEINHEITENPRÄSENZZEITSELBSTSTUDIUMMesstechnik6090

- Grundlagen der Messtechnik
- Sensoren und Messverfahren
- Messsignalerfassung, -verarbeitung und -analyse
- Messfehlerbetrachtungen (systematische und zufällige Abweichungen)
- Statistische Auswertung und Fehlerfortpflanzung

Optional kann in einigen Gebeieten besonders vertieft werden:

- Prüfmittelgenauigkeit,
- Fertigungsmesstechnik,
- Verstärker- und Übertragungstechnik,
- Oberflächen- sowie Form- und Lageprüftechnik,
- Sensorprinzipien (Resistive, induktive, kapazitive Aufnehmer, Piezoelektrik, Kraft-, Druck- und

Temperaturaufnehmer)

- Anwendungsbeispiele, z.B. Kraftfahrzeuge, GPS etc.

Stand vom 01.10.2025 T3MB9074 // Seite 64

### **BESONDERHEITEN**

Die Vorlesung kann durch messtechnische Laborversuche unterstützt werden, wobei das Erkennen der theoretischen Zusammenhänge und Auswirkungen besser zu begreifen sind.

Die Prüfungsdauer richtet sich nach der Studien- und Prüfungsordnung.

### VORAUSSETZUNGEN

### LITERATUR

- Hoffmann, J.: Taschenbuch der Messtechnik; Hanser Fachbuch-verlag, Leipzig.
- Lerch, R.: Elektrische Messtechnik; Springer, Berlin.
- Schiessle, E.: Industriesensorik; Vogel-Verlag, Würzburg.
- Giesecke, P.: Industrielle Messtechnik, Hüthig-Verlag, Heidelberg.
- Parthier, R.: Messtechnik Grundlagen und Anwendungen der elektrischen Messtechnik; Springer Vieweg, Wiesbaden.
- Profos, P., Pfeifer, T.: Grundlagen der Messtechnk; Oldenbourg-Verlag, Oldenburg.

Stand vom 01.10.2025 T3MB9074 // Seite 65



## Produktionssysteme und Produktionsmanagement (T3MB9078)

## **Production Systems and Production Management**

|  | 711M MODIII |
|--|-------------|
|  |             |

| MODULNUMMER | VERORTUNG IM STUDIENVERLAUF | MODULDAUER (SEMESTER) | MODULVERANTWORTUNG        | SPRACHE |
|-------------|-----------------------------|-----------------------|---------------------------|---------|
| T3MB9078    | 3. Studienjahr              | 1                     | Prof. DrIng. Lars Ruhbach | Deutsch |

#### **EINGESETZTE LEHRFORMEN**

| LEHRFORMEN       | LEHRMETHODEN                         |
|------------------|--------------------------------------|
| Vorlesung, Labor | Lehrvortrag, Diskussion, Fallstudien |

### EINGESETZTE PRÜFUNGSFORMEN

| PRÜFUNGSLEISTUNG                       | PRÜFUNGSUMFANG (IN MINUTEN) | BENOTUNG |
|----------------------------------------|-----------------------------|----------|
| Klausurarbeit oder Kombinierte Prüfung | 90                          | ja       |

#### WORKLOAD UND ECTS-LEISTUNGSPUNKTE

| WORKLOAD INSGESAMT (IN H) | DAVON PRÄSENZZEIT (IN H) | DAVON SELBSTSTUDIUM (IN H) | ECTS-LEISTUNGSPUNKTE |
|---------------------------|--------------------------|----------------------------|----------------------|
| 150                       | 60                       | 90                         | 5                    |

### QUALIFIKATIONSZIELE UND KOMPETENZEN

#### FACHKOMPETENZ

Die Studierenden sind mit Abschluss des Moduls in der Lage, den Wertstrom eines produzierenden Unternehmens zu beurteilen und eine Produktion hinsichtlich Kosten sowie Verbesserungspotenzialen in ersten Ansätzen zu analysieren. Zu den in den Modulinhalten aufgeführten Prizipien, Bausteinen und Werkzeugen können die Studierenden praktische Anwendungsfälle definieren und diese in ihrer Komplexität erfassen und analysieren sowie die wesentlichen Einflussfaktoren definieren. Die Studierenden sind in der Lage, Lösungsvorschläge zu entwickeln.

### METHODENKOMPETENZ

Die Studierenden sind mit Abschluss des Moduls in der Lage, für unternehmensspezifische und komplexe Praxisanwendungen eine angemessene Methode auszuwählen und anzuwenden. So können die Möglichkeiten, Praktikabilität und Grenzen der eingesetzten Methode einschätzen und sind in der Lage, Handlungsalternativen aufzuzeigen.

### PERSONALE UND SOZIALE KOMPETENZ

Die Studierenden können sowohl eigenständig, also auch im Team zielorientiert und nachhaltig handeln. Die Studierenden sind sich Ihrer Rolle und Verantwortung im Unternehmen speziell im Produktionsbereich bewusst. Sie können theoretische, wirtschaftliche und ökologische Fragestellungen gegeneinander abwägen und lösungsorientiert umsetzen.

### ÜBERGREIFENDE HANDLUNGSKOMPETENZ

Die Studierenden können selbstständig Lernprozesse gestalten, Problemlösungen erarbeiten, in Teams diskutieren und und bewerten. Sie können veränderte Sachverhalte schnell erfassen und auf diese reagieren.

### LERNEINHEITEN UND INHALTE

| LEHR- UND LERNEINHEITEN                      | PRÄSENZZEIT | SELBSTSTUDIUM |
|----------------------------------------------|-------------|---------------|
| Produktionssysteme und Produktionsmanagement | 60          | 90            |

Stand vom 01.10.2025 T3MB9078 // Seite 66

#### LEHR- UND LERNEINHEITEN PRÄSENZZEIT SELBSTSTUDIUM

- Supply Chain Management
- Grundlagen ganzheitlicher Produktionssysteme
- Grundlagen der Fertigungs- und Montageorganisation
- Prinzipien, Bausteine und Methoden des Lean Managements
- Produktion im Kundentakt
- Pull-Prinzip
- Synchronität in der Produktion
- Shopfloor Management
- Theory of Constraints
- Lean Administration
- Grundlagen des Veränderungsmanagements
- Productionscontrolling
- Ansätze der Digitalisierung

### BESONDERHEITEN

Ggf. Planspiel (ca. 4h) Ggf. Ergänzung um Lehreinheiten im begleiteten Selbststudium. Die Prüfungsdauer bezieht sich auf die Klausur.

#### VORAUSSETZUNGEN

-

#### LITERATUR

Adam, D.: Produktionsmanagement. Gabler Verlag

Bauer, S.: Produktionssysteme wettbewerbsfähig gestalten. Hanser Verlag

Brunner, F.J.; Brenner, J.: Lean Production: Praktische Umsetzung zur Erhöhung der Wertschöpfung. Hanser Verlag

Busse von Colbe, W.; Coenenberg, A.G.: Kajüter, P.; Linnhoff, U.: Betriebswirtschaft für Führungskräfte. Schäfer-Poeschel Verlag

Eversheim, W.; Schuh, G.: Betriebshütte – Produktion und Management. Springer, Berlin

Goldratt, E.M.; Cox, J.: Das Ziel. Campus Verlag

Liker, J.K.: Der Toyota-Weg, Praxisbuch. Finanzbuch Verlag

Rother, M.; Shook, J.: Sehen lernen – Mit Wertstromdesign die Wertschöpfung erhöhen und Verschwendung beseitigen. Workbooks Lean Management Institut.

Aachen

Steven, M.: Produktionsmanagement. Verlag W.Kohlhammer Taked, H.: Das synchrone Produktionssystem. mi-Fachverlag

Stand vom 01.10.2025 T3MB9078 // Seite 67

Studienbereich Technik // School of Engineering
Maschinenbau // Mechanical Engineering
Produktionstechnik // Production Engineering
HORR



# Managementsysteme (T3MB9141)

### **Management Systems**

### FORMALE ANGABEN ZUM MODUL

MODULNUMMERVERORTUNG IM STUDIENVERLAUFMODULDAUER (SEMESTER)MODULVERANTWORTUNGSPRACHET3MB91412. Studienjahr1Prof. M. Sc. Antje KatonaDeutsch

### **EINGESETZTE LEHRFORMEN**

LEHRFORMEN LEHRMETHODEN

Vorlesung Lehrvortrag, Diskussion, Gruppenarbeit

### **EINGESETZTE PRÜFUNGSFORMEN**

PRÜFUNGSLEISTUNGPRÜFUNGSUMFANG (IN MINUTEN)BENOTUNGKlausurarbeit oder Kombinierte Prüfung120ja

#### WORKLOAD UND ECTS-LEISTUNGSPUNKTE

WORKLOAD INSGESAMT (IN H)DAVON PRÄSENZZEIT (IN H)DAVON SELBSTSTUDIUM (IN H)ECTS-LEISTUNGSPUNKTE15060905

### QUALIFIKATIONSZIELE UND KOMPETENZEN

### FACHKOMPETENZ

Die Studierenden sind in der Lage, komplexe Problemstellungen innerhalb des Unternehmens zu verstehen und so zu analysieren und aufzuarbeiten, dass sie zu diesen entsprechende Aufstellungen, Berechnungen und Versuche erstellen können. Einschätzen der Auswirkung der Management-relevanten Maßnahmen (z. B. Planung, Dokumentation, u. ä.) auf Mitarbeiter sowie Kunden, Lieferanten und unbeteiligte Dritte.

### METHODENKOMPETENZ

Die Studierenden verfügen über das in dem Modulinhalt Managmentsysteme aufgeführte Spektrum an Methoden und Techniken zur Bearbeitung komplexer, wissenschaftlicher oder wirtschaftlicher Probleme in ihrem Studienfach, aus denen sie angemessene Methoden auswählen und anwenden, um neue Lösungen zu erarbeiten. Bei einzelnen Methoden verfügen Sie über vertieftes Fach- und Anwendungswissen.

