

Dieses Modulhandbuch gilt für Studierende die im Zeitraum vom 01.10.2017 – 30.09.2024 immatrikuliert wurden.

Modulhandbuch

Studienbereich Technik

School of Engineering

Studiengang

Informatik

Computer Science

Studienrichtung

Informatik

Studienakademie

MANNHEIM

Curriculum (Pflicht und Wahlmodule)

Aufgrund der Vielzahl unterschiedlicher Zusammenstellungen von Modulen können die spezifischen Angebote hier nicht im Detail abgebildet werden. Nicht jedes Modul ist beliebig kombinierbar und wird möglicherweise auch nicht in jedem Studienjahr angeboten. Die Summe der ECTS aller Module inklusive der Bachelorarbeit umfasst 210 Credits.

Die genauen Prüfungsleistungen und deren Anteil an der Gesamtnote (sofern die Prüfungsleistung im Modulhandbuch nicht eindeutig definiert ist oder aus mehreren Teilen besteht), die Dauer der Prüfung(en), eventuelle Einreichungsfristen und die Sprache der Prüfung(en) werden zu Beginn der jeweiligen Theoriephase bekannt gegeben.

	FESTGELEGTER MODULBEREICH		
NUMMER	MODULBEZEICHNUNG	VERORTUNG	ECTS
T3INF1001	Mathematik I	1. Studienjahr	8
T3INF1002	Theoretische Informatik I	1. Studienjahr	5
T3INF1003	Theoretische Informatik II	1. Studienjahr	5
T3INF1004	Programmieren	1. Studienjahr	9
T3INF1005	Schlüsselqualifikationen	1. Studienjahr	5
T3INF1006	Technische Informatik I	1. Studienjahr	5
T3INF2001	Mathematik II	2. Studienjahr	6
T3INF2002	Theoretische Informatik III	2. Studienjahr	6
T3INF2003	Software Engineering I	2. Studienjahr	9
T3INF2004	Datenbanken	2. Studienjahr	6
T3INF2005	Technische Informatik II	2. Studienjahr	8
T3INF2006	Kommunikations- und Netztechnik	2. Studienjahr	5
T3INF3001	Software Engineering II	3. Studienjahr	5
T3INF3002	IT-Sicherheit	3. Studienjahr	5
T3_3101	Studienarbeit	3. Studienjahr	10
T3_1000	Praxisprojekt I	1. Studienjahr	20
T3_2000	Praxisprojekt II	2. Studienjahr	20
T3_3000	Praxisprojekt III	3. Studienjahr	8
T3INF4101	Web Engineering	1. Studienjahr	3
T3INF4105	Physik	1. Studienjahr	5
T3INF4303	Computergraphik und Bildverarbeitung	3. Studienjahr	5
T3INF4349	Big Data Architectures	3. Studienjahr	5
T3INF4331	Maschinelles Lernen	3. Studienjahr	5
T3INF4381	Advanced Machine Learning	3. Studienjahr	5
T3INF4388	Advanced Statistical Learning	3. Studienjahr	5
T3INF4393	Optimization Models	3. Studienjahr	5
T3INF4394	Programming and Problem Solving with Python	1. Studienjahr	5
T3INF4901	Wahlmodul Informatik	2. Studienjahr	5
T3_3300	Bachelorarbeit	3. Studienjahr	12

Stand vom 01.10.2025 Curriculum // Seite 2

	VARIABLER MODULBEREICH		
NUMMER	MODULBEZEICHNUNG	VERORTUNG	ECTS
T3INF4334	Künstliche Intelligenz und Maschinelles Lernen	3. Studienjahr	5
T3INF4389	Ethik in Informatik und KI	3. Studienjahr	5
T3 9007	Nachhaltige Energiesysteme	3. Studienjahr	5

Stand vom 01.10.2025 Curriculum // Seite 3

Mathematik I (T3INF1001)

Mathematics I

FORMALE ANGABEN ZUM MODUL

MODULNUMMER	VERORTUNG IM STUDIENVERLAUF	MODULDAUER (SEMESTER)	MODULVERANTWORTUNG	SPRACHE
T3INF1001	1. Studienjahr	2	Prof. Dr. Reinhold Hübl	Deutsch/Englisch