### PERSONALE UND SOZIALE KOMPETENZ

-

### ÜBERGREIFENDE HANDLUNGSKOMPETENZ

\_

### LERNEINHEITEN UND INHALTE

| LEHR- UND LERNEINHEITEN | PRÄSENZZEIT | SELBSTSTUDIUM |
|-------------------------|-------------|---------------|
| Managementsysteme       | 60          | 90            |

Stand vom 01.10.2025 T3MB9141 // Seite 68

#### LEHR- UND LERNEINHEITEN PRÄSENZZEIT SELBSTSTUDIUM

### Qualitätsmanagement:

- Rolle des Qualitätsmanagement im Unternehmen,
- Qualitätsmanagement-Handbuch (z. B. Aufbau und Einsatz von Prozesslandkarten,

Prozessbeschreibungen, Ablaufbeschreibungen u. ä.),

- Ziele und Inhalte der Qualitätsnormen
- Ausgewählte Methoden und Hilfsmittel (z. B. Design Review, DRBFM, Qualitätsbewertung, Zuverlässigkeitstechnik, Toleranzmanagement, Design of Experiments, FMEA,

Qualitätsregelkarte, Prüfmittel, Maschinenprozessfähigkeit u. s. w.) kennen lernen und ggf. beispielhaft anwenden.

#### Projektmanagement:

- fallspezifische Grundlagen und Grundbegriffe des Projektmanagement
- Projektstart, Projektziele, Projektrisiken
- Projektstrukturplan
- Ablauf- und Terminplanung
- Kosten- und Ressourcenplanung
- Konfigurations- und Änderungsmanagement Projektsteuerung

### Umweltschutzmanagement:

- Umweltpolitik, -auswirkungen und -aspekte
- Umweltmanagementsystem nach der DIN EN ISO 14001
- Energiemanagementsystem nach der DIN EN ISO 50001

### Arbeitsschutzmanagement:

- Europäische Vorgaben
- Gesetze, Normen, Vorgaben
- Sozialgesetzbücher
- Überwachungsorgane / Staatliche Aufsichtsbehörde und Unfallversicherungsträger
- Technische Regelwerke / Betriebssicherheit, Gefahrstoffe
- Gefährdungsbeurteilung
- Mitarbeiterunterweisung
- Umsetzung im Unternehmen (Arbeitsschutzmanagementsystem OHSAS 18001)

#### Arbeitswissenschaften:

Gestaltung von Arbeitsaufgabe und Arbeitssystem, Sicherheit und Gesundheitsschutz am Arbeitsplatz, unter Berücksichtigung von Technik, Arbeitsumgebung und Einsatz der Informations- und Kommunikationstechnologien, insbesondere Mensch-Maschine-Interaktion bzw. Kollaboration.

### Kostenmanagement:

- Grundlagen und Begriffe der Betriebswirtschaft
- Grundlagen der Kosten- und Leistungsrechnung
- Kosten- arten/-stellen/-trägerrechnung
- Plan- und Istkostenrechnung
- Voll- und Teilkostenrechnung
- Finanzierung/Leasing
- Investition/Abschreibung
- Kalkulation
- Strategisches/Operatives/Nachhaltiges Kostenmanagement
- Controlling/Fuhrpark-Controlling

### BESONDERHEITEN

Die Wahlpflichtunits sind wahlweise durch den SGL aus den vorgeschlagenen Kapiteln der entsprechenden Unit festzulegen. Die Prüfungsdauer bezieht sich auf die Klausur.

### VORAUSSETZUNGEN

Stand vom 01.10.2025 T3MB9141 // Seite 69

### LITERATUR

- Europäisches Recht, -Richtlinien
- Nationale Gesetze, Verordnungen
- Normvorgaben (z.B. DIN EN ISO 9000:2015)
- Masing Handbuch Qualitätsmanagement
- Handbuch QM-Methoden: Gerd F. Kamiske.
- ABC des Qualitätsmanagements: Gerd F. Kamiske, Jörg-Peter Brauer.
- Qualitätsmanagement von A bis Z: Wichtige Begriffe des Qualitätsmanagements und ihre Bedeutung Gerd F. Kamiske, Jörg-Peter Brauer
- Qualitätstechniken: Werkzeuge zur Problemlösung und ständigen Verbesserung: Philipp Theden; Hubertus Colsman
- RKW/GPM (Hrsg.): Projektmanagement-Fachmann
- Heinz Schelle, Roland Ottmann, Astrid Pfeiffer: ProjektManager
- Manfred Burghardt: Projektmanagement: Leitfaden für die Planung, Überwachung und Steuerung von Projekten
- Schlick, C. M.; Bruder, R.; Luczak, H.: Arbeitswissenschaft. Springer
- Botthof, A.; Hartmann, E. A.: Zukunft der Arbeit in Industrie 4.0. Springer

Stand vom 01.10.2025 T3MB9141 // Seite 70

Studienbereich Technik // School of Engineering Maschinenbau // Mechanical Engineering Produktionstechnik // Production Engineering HORB



## Sozialkompetenzen (T3\_Z9999)

### Interpersonal Skills

| EU BM | AIE. | $\Lambda$ NIC. $\Lambda$ | REN | 7111// | MODIII |
|-------|------|--------------------------|-----|--------|--------|

MODULNUMMERVERORTUNG IM STUDIENVERLAUFMODULDAUER (SEMESTER)MODULVERANTWORTUNGSPRACHET3\_Z9999-1Prof. Dr.-lng. Joachim FrechDeutsch

### **EINGESETZTE LEHRFORMEN**

LEHRFORMEN LEHRMETHODEN

### **EINGESETZTE PRÜFUNGSFORMEN**

PRÜFUNGSLEISTUNGPRÜFUNGSUMFANG (IN MINUTEN)BENOTUNGReferat30Bestanden/ Nicht-Bestanden

#### WORKLOAD UND ECTS-LEISTUNGSPUNKTE

WORKLOAD INSGESAMT (IN H)
DAVON PRÄSENZZEIT (IN H)
DAVON SELBSTSTUDIUM (IN H)
ECTS-LEISTUNGSPUNKTE
0
5

### QUALIFIKATIONSZIELE UND KOMPETENZEN

#### FACHKOMPETENZ

Im Modul Sozialkompetenzen zeigen die Studierenden, dass sie in der Lage sind sich langfristig und erfolgreich für ein Thema zu engagieren und die notwendigen Fachkenntnisse aufzubauen und anzuwenden.

### METHODENKOMPETENZ

Die Studierenden können selbstständig ein umfassendes Projekt begleiten und sich durch die Erfolgsaussichten und Erfolge motivieren. Sie eignen sich das dazu notwendige Fachwissen und die spezifischen Methodenkompetenzen eigenständig an.

### PERSONALE UND SOZIALE KOMPETENZ

Die Studierenden sind in der Lage sich mit und für andere in sozialen und caritativem Bereich zu engagieren. Sie kommunizieren dazu in geeigneter Weise und kooperieren mit anderen Personengruppen. Trotz anspruchsvoller Aufgaben vermeiden sie Konflikte oder tragen zur Bewältigung bestehender Konflikte bei. In Beziehungen mit Mitmenschen handeln Sie der Situation angemessen und können zu zur Lösung von gemeinsamen Zielen beitragen.

### ÜBERGREIFENDE HANDLUNGSKOMPETENZ

### LERNEINHEITEN UND INHALTE

| LEHR- UND LERNEINHEITEN | PRÄSENZZEIT | SELBSTSTUDIUM |
|-------------------------|-------------|---------------|
|                         | 0           | 0             |

Stand vom 01.10.2025 T3\_Z9999 // Seite 71

### **BESONDERHEITEN**

Das Modul Sozialkompetenz nach §3 Abs. (6) StuPrO DHBW Technik kann ein anderes Modul ersetzen. Die Wahl dieses Moduls ist vor Beginn mit dem Studiengangsleiter abzustimmen, der die grundsätzliche Anerkennungsmöglichkeit prüft und dem Studierenden damit die Wahl genehmigt. Der Studiengangleiter definiert in Abstimmung mit dem Studierenden welches Modul ersetzt wird.

Mögliche außergewöhnliche Leistungen können hierfür sein:

- Mehrjährige verantwortliche Funktion in der studentischen Selbstverwaltung (StuV, AStA, studentisches Gremienmitglied) oder
- umfangreiche Betreuungsleistung im Rahmen eines internationalen Studentenaustausches, wozu ein Nachweis durch einen schriftlichen Betreuungsbericht erbracht werden sollte oder
- die Leitung von Tutorien die auf Beschluss des Studiengangleiters eingerichtet wurden oder
- ähnliche Aktivitäten im sozialen und caritativem Bereich.

Der Umfang der Aktivitäten muss dem geforderten Workload mindestens entsprechen.

| VORAUSSETZUNGEN |  |
|-----------------|--|
| -               |  |
|                 |  |
|                 |  |
| LITERATUR       |  |

Stand vom 01.10.2025 T3\_Z9999 // Seite 72

Studienbereich Technik // School of Engineering
Maschinenbau // Mechanical Engineering
Produktionstechnik // Production Engineering
HORB



# Bachelorarbeit (T3\_3300)

#### **Bachelor Thesis**

| <b>EUBMV</b> | I E ANG | AREN 7 | TIME NA | UDIII |
|--------------|---------|--------|---------|-------|

 MODULNUMMER
 VERORTUNG IM STUDIENVERLAUF
 MODULDAUER (SEMESTER)
 MODULVERANTWORTUNG
 SPRACHE

 T3\_3300
 3. Studienjahr
 1
 Prof. Dr.-Ing. Joachim Frech

#### **EINGESETZTE LEHRFORMEN**

LEHRFORMENLEHRMETHODENIndividualbetreuungProjekt

#### **EINGESETZTE PRÜFUNGSFORMEN**

PRÜFUNGSLEISTUNGPRÜFUNGSUMFANG (IN MINUTEN)BENOTUNGBachelor-ArbeitSiehe Pruefungsordnungja

#### WORKLOAD UND ECTS-LEISTUNGSPUNKTE

WORKLOAD INSGESAMT (IN H)DAVON PRÄSENZZEIT (IN H)DAVON SELBSTSTUDIUM (IN H)ECTS-LEISTUNGSPUNKTE360635412

### QUALIFIKATIONSZIELE UND KOMPETENZEN

**FACHKOMPETENZ** 

-

METHODENKOMPETENZ

-

PERSONALE UND SOZIALE KOMPETENZ

-

### ÜBERGREIFENDE HANDLUNGSKOMPETENZ

Die Studierenden erfassen industrielle Problemstellungen in einem breiten Kontext und in realistischer Komplexität. Sie haben ein gutes Verständnis von organisatorischen und inhaltlichen Zusammenhängen sowie von Organisationsstrukturen, Produkten, Verfahren, Maßnahmen, Prozessen, Anforderungen und gesetzlichen Grundlagen. Sie analysieren kritisch, welche Einflussfaktoren zur Lösung des Problems beachtet werden müssen und können beurteilen, inwiefern theoretische Modelle einen Beitrag zur Lösung des Problems leisten können. Die Studierenden können sich selbstständig, nur mit geringer Anleitung in theoretische Grundlagen eines Themengebiets vertiefend einarbeiten und den allgemeinen Stand des Wissens erwerben. Sie können auf der Grundlage von Theorie und Praxis selbstständig Lösungen entwickeln und Alternativen bewerten. Sie sind in der Lage eine wissenschaftliche Arbeit als Teil eines Praxisprojektes effizient zu steuern und wissenschaftlich korrekt und verständlich zu dokumentieren.

Die Studierenden zeichnen sich durch Eigenverantwortung und Tatkraft aus, sie sind auch im Kontext einer globalisierten Arbeitswelt handlungsfähig. Sie weisen eine reflektierte Haltung zu gesellschaftlichen, soziale und ökologischen Implikationen des eigenen Handelns auf.

### LERNEINHEITEN UND INHALTE

| LEHR- UND LERNEINHEITEN | PRASENZZEIT | SELBSTSTUDIUM |
|-------------------------|-------------|---------------|
| Bachelorarbeit          | 6           | 354           |
|                         |             |               |

#### BESONDERHEITEN

Es wird auf die "Leitlinien für die Bearbeitung und Dokumentation der Module Praxisprojekt I bis III, Studienarbeit und Bachelorarbeit" der Fachkommission Technik der DHBW hingewiesen.

Stand vom 01.10.2025 T3\_3300 // Seite 73

Kornmeier, M., Wissenschaftlich schreiben leicht gemacht für Bachelor, Master und Dissertation, Bern

Stand vom 01.10.2025 T3\_3300 // Seite 74



# Konstruktions- und Entwicklungstechnik (T3MB3101)

# **Engineering Design and Development**

#### FORMALE ANGABEN ZUM MODUL

| MODULNUMMER        | VERORTUNG IM STUDIENVERLAUF | MODULDAUER (SEMESTER) | MODULVERANTWORTUNG           | SPRACHE          |
|--------------------|-----------------------------|-----------------------|------------------------------|------------------|
| T3MB3101           | 2. Studienjahr              | 2                     | Prof. DrIng. Norbert Schinko | Deutsch/Englisch |
|                    |                             |                       |                              |                  |
| FINCECETZTE LEUREO |                             |                       |                              |                  |

#### **EINGESETZTE LEHRFORMEN**

| LEHRFORMEN       | LEHRMETHODEN                           |
|------------------|----------------------------------------|
| Vorlesung, Übung | Lehrvortrag, Diskussion, Gruppenarbeit |

#### **EINGESETZTE PRÜFUNGSFORMEN**

| PRÜFUNGSLEISTUNG                       | PRÜFUNGSUMFANG (IN MINUTEN) | BENOTUNG |
|----------------------------------------|-----------------------------|----------|
| Klausurarbeit oder Kombinierte Prüfung | 120                         | ja       |

#### WORKLOAD UND ECTS-LEISTUNGSPUNKTE

| WORKLOAD INSGESAMT (IN H) | DAVON PRÄSENZZEIT (IN H) | DAVON SELBSTSTUDIUM (IN H) | ECTS-LEISTUNGSPUNKTE |
|---------------------------|--------------------------|----------------------------|----------------------|
| 150                       | 60                       | 90                         | 5                    |

#### QUALIFIKATIONSZIELE UND KOMPETENZEN

#### **FACHKOMPETENZ**

Die Studierenden erwerben die Kompetenz,

- die technische Entwicklung von Produkten mit den gewünschten Eigenschaften systematisch durchzuführen und
- die organisatorischen Abläufe und das Datenmanagement im Rahmen der Produktentwicklung zu gewährleisten.

#### METHODENKOMPETENZ

Die Studierenden organisieren ihre eigenen Aufgaben im Rahmen der Produktentwicklung, eignen sich zusätzlich erforderliches Wissen selbstständig an und reflektieren Ergebnisse und Vorgehensweise kritisch, um daraus Folgerungen für nachfolgende Projekte abzuleiten und umzusetzen. Sie können ihre Lösungen verständlich und fachlich einwandfrei darstellen.

### PERSONALE UND SOZIALE KOMPETENZ

Die Studierenden sind in der Lage, im Rahmen der Produktentwicklung auch fachübergreifend zusammenzuarbeiten und Anforderungen und Denkweisen anderer Fachgebiete einzubeziehen, sowie gesellschaftliche und ethische Rahmenbedingungen für Produkte zu beachten.

#### ÜBERGREIFENDE HANDLUNGSKOMPETENZ

Die Studierenden können ihre Kompetenzen aus anderen Lernbereichen, z. B. Fertigungstechnik, Werkstoffkunde, Betriebswirtschaft oder Informatik bei der Produktentwicklung einsetzen und auch grundlegende mathematische und naturwissenschaftliche Methoden und Prinzipien zielführend anwenden.

### LERNEINHEITEN UND INHALTE

| LEHR- UND LERNEINHEITEN                | PRÄSENZZEIT | SELBSTSTUDIUM |
|----------------------------------------|-------------|---------------|
| Konstruktions- und Entwicklungstechnik | 60          | 90            |

Stand vom 01.10.2025 T3MB3101 // Seite 75

LEHR- UND LERNEINHEITEN PRÄSENZZEIT SELBSTSTUDIUM

- Aufbau und Eigenschaften technischer Systeme (z. B. Funktionsstrukturen)
- Vorgehen beim Entwickeln technischer Systeme (z. B. Grundlagen methodischer

Vorgehensweise, Vorgehen nach VDI 2221, Konstruktionsarten)

- Phasen des Konstruktionsprozesses mit ihren Arbeitsschritten und eingesetzten Methoden:

Planen (z. B. Anforderungsliste, QFD), Konzipieren (z. B. Ideensuche, Wirkprinzipien,

Bewertungsverfahren, Analyse von Schwachpunkten, TRIZ), Entwerfen (z. B.

Gestaltungsprinzipien, Gestaltungsrichtlinien, Wertanalyse), Ausarbeiten (z. B. Systematik der Unterlagen)

- Produktentwicklung im Unternehmenskontext (z. B. Produktlebensphasen,

Produktlebenszyklus, Simultaneous Engineering)

- Produktplanung (z. B. Strategische Produktplanung, Innovationsmanagement)
- Durchführung von Entwicklungsprojekten (z. B. Integrierte Produktentwicklung, Teambildung,

Risikomanagement, KVP, TQM, Kostenmanagement, Wissensmanagement)

- Organisation der Produktdaten (z. B. Baureihen, Baukästen, Produktstruktur,

EDV-Unterstützung, Dokumentation von Produktdaten)

### BESONDERHEITEN

Die Prüfungsdauer richtet sich nach der Studien- und Prüfungsordnung.

### VORAUSSETZUNGEN

LITERATUR

# - Pahl G., Beitz W. u. a.: Konstruktionslehre, Methoden und Anwendung, Springer-Verlag Berlin Heidelberg.

- Lindemann, U.: Methodische Entwicklung technischer Produkte, Springer-Verlag Berlin Heidelberg.
- VDI-Richtlinie 2221: Methodik zum Entwickeln und Konstruieren technischer Systeme und Produkte, Beuth Verlag Berlin.
- VDI-Richtlinie 2222: Methodisches Entwickeln von Lösungsprinzipien, Beuth Verlag Berlin.
- Ehrlenspiel, K.: Integrierte Produktentwicklung, Hanser Verlag München Wien.
- Roth, K.: Konstruieren mit Konstruktionskatalogen, Springer-Verlag Berlin Heidelberg.
- Cooper, R. G.: Winning at New Products.
- Ulrich, K. T., Eppinger, S. D.: Product Design and Development.

Stand vom 01.10.2025 T3MB3101 // Seite 76

Studienbereich Technik // School of Engineering
Maschinenbau // Mechanical Engineering
Produktionstechnik // Production Engineering
HORB



# Physik (T3MB9001)

### **Physics**

#### FORMALE ANGABEN ZUM MODUL

MODULNUMMERVERORTUNG IM STUDIENVERLAUFMODULDAUER (SEMESTER)MODULVERANTWORTUNGSPRACHET3MB90012. Studienjahr1Prof. Dr.-Ing. Andreas GriesingerDeutsch

#### **EINGESETZTE LEHRFORMEN**

LEHRFORMENLEHRMETHODENVorlesung, LaborLehrvortrag, Diskussion

#### EINGESETZTE PRÜFUNGSFORMEN

PRÜFUNGSLEISTUNGPRÜFUNGSUMFANG (IN MINUTEN)BENOTUNGKlausurarbeit oder Kombinierte Prüfung120ja

#### WORKLOAD UND ECTS-LEISTUNGSPUNKTE

WORKLOAD INSGESAMT (IN H)DAVON PRÄSENZZEIT (IN H)DAVON SELBSTSTUDIUM (IN H)ECTS-LEISTUNGSPUNKTE15060905

#### QUALIFIKATIONSZIELE UND KOMPETENZEN

#### **FACHKOMPETENZ**

Physikalische Grundprinzipien aus den Gebieten der Technischen Fluidmechanik und/oder einer Auswahl aus einem oder mehreren der folgenden Themen Technischen Optik, Akustik, Wärmeübertragung, Elektrostatik/Elektrodynamik, Halbleiterphysik verstehen und anwenden können.

Dazu statische und dynamische Strömungsvorgänge verstehen und einfache Systeme berechnen können, bzw. einfache Phänomene der Wellenlehre beschreiben und berechnen können, bzw. optischer Geräte prinzipiell verstehen und beschreiben können, inkl. deren Einsatzgebiete mit Anwendungsmöglichkeiten und Grenzen, bzw. Begriffe aus der Akustik verstehen und berechnen können, bzw. Wärmetransportmechanismen durch Leitung, Strömung und Strahlung verstehen und Temperaturfelder und Wärmeströme berechnen können, bzw. praktische, anspruchsvolle Herausforderungen der Elektrostatik/Elektrodynamik lösen können, bzw. die Grundlagen der Halbleiterphysik auf Fragestellungen der Photovoltaik-Technik anwenden können.