EINGESETZTE LEHRFORMEN

LEHRFORMEN	LEHRMETHODEN
Vorlesung, Übung	Lehrvortrag, Diskussion

EINGESETZTE PRÜFUNGSFORMEN

PRÜFUNGSLEISTUNG	PRÜFUNGSUMFANG (IN MINUTEN)	BENOTUNG
Klausurarbeit	Siehe Pruefungsordnung	ja
Klausurarbeit	Siehe Pruefungsordnung	ja

WORKLOAD UND ECTS-LEISTUNGSPUNKTE

WORKLOAD INSGESAMT (IN H)	DAVON PRÄSENZZEIT (IN H)	DAVON SELBSTSTUDIUM (IN H)	ECTS-LEISTUNGSPUNKTE
240	96	144	8

QUALIFIKATIONSZIELE UND KOMPETENZEN

FACHKOMPETENZ

Mit Abschluss des Moduls haben die Studierenden die Fähigkeit zu mathematischem Denken und Argumentieren entwickelt. Sie verfügen über ein Grundverständnis der diskreten Mathematik, der linearen Algebra und der Analysis einer reellen Veränderlichen. Sie sind in der Lage, diese Kenntnisse auf Probleme aus dem Bereich der Ingenieurwissenschaften und Informatik anzuwenden.

METHODENKOMPETENZ

Mathematik fördert logisches Denken, klare Strukturierung, kreative explorierende Verhaltensweisen und Durchhaltevermögen.

PERSONALE UND SOZIALE KOMPETENZ

-

ÜBERGREIFENDE HANDLUNGSKOMPETENZ

Die Studierenden sind in der Lage, naturwissenschaftlich-technische Vorgänge mit Hilfe der diskreten Mathematik, der linearen Algebra und der Analysis zu beschreiben. Sie beginnen, Algorithmen der numerischen Mathematik zu nutzen und diese in lauffähige Programme umzusetzen.

LERNEINHEITEN UND INHALTE

LEHR- UND LERNEINHEITEN	PRÄSENZZEIT	SELBSTSTUDIUM
Lineare Algebra	48	72

- Grundlagen der diskreten Mathematik
- Grundlegende algebraische Strukturen
- Vektorräume und lineare Abbildungen
- Determinanten, Eigenwerte, Diagonalisierbarkeit
- Anwendungsbeispiele

Analysis 48 72

- Folgen und Reihen, Stetigkeit
- Differentialrechnung einer Veränderlichen im Reellen
- Integralrechnung einer Veränderlichen im Reellen
- Anwendungsbeispiele

Stand vom 01.10.2025 T3INF1001 // Seite 4

BESONDERHEITEN

Dieses Modul beinhaltet zusätzlich bis zu 24h begleitetes Selbststudium in Form von Übungsstunden, Laboren oder Projekten. Hierbei werden Übungsaufgaben und/oder vertiefende Aufgabenstellungen von den Studierenden bearbeitet.

VORAUSSETZUNGEN

LITERATUR

- Beutelspacher: Lineare Algebra, Vieweg+Teubner
- Fischer: Lineare Algebra, Vieweg+Teubner
- Hartmann: Mathematik für Informatiker, Vieweg+Teubner
- Kreußler, Pfister: Mathematik für Informatiker: Algebra, Analysis, Diskrete Strukturen, Springer
- Lau: Algebra und Diskrete Mathematik 1, Springer
- Teschl, Teschl: Mathematik für Informatiker: Band 1. diskrete Mathematik und lineare Algebra, Springer
- Estep: Angewandte Analysis in einer Unbekannten, Springer
- Hartmann: Mathematik für Informatiker, Vieweg+Teubner
- Hildebrandt: Analysis 1, Springer
- Teschl, Teschl: Mathematik für Informatiker: Band 2. Analysis und Statistik, Springer

Stand vom 01.10.2025 T3INF1001 // Seite 5

Theoretische Informatik I (T3INF1002)