#### METHODENKOMPETENZ

-

#### PERSONALE UND SOZIALE KOMPETENZ

-

#### ÜBERGREIFENDE HANDI UNGSKOMPETENZ

\_

### LERNEINHEITEN UND INHALTE

| LEHR- UND LERNEINHEITEN | PRÄSENZZEIT | SELBSTSTUDIUM |
|-------------------------|-------------|---------------|
| Physik                  | 60          | 90            |

Einführung in die technische Fluidmechanik (Fluid-Statik, Fluid-Dynamik, Strömungen mit und Dichteänderungen) Auswahl eines der folgenden Themen: Technische Optik (Einführung in die Wellenlehre, optische Abbildungen und Instrumente) Akustik (physikalische und physiologische Akustik, Schalldämmung, Raumakustik) Wärmeübertragung (Leitung, Konvektion, Strahlung) Halbleiterphysik (pn-Übergang, Bauelemente, Photovoltaik-Technik).

### BESONDERHEITEN

Eine Laborveranstaltung zur Vermittlung von Lerninhalten kann in die Vorlesung integriert werden. Die Prüfungsdauer richtet sich nach der Studien- und Prüfungsordnung.

Stand vom 01.10.2025 T3MB9001 // Seite 77

### VORAUSSETZUNGEN

### LITERATUR

- H. Sigloch: Technische Fluidmechanik, Springer, Berlin
  E. Hering: Taschenbuch der Mathematik und Physik, Springer Berlin
  H. Lindner: Physik für Ingenieure, Hanser Fachbuchverlag
  G. Cerbe: Technische Thermodynamik, Hanser Fachbuchverlag
  H.-G. Wagemann: Photovoltaik, Vieweg + Teubner

Stand vom 01.10.2025 T3MB9001 // Seite 78



# Verfahrenstechnik (T3MB9002)

# Process Engineering, Common Technologies

#### FORMALE ANGABEN ZUM MODUL

MODULNUMMERVERORTUNG IM STUDIENVERLAUFMODULDAUER (SEMESTER)MODULVERANTWORTUNGSPRACHET3MB90022. Studienjahr1Prof. Dr.-Ing. Martin HornbergerDeutsch

#### **EINGESETZTE LEHRFORMEN**

LEHRFORMENLEHRMETHODENVorlesung, ÜbungLehrvortrag, Diskussion, Gruppenarbeit

#### **EINGESETZTE PRÜFUNGSFORMEN**

PRÜFUNGSLEISTUNGPRÜFUNGSUMFANG (IN MINUTEN)BENOTUNGKlausurarbeit oder Kombinierte Prüfung120ja

#### WORKLOAD UND ECTS-LEISTUNGSPUNKTE

WORKLOAD INSGESAMT (IN H)DAVON PRÄSENZZEIT (IN H)DAVON SELBSTSTUDIUM (IN H)ECTS-LEISTUNGSPUNKTE15060905

#### QUALIFIKATIONSZIELE UND KOMPETENZEN

#### FACHKOMPETENZ

Die Studierenden sind mit Abschluss des Moduls in der Lage, unterschiedliche Behandlungsverfahren zu verstehen, Prozesse nach ihrem Anwendungsfall auszuwählen und Verfahren nach ihrer Effektivität und Wirtschaftlichkeit zu bewerten.

#### METHODENKOMPETENZ

Die Studierenden sind mit Abschluss des Moduls diin der Lage, der Aufgabe entsprechend selbstständig Verfahrensabläufe zu konzipieren und prozesstechnisch umzusetzen.

#### PERSONALE UND SOZIALE KOMPETENZ

Die Studierenden sind mit Abschluss des Moduls in der Lage, die Auswirkungen der Verfahren auf Mensch und Umwelt zu analysieren, Umwelteinflüsse zu identifizieren und zu bewerten.

### ÜBERGREIFENDE HANDLUNGSKOMPETENZ

Die Studierenden sind mit Abschluss des Moduls in der Lage, Verfahrensabläufe projektspezifisch in Abstimmung mit allen Beteiligten zu erarbeiten, bewerten und im Sinne einer Systemlösung mit angrenzenden Prozessen abzustimmen und umzusetzen.

#### LERNEINHEITEN UND INHALTE

| LEHR- UND LERNEINHEITEN | PRÄSENZZEIT | SELBSTSTUDIUM |
|-------------------------|-------------|---------------|
| Verfahrenstechnik       | 60          | 90            |

Stand vom 01.10.2025 T3MB9002 // Seite 79

#### LERNEINHEITEN UND INHALTE

### LEHR- UND LERNEINHEITEN PRÄSENZZEIT

SELBSTSTUDIUM

Mechanische Verfahren wie z.B.:

- Zerkleinern
- Trennen
- Mischen
- sonstige physikalische Verfahren

### Thermische Verfahren wie z.B.:

- Destillieren
- Rektifizieren
- Kristallisieren
- Hydrieren
- Verbrennen
- Sintern
- Trocknen

### Chemische Verfahren wie z.B.:

- Absorbieren
- Synthetisieren
- Katalyse
- Polymerisieren
- Elektrolyse
- homogene Reaktionen
- mehrphasige Reaktionen
- Ionenaustausch
- Fällen/ Aussalzen

### Biologische Verfahren wie z.B.:

- Natürliche Selbstreinigung
- Festbettreaktoren
- Landbehandlung
- Oberflächengewässer
- aerobe Verfahren
- anaerobe technische Verfahren
- Klärsysteme

#### BESONDERHEITEN

Die Prüfungsdauer bezieht sich auf die Klausur.

### VORAUSSETZUNGEN

LITERATUR

Hemming, W., Wagner, Walter: Verfahrenstechnik, Vogel Verlag,

Taschenbuch der Verfahrenstechnik. Hrsg. Karl Schwister, München, Fachbuchverl. Leipzig im Carl-Hanser-Verl.

Stand vom 01.10.2025 T3MB9002 // Seite 80



# Mechatronische Systeme (T3MB9013)

#### Mechatronics

#### FORMALE ANGABEN ZUM MODUL

MODULNUMMERVERORTUNG IM STUDIENVERLAUFMODULDAUER (SEMESTER)MODULVERANTWORTUNGSPRACHET3MB90133. Studienjahr1Prof. Dr.-Ing. Claus MühlhanDeutsch

#### **EINGESETZTE LEHRFORMEN**

LEHRFORMENLEHRMETHODENVorlesung, Übung, LaborLehrvortrag, Diskussion

#### EINGESETZTE PRÜFUNGSFORMEN

PRÜFUNGSLEISTUNGPRÜFUNGSUMFANG (IN MINUTEN)BENOTUNGKlausurarbeit oder Kombinierte Prüfung120ja

#### WORKLOAD UND ECTS-LEISTUNGSPUNKTE

WORKLOAD INSGESAMT (IN H)

DAVON PRÄSENZZEIT (IN H)

DAVON SELBSTSTUDIUM (IN H)

ECTS-LEISTUNGSPUNKTE

90

5

#### QUALIFIKATIONSZIELE UND KOMPETENZEN

#### **FACHKOMPETENZ**

Die Studierenden sind in der Lage, komplexe Problemstellungen aus der Praxis, die nicht mehr als getrennte mechanische, elektronische oder informationstechnische Teilprojekte gelöst werden können, zu analysieren und aufzuarbeiten. Sie gewinnen die für die Lösung relevanten Informationen, führen die Berechnung selbständig durch und geben kritische Hinweise zur Belastbarkeit ihrer Ergebnisse.

#### METHODENKOMPETENZ

Die Studierenden sind mit Abschluss des Moduls in der Lage, für komplexe Praxisanwendungen eine angemessene Methode auszuwählen und anzuwenden. So können die Möglichkeiten, Praktikabilität und Grenzen der eingesetzten Methode einschätzen und sind in der Lage, Handlungsalternativen aufzuzeigen.

### PERSONALE UND SOZIALE KOMPETENZ

-

### ÜBERGREIFENDE HANDLUNGSKOMPETENZ

\_

### LERNEINHEITEN UND INHALTE

LEHR- UND LERNEINHEITENPRÄSENZZEITSELBSTSTUDIUMMechatronische Systeme6090

- Grundstruktur mechatronischer Systeme
- Eigenschaften mechatronischer Systeme
- Aspekte der Digitalisierung I4.0, IoT
- Systemkosten und Systemnutzen mechatronischer Systeme
- Robotik (Sensoren, Aktoren)
- Methodischer Entwurf mechatronischer Systeme
- Anwendungsbeispiele: Mechatronische Systeme im Automobil, Elektronik in Fahrzeugen,

Bus-Systeme, Elektromagnetische Verträglichkeit

#### BESONDERHEITEN

Die Prüfungsdauer bezieht sich auf die Klausur.

Stand vom 01.10.2025 T3MB9013 // Seite 81

- Roddeck, W.: Einführung in die Mechatronik, Teubner-Verlag
   Isermann, R.: Mechatronische Systeme Grundlagen, Springer Verlag
   Bernstein, H.: Grundlagen der Mechatronik, VDE Verlag
   Tränkle, H.,R.; Obermeier, E.: Sensorik Handbuch, Springer Verlag
   Ballas, R. et al.: Elektromechanische Systeme der Mikrotechnik und Mechatronik, Springer Verlag
   Bauernhansl, T. et al.:Industrie 4.0 in Produktion, Automatisierung und Logistik, Springer Verlag

Stand vom 01.10.2025 T3MB9013 // Seite 82



# Robotik (T3MB9037)

#### **Robotics**

#### FORMALE ANGABEN ZUM MODUL

| MODULNUMMER | VERORTUNG IM STUDIENVERLAUF | MODULDAUER (SEMESTER) | MODULVERANTWORTUNG         | SPRACHE |
|-------------|-----------------------------|-----------------------|----------------------------|---------|
| T3MB9037    | 3. Studienjahr              | 1                     | Prof. DrIng. Martin Bierer | Deutsch |

#### **EINGESETZTE LEHRFORMEN**

| LEHRFORMEN              | LEHRMETHODEN                           |
|-------------------------|----------------------------------------|
| Vorlesung, Übung, Labor | Lehrvortrag, Diskussion, Gruppenarbeit |

#### **EINGESETZTE PRÜFUNGSFORMEN**

| PRÜFUNGSLEISTUNG                       | PRÜFUNGSUMFANG (IN MINUTEN) | BENOTUNG |
|----------------------------------------|-----------------------------|----------|
| Klausurarbeit oder Kombinierte Prüfung | 120                         | ja       |

#### WORKLOAD UND ECTS-LEISTUNGSPUNKTE

| WORKLOAD INSGESAMT (IN H) | DAVON PRÄSENZZEIT (IN H) | DAVON SELBSTSTUDIUM (IN H) | ECTS-LEISTUNGSPUNKTE |
|---------------------------|--------------------------|----------------------------|----------------------|
| 150                       | 60                       | 90                         | 5                    |

#### QUALIFIKATIONSZIELE UND KOMPETENZEN

#### FACHKOMPETEN:

Die Studierenden verstehen in welchen industriellen Anwendungen eine Automation der Fertigung durch Roboter möglich ist. Sie können Kosten, Chancen und Risiken erfassen und bewerten.

#### METHODENKOMPETENZ

Die Studierenden sind mit Abschluss des Moduls in der Lage, Projekte im Bereich der industriellen Automatisierung durch durchdachte Konzepte, fundierte Planung und gutes Projektmanagement erfolgreich umzusetzen.

#### PERSONALE UND SOZIALE KOMPETENZ

Die Teilnehmer verstehen, dass der Ersatz von menschlicher Arbeitskraft durch Industrieroboter oder teil- und vollautonome Fertigungssysteme weitreichende Konsequenzen für die Arbeitswelt hat. Die Furcht von einen Roboter ersetzt zu werden, hat für die Beschäftigten in der industriellen Fertigung eine sehr hohe Bedeutung. Es erfordert eine hohe Sensibilität mit diesen Themen angemessen umzugehen.

#### ÜBERGREIFENDE HANDLUNGSKOMPETENZ

Die Studierenden sind sich Ihrer Rolle und Verantwortung im Unternehmen bewusst. Sie können theoretische, wirtschaftliche und personelle Fragestellungen gegeneinander abwiegen und lösungsorientiert umsetzen.

### LERNEINHEITEN UND INHALTE

| LEHR- UND LERNEINHEITEN | PRÄSENZZEIT | SELBSTSTUDIUM |
|-------------------------|-------------|---------------|
| Robotik                 | 60          | 90            |

- Begriffe, Definitionen, Bauarten, Kinematiken
- Aufbau, Systemkomponenten (Mechanik, Antriebstechnik, Steuerungs- und Regelungstechnik, Sensoren)
- Endeffektoren (Greifer, Werkzeuge)
- $\hbox{-} Koordinaten systeme, Transformation en \\$
- Programmierung
- Anwendungen
- Einsatzaspekte

#### BESONDERHEITEN

Eine oder mehrere Exkursionen sind wünschenswert. Die Prüfungsdauer bezieht sich auf die Klausur.

Stand vom 01.10.2025 T3MB9037 // Seite 83

- Weber, W.: Industrieroboter (Methoden der Steuerung und Regelung); Hanser Raab, H. H.: Handbuch Industrieroboter (Bauweise, Programmierung, Anwendung, Wirtschaftlichkeit); Vieweg Warnecke, H-J.: Industrieroboter (Handbuch für Industrie und Wissenschaft); Springer Plagemann, B.: Crashkurs Industrieroboter; Christiani

Stand vom 01.10.2025 T3MB9037 // Seite 84 Studienbereich Technik // School of Engineering
Maschinenbau // Mechanical Engineering
Produktionstechnik // Production Engineering
HORR



# Steuerungstechnik (T3MB9064)

# **Control Technology**

#### FORMALE ANGABEN ZUM MODUL

MODULNUMMERVERORTUNG IM STUDIENVERLAUFMODULDAUER (SEMESTER)MODULVERANTWORTUNGSPRACHET3MB90643. Studienjahr2Prof. Dr.-Ing. Jürgen GundrumDeutsch

#### **EINGESETZTE LEHRFORMEN**

LEHRFORMEN LEHRMETHODEN

Vorlesung, Übung, Labor Lehrvortrag, Diskussion, Gruppenarbeit

#### EINGESETZTE PRÜFUNGSFORMEN

PRÜFUNGSLEISTUNGPRÜFUNGSUMFANG (IN MINUTEN)BENOTUNGKlausurarbeit oder Kombinierte Prüfung120ja

#### WORKLOAD UND ECTS-LEISTUNGSPUNKTE

WORKLOAD INSGESAMT (IN H)DAVON PRÄSENZZEIT (IN H)DAVON SELBSTSTUDIUM (IN H)ECTS-LEISTUNGSPUNKTE15060905

#### QUALIFIKATIONSZIELE UND KOMPETENZEN

#### **FACHKOMPETENZ**

Die Studierenden sind in der Lage, komplexe Problemstellungen aus der Praxis der Steuerungstechnik so zu analysieren und aufzuarbeiten, dass sie zu diesen entsprechende Aufstellungen und Berechnungen erstellen können. Sie gewinnen die für die Lösung relevanten Informationen, führen Analysen und Berechnungen aufstellungselbständig durch und geben kritische Hinweise zur Belastbarkeit ihrer Ergebnisse.

#### METHODENKOMPETENZ

Die Studierenden sind mit Abschluss des Moduls in der Lage, für komplexe Praxisanwendungen der Steuerungstechnik eine angemessene Methode auszuwählen und anzuwenden. Sie können die Möglichkeiten, Praktikabilität und Grenzen der eingesetzten Methoden der Steuerungsaufgaben mit einer SPS und einem Bussystem einschätzen und sind in der Lage, Handlungsalternativen aufzuzeigen.

### PERSONALE UND SOZIALE KOMPETENZ

\_

## ÜBERGREIFENDE HANDLUNGSKOMPETENZ

\_

#### LERNEINHEITEN UND INHALTE

LEHR- UND LERNEINHEITENPRÄSENZZEITSELBSTSTUDIUMSteuerungstechnik in der Anwendung6090

Technischen Aufbau von zeitgemäßen Steuerungen kennenlernen und deren Funktionsweise verstehen (Grundlagenvermittlung der Steuerungstechnik);

Für kleine und mittlere Anlagen und Maschinen die Steuerung konzipieren und realisieren;

 $Mit\ einem\ modernen\ Entwicklungssystem\ Steuerungssoftware\ projektieren,\ parametrieren,$ 

programmieren, testen und weiterentwickeln; Fehler in einer Steuerung aufspüren und beseitigen;

Feldbussysteme bei der Lösung von Steuerungsaufgaben verwenden

#### BESONDERHEITEN

Eine Laborveranstaltung und/oder begleitende Übungen können mit angeboten werden. Die Prüfungsdauer bezieht sich auf die Klausur.

Stand vom 01.10.2025 T3MB9064 // Seite 85

Wellenreuther G., Zastrow D.: Automatisieren mit SPS, Theorie und Praxis, Vieweg +Teubner; Berger H.: Automatisieren mit STEP7 in AWL und SCL, Publicis MCD Verlag; Gießler W.: SIMATIC S7. SPS Einsatzprojektierung und Programmierung, VDE Verlag, Berlin, Offenbach; Reißenweber B.: Feldbussysteme zur industriellen Kommunikation, Oldenbourg Industrieverlag

Stand vom 01.10.2025 T3MB9064 // Seite 86



# Vertiefung Produktionstechnik mit Produktionskostenrechnung (T3MB9068)

Special Fields of Production Technology and Production Cost Accounting

#### FORMALE ANGABEN ZUM MODUL

| MODULNUMMER | VERORTUNG IM STUDIENVERLAUF | MODULDAUER (SEMESTER) | MODULVERANTWORTUNG         | SPRACHE |
|-------------|-----------------------------|-----------------------|----------------------------|---------|
| T3MB9068    | 3. Studienjahr              | 1                     | Prof. DrIng. Martin Bierer | Deutsch |

#### **EINGESETZTE LEHRFORMEN**

| LEHRFORMEN              | LEHRMETHODEN                         |
|-------------------------|--------------------------------------|
| Vorlesung, Übung, Labor | Lehrvortrag, Diskussion, Fallstudien |

#### **EINGESETZTE PRÜFUNGSFORMEN**

| PRÜFUNGSLEISTUNG                       | PRÜFUNGSUMFANG (IN MINUTEN) | BENOTUNG |
|----------------------------------------|-----------------------------|----------|
| Klausurarbeit oder Kombinierte Prüfung | 120                         | ja       |

#### WORKLOAD UND ECTS-LEISTUNGSPUNKTE

| WORKLOAD INSGESAMT (IN H) | DAVON PRÄSENZZEIT (IN H) | DAVON SELBSTSTUDIUM (IN H) | ECTS-LEISTUNGSPUNKTE |
|---------------------------|--------------------------|----------------------------|----------------------|
| 150                       | 60                       | 90                         | 5                    |

#### QUALIFIKATIONSZIELE UND KOMPETENZEN

#### FACHKOMPETENZ

Die Studierenden sind mit Abschluss des Moduls in der Lage, zu den in den Modulinhalten aufgeführten Theorien, Modellen und Diskursen, praktische Anwendungsfälle zu definieren und diese in ihrer Komplexität zu erfassen, zu analysieren und die wesentlichen Einflussfaktoren zu definieren, um darauf aufbauend.

Zeit- und Kostenanalysen können analysiert und erstellt werden.

### METHODENKOMPETENZ

Die Absolventen verfügen über das in den Modulinhalten aufgeführte Spektrum an Methoden und Techniken zur Bearbeitung komplexer, wissenschaftlicher Probleme in ihrem Studienfach, aus denen sie angemessene Methoden auswählen und anwenden, um neue Lösungen zu erarbeiten. Bein einzelnen Methoden verfügen Sie über vertieftes Fach- und Anwendungswissen.

#### PERSONALE UND SOZIALE KOMPETENZ

Auswirkung der Produktionstechnik auf Gesellschaft und Umwelt auch unter ökonomischen Gesichtspunkten beurteilen.

### ÜBERGREIFENDE HANDLUNGSKOMPETENZ

Ihr Wissen und ihre Beurteilungsfähigkeit anwenden und selbständig Problemlösungen erarbeiten.

#### LERNEINHEITEN UND INHALTE

| LEHR- UND LERNEINHEITEN                                     | PRÄSENZZEIT | SELBSTSTUDIUM |
|-------------------------------------------------------------|-------------|---------------|
| Vertiefung Produktionstechnik mit Produktionskostenrechnung | 60          | 90            |

Stand vom 01.10.2025 T3MB9068 // Seite 87

LEHR- UND LERNEINHEITEN PRÄSENZZEIT SELBSTSTUDIUM

Für die Studierenden der Produktionstechnik kann in diesem Modul das Basiswissen in mindestens einem und maximal zwei der beschriebenen Fachgebiete erweitert werden. Der Inhalt der Unit kann abhängig von den verfügbaren Dozenten jährlich wechseln. Außerdem ist es möglich ein Planspiel durchzuführen.

Die Produktionskostenrechnung ist zusätzlich immer anzustreben.