Theoretical Computer Science I

FORMALE ANGABEN ZUM MODUL

MODULNUMMERVERORTUNG IM STUDIENVERLAUFMODULDAUER (SEMESTER)MODULVERANTWORTUNGSPRACHET3INF10021. Studienjahr1Prof. Dr.rer.nat. Bernd SchwinnDeutsch/Englisch

EINGESETZTE LEHRFORMEN

LEHRFORMENLEHRMETHODENVorlesung, ÜbungLehrvortrag, Diskussion

EINGESETZTE PRÜFUNGSFORMEN

PRÜFUNGSLEISTUNGPRÜFUNGSUMFANG (IN MINUTEN)BENOTUNGKlausurarbeitSiehe Pruefungsordnungja

WORKLOAD UND ECTS-LEISTUNGSPUNKTE

WORKLOAD INSGESAMT (IN H)

DAVON PRÄSENZZEIT (IN H)

DAVON SELBSTSTUDIUM (IN H)

ECTS-LEISTUNGSPUNKTE

90

5

QUALIFIKATIONSZIELE UND KOMPETENZEN

FACHKOMPETENZ

Die Studierenden können die theoretischen Grundlagen der Aussage- und Prädikatenlogik verstehen. Die Studierenden verstehen die formale Spezifikation von Algorithmen und ordnen diese ein. Die Studierenden beherrschen das Modell der logischen Programmierung und wenden es an.

METHODENKOMPETENZ

Die Studierenden haben die Kompetenzen erworben, komplexere Unternehmensanwendungen durch abstraktes Denken aufzuteilen und zu beherrschen sowie fallabhängig logisches Schließen und Folgern einzusetzen.

PERSONALE UND SOZIALE KOMPETENZ

-

ÜBERGREIFENDE HANDLUNGSKOMPETENZ

Die Studierenden haben mit Abschluss des Moduls die Kompetenz erworben, sich mit Fachvertretern und Laien über Fachfragen und Aufgabenstellungen in den Bereichen Logik, logische Folgerung sowie Verifikation und abstraktes Denken auf wissenschaftlichem Niveau auszutauschen.

LERNEINHEITEN UND INHALTE

LEHR- UND LERNEINHEITEN PRÄSENZZEIT SELBSTSTUDIUM
Grundlagen und Logik 60 90

- Algebraische Strukturen: Relationen, Ordnung, Abbildung
- Formale Logik: Aussagenlogik, Prädikatenlogik
- Algorithmentheorie; Komplexität, Rekusion, Terminierung, Korrektheit (mit Bezug zur Logik)
- Grundkenntnisse der deklarativen (logischen/funktionalen/....) Programmierung

BESONDERHEITEN

VORAUSSETZUNGEN

Stand vom 01.10.2025 T3INF1002 // Seite 6

LITERATUR

- Siefkes, Dirk: Formalisieren und Beweisen: Logik für Informatiker, Vieweg Kelly, J.: The Essence of Logic, Prentice Hall Alagic, Arbib: The Design of Well-Structured and Correct Programs, Springer Clocksin, W.F.; Mellish, C.S.: Programming in Prolog, Springer

Stand vom 01.10.2025 T3INF1002 // Seite 7

Theoretische Informatik II (T3INF1003)

Theoretical Computer Science II

FORMALE ANGABEN ZUM MODUL

MODULNUMMERVERORTUNG IM STUDIENVERLAUFMODULDAUER (SEMESTER)MODULVERANTWORTUNGSPRACHET3INF10031. Studienjahr1Prof. Dr. rer. nat. Stephan SchulzDeutsch/Englisch

EINGESETZTE LEHRFORMEN

LEHRFORMENLEHRMETHODENVorlesung, ÜbungLehrvortrag, Diskussion

EINGESETZTE PRÜFUNGSFORMEN

PRÜFUNGSLEISTUNGPRÜFUNGSUMFANG (IN MINUTEN)BENOTUNGKlausurarbeitSiehe Pruefungsordnungja

WORKLOAD UND ECTS-LEISTUNGSPUNKTE

WORKLOAD INSGESAMT (IN H)DAVON PRÄSENZZEIT (IN H)DAVON SELBSTSTUDIUM (IN H)ECTS-LEISTUNGSPUNKTE150481025

QUALIFIKATIONSZIELE UND KOMPETENZEN

FACHKOMPETENZ

Die Studierenden verfügen über vertieftes Wissen:

- Algorithmenansätze für wichtige Problemklassen der Informatik
- Komplexitätsbegriff und Komplezitätsberechnungen für Algorithmen
- wichtige abstrakte Datentypen und ihre Eigenschaften

METHODENKOMPETENZ

Die Studierenden können die Notwendigkeit einer Komplexitätsanalyse für ein Program bewerten und ein angemessenes Maß für den Einsatz im beruflichen Umfeld wählen.