Option I - Vertiefung der Grundlagen moderner Fertigungsverfahren (z.B. Schweißtechnik, Beschichten und Veredeln, etc.)

Option II - Präzisions- und Hochgeschwindigkeitsbearbeitung

Option III - Innovative Fertigungs- und Sonderverfahren

Option IV - Arbeitssicherheit und betrieblicher Umweltschutz

Option V - Planspiel bevorzugt im Fachgebiet der Logistik und/oder Fertigung

Produktionskostenrechnung:

- Betriebliches Rechnungswesen und Buchführung
- Stückkosten, Werkzeugkosten, Maschinenkosten
- Kostenrechnung, Finanzierung und Investitionsrechnung
- Betriebskosten-Controlling

#### **BESONDERHEITEN**

In der Lehrveranstaltung werden die Studierenden bei der Suche nach Problemlösungen einbezogen. Abhängig von den besprochenen Fertigungsverfahren können Laborveranstaltungen und Exkursionen angeboten werden. Die Prüfungsdauer bezieht sich auf die Klausur.

#### VORAUSSETZUNGEN

# LITERATUR

Literatur zu den Optionen:

- Speziallektüre zu diversen Verfahren und Verfahrensvarianten
- Zeitschriften:

Maschine + Werkzeug,

Werkstatt und Betrieb,

Welt der Fertigung

- Aktuelle wissenschaftliche Zeitschriften

Literatur zur Produktionskostenrechnung:

- Wöhe, G: Einführung in die Allgemeine Betriebswirtschaftslehre; Verlag Vahlen.
- Schultz, V.: Basiswissen Rechnungswesen; Beck-Wirtschafts-berater im dtv.
- Warnecke, H.-J., Bullinger, H.-J., Hichert, R.:Wirtschaftlichkeits-rechnung für Ingenieure, Hanser-Verlag.

Stand vom 01.10.2025 T3MB9068 // Seite 88



# Erweiterte Methoden in Entwicklung und Produktion (T3MB9077)

# **Enhanced Methods in Development and Production**

#### FORMALE ANGABEN ZUM MODUL

MODULNUMMERVERORTUNG IM STUDIENVERLAUFMODULDAUER (SEMESTER)MODULVERANTWORTUNGSPRACHET3MB90773. Studienjahr1Prof. Dr.-Ing. Thomas DietmüllerDeutsch

#### **EINGESETZTE LEHRFORMEN**

LEHRFORMEN LEHRMETHODEN

Seminar, Vorlesung, Übung, Labor Gruppenarbeit, Lehrvortrag, Diskussion, Gruppenarbeit

#### **EINGESETZTE PRÜFUNGSFORMEN**

PRÜFUNGSLEISTUNGPRÜFUNGSUMFANG (IN MINUTEN)BENOTUNGKlausurarbeit oder Kombinierte PrüfungSiehe Pruefungsordnungja

#### WORKLOAD UND ECTS-LEISTUNGSPUNKTE

WORKLOAD INSGESAMT (IN H)

DAVON PRÄSENZZEIT (IN H)

DAVON SELBSTSTUDIUM (IN H)

ECTS-LEISTUNGSPUNKTE

90

5

#### QUALIFIKATIONSZIELE UND KOMPETENZEN

#### **FACHKOMPETENZ**

Die Studierenden lernen wesentliche Methoden in der Entwicklung und Produktion kennen. Sie sind in der Lage die Methoden sicher anzuwenden.

### METHODENKOMPETENZ

Die Studierenden sind mit Abschluss des Moduls in der Lage, für komplexe Praxisanwendungen in der Entwicklung und Produktion eine angemessene Methode auszuwählen und anzuwenden. So können die Möglichkeiten, Praktikabilität und Grenzen der eingesetzten Methode einschätzen und sind in der Lage, zu optimalen Lösungen zu kommen.

### PERSONALE UND SOZIALE KOMPETENZ

Die Studierenden sind sich Ihrer Rolle und Verantwortung im Unternehmen bewusst. Sie können theoretische, wirtschaftliche und ökologische Fragestellungen gegeneinander abwiegen und lösungsorientiert umsetzen.

### ÜBERGREIFENDE HANDLUNGSKOMPETENZ

Die Studierenden können selbstständig Lernprozesse gestalten, Problemlösungen erarbeiten und bewerten. Sie sind in der Lage sich innerhalb einer komplexen und globalisierten Arbeitswelt sicher zu bewegen. Sie können veränderte Sachverhalte schnell erfassen und auf diese reagieren.

### LERNEINHEITEN UND INHALTE

| LEHR- UND LERNEINHEITEN      | PRÄSENZZEIT | SELBSTSTUDIUM |
|------------------------------|-------------|---------------|
| Statistische Versuchsplanung | 24          | 36            |

Stand vom 01.10.2025 T3MB9077 // Seite 89

#### LEHR- UND LERNEINHEITEN PRÄSENZZEIT SELBSTSTUDIUM

- Motivation und Herkunft
- Entwicklung robuster Prozesse/ Robust Design
- statistische Grundlagen
- Grundschema eines DOE-Versuchsplan
- Erläuterung einiger Werkzeuge zur Ermittlung der Input- und Prozessmessgrößen
- Ableitung der Parameter und Bewertung der Level
- Auswahl des Versuchsdesigns
- Durchführung der Versuche
- Auswertung und statistische Analysen
- Response Surface-Methode, Regressionsanalyse
- Bestimmung des optimalen Arbeitspunktes
- Nutzung einer geeigneten Software z.B. Minitab
- Anwendung verschiedener Versuchspläne (Vollfaktoriell, Fraktionelle faktorielle und

Screening) im Rahmen eines Fallbeispiels in Gruppen

- SWOT-Bewertung der statistischen Versuchsplanung

#### Systematische Produktentwicklung und Produktionsplanung

 Quality Function Devlopment (QFD) und House of Quality (HoQ): Verankerung von Qualitätszielen anhand der Kundenanforderungen, technischer Parameter, deren Bewertung und Wettbewerbsrecherchen und Testanalysen

- Übertragung der Qualitätsziele aus den Kundenanforderungen bis zur Findung von Produktions- Prozessparametern
- Anwendnung von Triz als ergänzende Methode zur systematischen Lösungsfindung bei widersprüchlichen Parametern
- Statistische Versuchsmethodik (SVM / DOE) zur Findung optimaler (Produktions-) Parameter - siehe Modulergänzung!

#### BESONDERHEITEN

Seminare, Übungen, Bearbeitung von komplexen Fallbeispielen auch aus der eigenen Berufspraxis, Projektarbeiten. Ergänzung um Lehreinheiten im begleiteten Selbststudium.

54

36

Die Prüfungsdauer richtet sich nach der Studien- und Prüfungsordnung.

#### VORAUSSETZUNGEN

Vorlesung Qualitätsmanagement

### LITERATUR

- Akao, Y.: QFD-Quality Function Deployment; Verlag Moderne Industrie, Landsberg/Lech.
- Altschuller, G.S.: Erfinden Wege zur Lösung technischer Probleme; VEB Verlag Technik, Berlin
- Genichi Taguchi: Introduction to Quality Engineering: Designing Quality into Products and Processes; Asian Productivity Organization; Tokyo
- Knorr, C.; Friedrich, A.: QFD Quality Function Deployment. Mit System zu marktattraktiven Produkten; Carl Hanser Verlag
- Schmitt, R.; Pfeifer, T.: Qualitätsmanagement: Strategien Methoden Techniken; Carl Hanser Verlag GmbH & Co. KG;
- Bernd Klein: Versuchsplanung DoE. Einführung in die Taguchi/Shainin-Methodik. Oldenbourg, München.
- Stephan Lunau: Six Sigma+Lean Toolset, Springer.

Stand vom 01.10.2025 T3MB9077 // Seite 90



# Digitale Fabrik (T3MB9081)

# **Digital Manufacturing**

#### FORMALE ANGABEN ZUM MODUL

MODULNUMMERVERORTUNG IM STUDIENVERLAUFMODULDAUER (SEMESTER)MODULVERANTWORTUNGSPRACHET3MB90813. Studienjahr1Prof. Dr.-Ing. Tim JansenDeutsch

#### **EINGESETZTE LEHRFORMEN**

LEHRFORMENLEHRMETHODENVorlesungProjekt

### EINGESETZTE PRÜFUNGSFORMEN

PRÜFUNGSLEISTUNGPRÜFUNGSUMFANG (IN MINUTEN)BENOTUNGKlausurarbeit oder Kombinierte Prüfung120ja

#### WORKLOAD UND ECTS-LEISTUNGSPUNKTE

WORKLOAD INSGESAMT (IN H)DAVON PRÄSENZZEIT (IN H)DAVON SELBSTSTUDIUM (IN H)ECTS-LEISTUNGSPUNKTE15060905

#### QUALIFIKATIONSZIELE UND KOMPETENZEN

#### **FACHKOMPETENZ**

Die Studierenden sind mit Abschluss des Moduls in der Lage, zu den in den Modulinhalten genannten Theorien, Modellen und Diskursen detaillierte Analysen und Argumentationen aufzubauen. Sie können Zusammenhänge und Einflüsse innerhalb von Problemlagen differenzieren und darauf aufbauend neue Lösungsvorschläge entwickeln und diese kritisch evaluieren.

#### METHODENKOMPETENZ

Die Absolventen verfügen über das in den Modulinhalten aufgeführte Spektrum an Methoden und Techniken zur Bearbeitung komplexer, wissenschaftlicher Probleme in ihrem Studienfach, aus denen sie angemessene Methoden auswählen und anwenden, um neue Lösungen zu erarbeiten. Bei einzelnen Methoden verfügen Sie über vertieftes Fach- und Anwendungswissen.

### PERSONALE UND SOZIALE KOMPETENZ

Die Studierenden können sowohl eigenständig, also auch im Team zielorientiert und nachhaltig handeln.

#### ÜBERGREIFENDE HANDLUNGSKOMPETENZ

-

#### LERNEINHEITEN UND INHALTE

LEHR- UND LERNEINHEITENPRÄSENZZEITSELBSTSTUDIUMDigitale Fabrik6090

- Grundlagen der Digitalen Fabrik
- Werkzeuge zur Digitalen Prozessplanung
- Verschiedene Modellierungs- und Simulationsansätze
- Erstellen einer Digitalen Fabrik, d.h. das vollständige digitale Abbild der realen Prozesskette

Produktentwicklung, Planung und Produktion an einem konkreten Beispiel

### BESONDERHEITEN

Die Prüfungsdauer bezieht sich auf die Klausur.

### VORAUSSETZUNGEN

Fertigungstechnik

Stand vom 01.10.2025 T3MB9081 // Seite 91

- Bracht, U.; Geckler, D.; Wenzel, S.: Digitale Fabrik. Springer Kühn, W.: Digitale Fabrik Fabriksimulation für Produktionsplaner. Carl Hanser Feldmann, K.; Reinhart, G.: Simulationsbasierte Planungssysteme für Organisation und Produktion. Springer

Stand vom 01.10.2025 T3MB9081 // Seite 92



# Produktionsorientierte Konstruktion (T3MB9082)

# **Production Oriented Design**

#### FORMALE ANGABEN ZUM MODUL

MODULNUMMERVERORTUNG IM STUDIENVERLAUFMODULDAUER (SEMESTER)MODULVERANTWORTUNGSPRACHET3MB90823. Studienjahr1Prof. Dr.-Ing. Tim JansenDeutsch

### EINGESETZTE LEHRFORMEN

LEHRFORMEN LEHRMETHODEN

Vorlesung Lehrvortrag, Diskussion, Fallstudien

#### **EINGESETZTE PRÜFUNGSFORMEN**

PRÜFUNGSLEISTUNGPRÜFUNGSUMFANG (IN MINUTEN)BENOTUNGKlausurarbeit oder Kombinierte Prüfung120ja

#### WORKLOAD UND ECTS-LEISTUNGSPUNKTE

WORKLOAD INSGESAMT (IN H)

DAVON PRÄSENZZEIT (IN H)

DAVON SELBSTSTUDIUM (IN H)

ECTS-LEISTUNGSPUNKTE

90

5

#### QUALIFIKATIONSZIELE UND KOMPETENZEN

#### **FACHKOMPETENZ**

Die Studierenden sind mit Abschluss des Moduls in der Lage, konstruktive Problemstellungen aus der Praxis so zu analysieren und aufzuarbeiten, dass sie anwendungsbezogene produktionsgerechte Konstruktionen erstellen bzw. erkennen können. Sie gewinnen die für die Lösung relevanten Informationen, führen die Analyse selbständig durch und geben kritische Hinweise zur Belastbarkeit ihrer Ergebnisse.

#### METHODENKOMPETENZ

Die Studierenden sind mit Abschluss des Moduls in der Lage, für komplexe Praxisanwendungen eine angemessene Methode auszuwählen und anzuwenden. So können die Möglichkeiten, Praktikabilität und Grenzen der eingesetzten Methode einschätzen und sind in der Lage, Handlungsalternativen aufzuzeigen.

### PERSONALE UND SOZIALE KOMPETENZ

Die Studierenden sind sich Ihrer Rolle und Verantwortung im Unternehmen bewusst. Sie können theoretische, wirtschaftliche und ökologische Fragestellungen gegeneinander abwiegen und lösungsorientiert umsetzen.

## ÜBERGREIFENDE HANDLUNGSKOMPETENZ

Durchführen mehrdimensionaler Optimierungen, Vertiefung des Kostenverständnisses, Begreifen der Gesamtstrukturen und der innerhalb dieser bestehenden Abhängigkeiten hinsichtlich Arbeitstechnik, Produktgestaltung und Rationalisierung

#### I FRNFINHFITEN UND INHALTE

LEHR- UND LERNEINHEITENPRÄSENZZEITSELBSTSTUDIUMProduktionsorientierte Konstruktion6090

Arbeitstechniken und konstruktive Gestaltungsmöglichkeiten, insbesondere orientiert an den Produktionsfaktoren Herstell-, Montageverfahren und Wirtschaftlichkeit sowie Darstellung von Rationalisierungsmaßnahmen

### BESONDERHEITEN

Anwendung des Erlernten an einem konkreten Beispiel. Die Prüfungsdauer bezieht sich auf die Klausur.

Stand vom 01.10.2025 T3MB9082 // Seite 93

### VORAUSSETZUNGEN

- -Fertigungstechnik (T3MB1002)
- -Konstruktion I (T3MB1001)
- -Konstruktion II (T3MB1008)
- -Konstruktion III (T3MB2101)
- -Prozesse in Entwicklung und Produktion (T3MB2201)

#### LITERATUR

- Konstruktionslehre, Pahl, Gerhard; Beitz, Wolfgang; Feldhusen, Jörg; Springer Vieweg, Berlin Heidelberg.
   ertigungstechnik, Fritz, Alfred Herbert; Schulze, Günter; Springer Vieweg; Berlin Heidelberg.
   Handbuch für Technisches Produktdesign, Kalweit, Andreas; Paul, Christof; Peters, Sascha; Wallbaum, Reiner; Springer, Berlin.
   Übungsbuch zur Produktions- und Kostentheorie, Fandel, Günter; Lorth, Michael; Blaga, Steffen; Springer, Berlin.
- Variantenbeherrschung in der Montage, Hrsg. v. Hans-Peter Wiendahl, Detlef Gerst u. Lars Keunicke; Springer, Berlin.
- Kostenreduktion in der Produktion, Regius, Bernd von; Springer, Berlin.

T3MB9082 // Seite 94 Stand vom 01.10.2025

Studienbereich Technik // School of Engineering
Maschinenbau // Mechanical Engineering
Produktionstechnik // Production Engineering
HORB



# Virtual Reality (T3MB9122)

# Virtual Reality

#### FORMALE ANGABEN ZUM MODUL

MODULNUMMERVERORTUNG IM STUDIENVERLAUFMODULDAUER (SEMESTER)MODULVERANTWORTUNGSPRACHET3MB91223. Studienjahr1Prof. Dr. Gangolf KohnenDeutsch/Englisch

#### **EINGESETZTE LEHRFORMEN**

LEHRFORMENLEHRMETHODENÜbung, Vorlesung, LaborLehrvortrag, Diskussion, Fallstudien, Projekt

#### **EINGESETZTE PRÜFUNGSFORMEN**

PRÜFUNGSLEISTUNGPRÜFUNGSUMFANG (IN MINUTEN)BENOTUNGKlausurarbeit oder Kombinierte Prüfung120ja

#### WORKLOAD UND ECTS-LEISTUNGSPUNKTE

WORKLOAD INSGESAMT (IN H)DAVON PRÄSENZZEIT (IN H)DAVON SELBSTSTUDIUM (IN H)ECTS-LEISTUNGSPUNKTE15060905

#### QUALIFIKATIONSZIELE UND KOMPETENZEN

#### FACHKOMPETENZ

Die Studierenden sind mit Abschluss des Moduls in der Lage, zu den in den Modulinhalten genannten Theorien, Modellen und Methoden den Einsatzbereich von Virtual Reality einschätzen und an Beispielprojekten anwenden zu können. Sie können Zusammenhänge und Einflüsse innerhalb von Problemlagen differenzieren und darauf aufbauend neue Lösungsvorschläge entwickeln und diese kritisch evaluieren

#### METHODENKOMPETENZ

Die Absolventen verfügen über das in den Modulinhalten aufgeführte Spektrum an Methoden und Techniken zur Bearbeitung komplexer Problemstellungen im Bereich Virtual Reality, aus denen sie angemessene Methoden auswählen und anwenden, um neue Lösungen zu erarbeiten. Bein einzelnen Methoden verfügen Sie über vertieftes Fach- und Anwendungswissen.

### PERSONALE UND SOZIALE KOMPETENZ

ÜBERGREIFENDE HANDLUNGSKOMPETENZ

LERNEINHEITEN UND INHALTE

LEHR- UND LERNEINHEITENPRÄSENZZEITSELBSTSTUDIUMVirtual Reality3045

- Einführung, Begriffsdefinition, Überblick
- Einsatz von VR-Systemen in der Industrie und deren Anwendungen
- Benutzerschnittstellen und Interaktionsmöglichkeiten
- Datentransfer zu VR-Systemen
- Funktionsspektrum von VR-Systemen
- Nutzen / Grenzen des Einsatzes von VR-Systemen
- VR- und verwandte Systeme im Praxiseinsatz
- Zukunftsperspektiven von virtuellen Welten

Stand vom 01.10.2025 T3MB9122 // Seite 95

#### LERNEINHEITEN UND INHALTE

| LEHR- UND LERNEINHEITEN | PRÄSENZZEIT | SELBSTSTUDIUM |
|-------------------------|-------------|---------------|
| Projekt Virtual Reality | 30          | 45            |

- Anwenden von Methoden und Werkzeugen
- Abschätzen des Nutzen- / Aufwandes für praxisrelevante Projekte
- Darstellen des Projektresultates im Rahmen einer Präsentation

### **BESONDERHEITEN**

Es kann ein Labor vorgesehen werden. Die Prüfungsdauer bezieht sich auf die Klausur.

### VORAUSSETZUNGEN

#### LITERATUR

- Foley, J., van Dam, A., Feiner, S., Hughes, J.: Computer Graphics: Principle and Practice Addison Wesley
- Johannsen, G.: Mensch-Maschine-Systeme Springer Verlag Bullinger, H.-J., Blach, R., Breining, R.: Projection Technology Applications in Industry Theses for the design and use oft he current tools In: 3rd Int. Immersive Projection Technology Workshop, Berlin – Springer Verlag
- Häfner, U., Simon, A., Doulis, M.: Unencumbered Interaction in Display Environment with extended working volume In: Stereoscopic Displays and Virtual Reality Systems VII, Proc. Of SPIE, Vol. 3957

Stand vom 01.10.2025 T3MB9122 // Seite 96



# Simulation Fertigungssysteme (T3MB9123)

# **Computer Aided Manufacturing**

#### FORMALE ANGABEN ZUM MODUL

MODULNUMMERVERORTUNG IM STUDIENVERLAUFMODULDAUER (SEMESTER)MODULVERANTWORTUNGSPRACHET3MB91233. Studienjahr1Prof. Dr. Gangolf KohnenDeutsch/Englisch

#### **EINGESETZTE LEHRFORMEN**

LEHRFORMEN LEHRMETHODEN

Vorlesung, Übung, Labor Lehrvortrag, Diskussion, Fallstudien

#### EINGESETZTE PRÜFUNGSFORMEN

PRÜFUNGSLEISTUNGPRÜFUNGSUMFANG (IN MINUTEN)BENOTUNGKlausurarbeit oder Kombinierte Prüfung120ja

#### WORKLOAD UND ECTS-LEISTUNGSPUNKTE

WORKLOAD INSGESAMT (IN H)DAVON PRÄSENZZEIT (IN H)DAVON SELBSTSTUDIUM (IN H)ECTS-LEISTUNGSPUNKTE15060905

#### QUALIFIKATIONSZIELE UND KOMPETENZEN

#### **FACHKOMPETENZ**

Die Studierenden sind in der Lage, einfache Problemstellungen aus der Praxis so zu analysieren, dass sie zu diesen entsprechende Konzepte und Simulationen erstellen können. Sie gewinnen die für die Lösung relevanten Informationen, führen die notwendigen Berechnungen und Analysen durch und geben kritische Hinweise zur Belastbarkeit ihrer Ergebnisse.