PERSONALE UND SOZIALE KOMPETENZ

Die Studierenden können ihre Entscheidungs- und Fachkompetenz im Bereich Auswahl und Entwurf von Algorithmen und Datenstrukturen einschätzen und über diese Themen mit Fachvertretern und Laien effektiv und auf wissenschaftlichem Niveau kommunizieren.

ÜBERGREIFENDE HANDLUNGSKOMPETENZ

Die Studierenden haben die Kompetenz erworben:

- effiziente Datenstruktuten für praktische Probleme auszuwählen und anzupassen
- durch abstraktes Denken größere Probleme in überschaubare Einheiten aufzuteilen und zu lösen
- Algorithmen für definierte Probleme zu entwerfen

LERNEINHEITEN UND INHALTE

LEHR- UND LERNEINHEITEN	PRÄSENZZEIT	SELBSTSTUDIUM
Algorithmen und Komplexität	48	102

- Grundbegriffe der Berechnungskomplexität O-Notation
- Algorithmen: Suchalgorithmen Sortieralgorithmen Hashing: offenes Hashing, geschlossenes Hashing
- Datenstrukturen: Mengen, Listen, Keller, Schlangen Bäume, binäre Suchbäume, balancierte Räume
- Graphen: Spezielle Graphenalgortihmen, Semantische Netze
- Codierung: Kompression, Fehlererkennende Codes, Fehlerkorrigierende Codes

Stand vom 01.10.2025 T3INF1003 // Seite 8

VORAUSSETZUNGEN

Programmieren, Mathematische Grundlagen

LITERATUR

- Robert Sedgewick, Kevin Wayne: Algorithms, Addison Wesley
 Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, Clifford Stein: Introduction to Algorithms, MIT Press
 Niklaus Wirth: Algorithmen und Datenstrukturen, Teubner Verlag

Stand vom 01.10.2025 T3INF1003 // Seite 9

Programmieren (T3INF1004)

Programming

FORMALE ANGABEN ZUM MODUL

MODULNUMMERVERORTUNG IM STUDIENVERLAUFMODULDAUER (SEMESTER)MODULVERANTWORTUNGSPRACHET3INF10041. Studienjahr2Prof. Dr. rer.nat. Alexander AuchDeutsch/Englisch

EINGESETZTE LEHRFORMEN

 LEHRFORMEN
 LEHRMETHODEN

 Vorlesung, Übung
 Lehrvortrag, Diskussion, Gruppenarbeit

EINGESETZTE PRÜFUNGSFORMEN

PRÜFUNGSLEISTUNGPRÜFUNGSUMFANG (IN MINUTEN)BENOTUNGProgrammentwurfSiehe Pruefungsordnungja

WORKLOAD UND ECTS-LEISTUNGSPUNKTE

WORKLOAD INSGESAMT (IN H)

DAVON PRÄSENZZEIT (IN H)

DAVON SELBSTSTUDIUM (IN H)

ECTS-LEISTUNGSPUNKTE

174

9

QUALIFIKATIONSZIELE UND KOMPETENZEN

FACHKOMPETENZ

Die Studierenden kennen die Grundelemente der prozeduralen und der objektorientierten Programmierung. Sie können die Syntax und Semantik dieser Sprachen und können ein Programmdesign selbstständig entwerfen, codieren und ihr Programm auf Funktionsfähigkeit testen. Sie kennen verschiedene Strukturierungsmöglichkeiten und Datenstrukturen und können diese exemplarisch anwenden.