#### METHODENKOMPETENZ

Die Studierenden sind mit Abschluss des Moduls in der Lage, für einfache Anwendungen angemessene Methoden auszuwählen und anzuwenden. So können die Möglichkeiten, Praktikabilität und Grenzen der eingesetzten Methode einschätzen und sind in der Lage, Handlungsalternativen aufzuzeigen.

### PERSONALE UND SOZIALE KOMPETENZ

.

### ÜBERGREIFENDE HANDLUNGSKOMPETENZ

-

### LERNEINHEITEN UND INHALTE

LEHR- UND LERNEINHEITENPRÄSENZZEITSELBSTSTUDIUMSimulation Fertigungssysteme6090

- Einführung in die Fertigungssimulationssysteme
- Abbildung von Bewegungsabläufen
- Erreichbarkeitsuntersuchungen
- Kollisionsuntersuchungen
- Taktzeitanalysen
- Umsetzung verschiedener Fügeprozesse
- Integration in bestehende Anlagen
- Robotersicherheit
- Einführung in die Offline Programmierung

### BESONDERHEITEN

Es kann ein Labor vorgesehen werden. Die Prüfungsdauer bezieht sich auf die Klausur.

Stand vom 01.10.2025 T3MB9123 // Seite 97

### VORAUSSETZUNGEN

### LITERATUR

- Behnisch, S.: Digital Mockup mit CATIA V5 Hanser Verlag Meeth, J., Schuth, M.: Bewegungssimulation mit CATIA V5 Hanser Verlag Rossgoderer, U.: System zur effizienten Layout- und Prozessplanung von hybriden Montageanlagen Utz Verlag Wloka, D.W.: Robotersimulation Springer Verlag

Stand vom 01.10.2025 T3MB9123 // Seite 98



# Digitale Automatisierungstechnik (T3MB9151)

# **Digital Automation Technology**

#### FORMALE ANGABEN ZUM MODUL

MODULNUMMERVERORTUNG IM STUDIENVERLAUFMODULDAUER (SEMESTER)MODULVERANTWORTUNGSPRACHET3MB91513. Studienjahr1Prof. Dr.-lng. Tim JansenDeutsch

**EINGESETZTE LEHRFORMEN** 

LEHRFORMEN LEHRMETHODEN

Vorlesung Lehrvortrag, Diskussion, Gruppenarbeit

EINGESETZTE PRÜFUNGSFORMEN

PRÜFUNGSLEISTUNG PRÜFUNGSUMFANG (IN MINUTEN) BENOTUNG

Klausurarbeit oder Kombinierte Prüfung 120 ja

WORKLOAD UND ECTS-LEISTUNGSPUNKTE

WORKLOAD INSGESAMT (IN H)

DAVON PRÄSENZZEIT (IN H)

DAVON SELBSTSTUDIUM (IN H)

ECTS-LEISTUNGSPUNKTE

90

5

### QUALIFIKATIONSZIELE UND KOMPETENZEN

#### **FACHKOMPETENZ**

Die Studierenden sind mit Abschluss des Moduls in der Lage, mit dem Thema der indsutriellen Digitalisierung umzugehen und in diesem Umfeld Probleme zu lösen.

Sie identifizieren den Einfluss unterschiedlicher Faktoren, setzen diese in Zusammenhang und erzielen die Lösung durch die Neukombination unterschiedlicher Lösungswege.

### METHODENKOMPETENZ

Die Absolventen verfügen über das in den Modulinhalten aufgeführte Spektrum an Methoden und Techniken zur Bearbeitung komplexer, wissenschaftlicher Probleme in ihrem Studienfach, aus denen sie angemessene Methoden auswählen und anwenden, um neue Lösungen zu erarbeiten. Bei einzelnen Methoden verfügen Sie über vertieftes Fach- und Anwendungswissen.

#### PERSONALE UND SOZIALE KOMPETENZ

Die Studierenden können sowohl eigenständig, also auch im Team zielorientiert und nachhaltig handeln.

#### ÜBERGREIFENDE HANDLUNGSKOMPETENZ

-

#### LERNEINHEITEN UND INHALTE

LEHR- UND LERNEINHEITENPRÄSENZZEITSELBSTSTUDIUMDigitale Automatisierungstechnik6090

- Mess- und Automatisierungstechnik
- Embedded Systeme, Lifecycle-Management
- Simulation, Digitale Fabrik, Smart Factory
- Service Engineering

### BESONDERHEITEN

Die Lehrveranstaltung kann durch begleitende Exkursionen und durch Industrievertreter vorgetragene Praxisbeispiele ergänzt werden. Die Prüfungsdauer bezieht sich auf die Klausur.

Stand vom 01.10.2025 T3MB9151 // Seite 99

- Strohrmann, G.: Automatisierungstechnik 1: Grundlagen, analoge und digitale Prozessleitsysteme. Oldenbourg Industrieverlag Bracht, U.; Geckler, D.; Wenzel, S.: Digitale Fabrik. Springer Andelfinger V. P.; Hänisch T.: Industrie 4.0 Wie cyber-physische Systeme die Arbeitswelt verändern. Springer

Stand vom 01.10.2025 T3MB9151 // Seite 100



# Digitalisierungsstrategien (T3MB9166)

# **Digitisation Strategies in Production Environment**

#### FORMALE ANGABEN ZUM MODUL

MODULNUMMERVERORTUNG IM STUDIENVERLAUFMODULDAUER (SEMESTER)MODULVERANTWORTUNGSPRACHET3MB91663. Studienjahr1Prof. Dr.-Ing. Lars RuhbachDeutsch/Englisch

#### **EINGESETZTE LEHRFORMEN**

 LEHRFORMEN
 LEHRMETHODEN

 Vorlesung, Übung, Labor
 Lehrvortrag, Diskussion, Fallstudien

#### EINGESETZTE PRÜFUNGSFORMEN

PRÜFUNGSLEISTUNGPRÜFUNGSUMFANG (IN MINUTEN)BENOTUNGKlausur oder Kombinierte Prüfung90ja

#### WORKLOAD UND ECTS-LEISTUNGSPUNKTE

WORKLOAD INSGESAMT (IN H)DAVON PRÄSENZZEIT (IN H)DAVON SELBSTSTUDIUM (IN H)ECTS-LEISTUNGSPUNKTE15060905

#### QUALIFIKATIONSZIELE UND KOMPETENZEN

#### **FACHKOMPETENZ**

Die Studierenden kennen komplexe Systeme aus der Thematik Digitalisierung bzw. Smart Factory sowie das Zusammenspiel der mechatronischen Komponenten des Gesamtsystems. Sie erkennen die Notwendigkeit der Vernetzung der verschiedenen Ingenieursdisziplinen als Schlüssel zur erfolgreichen Digitalisierung im betrieblichen Wertschöpfungsprozess. Sie wenden dabei Methoden aus dem Systems Engineering an, um entsprechende Digitalisierungsstrategien zu definieren, abzuleiten und mithilfe betriebswirtschaftlicher Kennzahlen zu bewerten.

### METHODENKOMPETENZ

Die Studierenden sind in der Lage, eine angemessene Methode auszuwählen und anzuwenden. Sie können die Möglichkeiten, Praktikabilität und Grenzen der eingesetzten Methode einschätzen und sind in der Lage, Handlungsalternativen aufzuzeigen. Sie wenden dabei Methoden aus dem Systems Engineering an, um entsprechende Digitalisierungsstrategien zu definieren, abzuleiten und mithilfe betriebswirtschaftlicher Kennzahlen zu bewerten.

#### PERSONALE UND SOZIALE KOMPETENZ

Die Studierenden können die Möglichkeiten und Gefahren durch die Digitalisierung unter verschiedenen Gesichtspunkten betrachten sowie deren Einsatz in ethischem Kontext bewerten.

#### ÜBERGREIFENDE HANDLUNGSKOMPETENZ

# I FRNEINHEITEN UND INHALTE

LEHR- UND LERNEINHEITENPRÄSENZZEITSELBSTSTUDIUMDigitalisierungsstrategien im Produktionsumfeld6090

- System Engineering als Baustein für Digitalisierungsstrategien
- Bereiche der Digitalisierung
- Technologien und Standards für den Betrieb einer Smart Factory
- Smart Factory im Kontext Industrie 4.0
- Cyber-physische Systeme in Produktion und Logistik
- Machine Learning und künstliche Intelligenz in der Smart Factory
- Digitale Automation und Autonomation
- Nutzung smarter Produkte und Dienstleistungen
- Systemische Strategieentwicklung für den Aufbau bzw. die Weiterentwicklung einer Smart

Factory und der damit verbundenen Digitalisierungsstrategie

- Digitalisierungsroadmap
- Engineering-Herausforderungen und Risiken bei der strategischen Konzeption

Stand vom 01.10.2025 T3MB9166 // Seite 101

### LERNEINHEITEN UND INHALTE

LEHR- UND LERNEINHEITEN PRÄSENZZEIT SELBSTSTUDIUM

### BESONDERHEITEN

Die Prüfungsdauer gilt nur für die Klausur

### VORAUSSETZUNGEN

### LITERATUR

- Bauernhansl, T. et. al.: Industrie 4.0 in Produktion, Automatisierung und Logistik, Anwendung Technologie Migration, Springer Vieweg, Wiesbaden
- Haberfellner et al.: Systems Engineering, Grundlagen und Anwendung, orell füssli Verlag, Zürich
   Mohr T.: Elemente einer Digitalisierungsstrategie. In: Der Digital Navigator. Springer Gabler, Heidelberg
- Steven, M. Industrie 4.0: Grundlagen-Teilbereiche-Perspektiven Moderne Produktion, Kohlhammer Verlag, Stuttgart Steven, M. et al.: Smart Factory: Einsatzfaktoren Technologie Produkte, Kohlhammer Verlag, Stuttgart
- Stöger, R.: Toolbox Digitalisierung, Schäffer-Poeschel Verlag, Stuttgart

Stand vom 01.10.2025 T3MB9166 // Seite 102