METHODENKOMPETENZ

Die Studierenden sind in der Lage, einfache Programme selbständig zu erstellen und auf Funktionsfähigkeit zu testen, sowie einfache Entwurfsmuster in ihren Programmentwürfen einzusetzen. Die Studierenden können eine Entwicklungsumgebung verwenden um Programme zu erstellen, zu strukturieren und auf Fehler hin zu untersuchen (inkl. Debugger).

PERSONALE UND SOZIALE KOMPETENZ

Die Studierenden können ihren Programmentwurf sowie dessen Codierung im Team erläutern und begründen. Sie können existierenden Code analysieren und beurteilen. Sie können sich selbstständig in Entwicklungsumgebungen einarbeiten und diese zur Programmierung und Fehlerbehebung einsetzen.

ÜBERGREIFENDE HANDLUNGSKOMPETENZ

Die Studierenden können eigenständig Problemstellungen der Praxis analysieren und zu deren Lösung Programme entwerfen, programmieren und testen.

LERNEINHEITEN UND INHALTE

LEHR- UND LERNEINHEITEN	PRÄSENZZEIT	SELBSTSTUDIUM
Programmieren	96	174

Stand vom 01.10.2025 T3INF1004 // Seite 10

LEHR- UND LERNEINHEITEN PRÄSENZZEIT SELBSTSTUDIUM

Kenntnisse in prozeduraler Programmierung:

- Algorithmenbeschreibung
- Datentypen
- E/A-Operationen und Dateiverarbeitung
- Operatoren
- Kontrollstrukturen
- Funktionen
- Stringverarbeitung
- Strukturierte Datentypen
- dynamische Datentypen
- Zeiger
- Speicherverwaltung

Kenntnisse in objektorientierter Programmierung:

- objektorientierter Programmentwurf
- Idee und Merkmale der objektorientierten Programmierung
- Klassenkonzept
- Operatoren
- Überladen von Operatoren und Methoden
- Vererbung und Überschreiben von Operatoren
- Polymorphismus
- Templates oder Generics
- Klassenbibliotheken
- Speicherverwaltung, Grundverständnis Garbage Collection

BESONDERHEITEN

Dieses Modul beinhaltet zusätzlich bis zu 24h begleitetes Selbststudium in Form von Übungsstunden, Laboren oder Projekten. Hierbei werden Übungsaufgaben und/oder vertiefende Aufgabenstellungen von den Studierenden bearbeitet.

VORAUSSETZUNGEN

LITERATUR

- B.W. Kerninghan, D.M Richie: Programmieren in C, Hanser
- Günster: Einführung in Java, Rheinwerk Computing
- Habelitz: Programmieren lernen mit Java, Rheinwerk Computing
- McConnell: Code Complete: A Practical Handbook of Software Construction, Microsoft Press
- Prinz, Crawford: C in a Nutshell, O'Reilly
- R. Klima, S. Selberherr: Programmieren in C, Springer
- Ullenboom: Java ist auch eine Insel, Rheinwerk Computing

Stand vom 01.10.2025 T3INF1004 // Seite 11

Schlüsselqualifikationen (T3INF1005)

Key Skills

FORMALE ANGABEN ZUM MODUL

MODULNUMMERVERORTUNG IM STUDIENVERLAUFMODULDAUER (SEMESTER)MODULVERANTWORTUNGSPRACHET3INF10051. Studienjahr2Prof. Dr. Jürgen VollmerDeutsch/Englisch

EINGESETZTE LEHRFORMEN

LEHRFORMENLEHRMETHODENVorlesung, ÜbungLehrvortrag, Diskussion, Lehrvortrag, Diskussion, Gruppenarbeit, Projekt

EINGESETZTE PRÜFUNGSFORMEN

PRÜFUNGSLEISTUNGPRÜFUNGSUMFANG (IN MINUTEN)BENOTUNGKombinierte Prüfung - Klausurarbeit (< 50 %)</td>Siehe Pruefungsordnungja

WORKLOAD UND ECTS-LEISTUNGSPUNKTE

WORKLOAD INSGESAMT (IN H)DAVON PRÄSENZZEIT (IN H)DAVON SELBSTSTUDIUM (IN H)ECTS-LEISTUNGSPUNKTE15084665

QUALIFIKATIONSZIELE UND KOMPETENZEN

FACHKOMPETENZ

Die Studierenden haben Grundkenntnisse der Wirtschaftswissenschaften erworben und können ihre fachlichen Aufgaben im betrieblichen Kontext einordnen.

METHODENKOMPETENZ

Die Studierenden haben ökonomische, interkulturelle und arbeitswissenschaftliche Grundkompetenzen für Beruf und Studium erworben.

PERSONALE UND SOZIALE KOMPETENZ

Die Studierenden können ihre Standpunkte in einem (ggf. interdisziplinär und interkulturell zusammengesetzten) Team vertreten und respektieren andere Sichtweisen. Sie können sich selbst und ihre Projekte organisieren und mit Kritik und Konflikten angemessen umgehen.

ÜBERGREIFENDE HANDLUNGSKOMPETENZ

Über die Sachkompetenz hinaus soll das Denken in fachübergreifenden Zusammenhängen geschult werden, sowie strategische Handlungskompetenz und unternehmerisches Denken vermittelt werden.

LERNEINHEITEN UND INHALTE

LEHR- UND LERNEINHEITENPRÄSENZZEITSELBSTSTUDIUMBetriebswirtschaftslehre3628

- Einführung in die theoretischen Ansätze und Methoden in der Betriebswirtschaftslehre
- Ziele und Planung in der Betriebswirtschaftslehre
- Führungsstile und konzepte
- Rechtsformen
- Bilanzen
- Gewinn- und Verlustrechnung
- Kostenrechnung
- Finanzierung und Investition
- Ganzheitliches Unternehmensplanspiel

Stand vom 01.10.2025 T3INF1005 // Seite 12

LERNEINHEITEN UND INHALTE		
LEHR- UND LERNEINHEITEN	PRÄSENZZEIT	SELBSTSTUDIUM
Fremdsprachen 1	24	19
- Schriftliche Kommunikation:Entwerfen und Auswerten von Berichten, Stellungnahmen, Reden, Protokollen - Mündliche Kommunikation: Im Rahmen einer Diskussion argumentieren und schlussfolgern. Perfekt Präsentieren		
Vortrags-, Lern- und Arbeitstechniken	24	19
-Verbale vs. non-verbale Kommunikation -Kommunikationsziel, Botschaft, Adressatenkreis-Auswahl -Inhaltliche Strukturierung -Ablaufgestaltung -Rednerverhalten (z.B. Körpersprache, Stimmmodulation) -Medieneinsatz mit praktischen Beispielen -Lernfunktion im		
Marketing 1	24	19
- Einführung in Marketing - Marktforschung - Marketingplanung - Marketinginstrumentarium - Produkt- und Sortimentspolitik - Werbe- oder Kommunikationspolitik - Preispolitik - Distributionspolitik		
Marketing 2	24	19
Verschiedene Themen der Vorlesung Marketing 1 werden hier vertieft.		
Intercultural Communication 1	24	19
- Major Theories of Intercultural Communications z.B. Hall - Kluckhohn and Strodtbeck - Hofstede - Trompenaars and Hamden-Turner - Exercises - Role Place - Case Studies - Small Group Work - Presentations		
Intercultural Communication 2	24	19
- Conflict Management - Negotiation - Exercises - Role Place - Case Studies - Small Group Work - Presentations		
Fremdsprachen 2	24	19
- Schriftliche Kommunikation:Entwerfen und Auswerten von Berichten, Stellungnahmen, Reden, Protokollen - Mündliche Kommunikation: Im Rahmen einer Diskussion argumentieren und schlussfolgern. Perfekt Präsentieren		
Projektmanagement 1	24	19
 Was ist Projektmanagement? Rahmenbedingungen Projekt- und Ziel-Definitionen Auftrag und Ziele Unterlagen für die Projektplanung Aufwandsschätzung Projektorganisation Projektphasenmodelle Planungsprozess und Methodenplanung Personalplanung Terminplanung Kostenplanung und betriebswirtschaftliche Hintergründe Einführung in Steuerung, Kontrolle und Projektabschluss Projektmanagement mit IT Unterstützung (z.B. MS Project) Übungen zu den einzelnen Teilen 		
Projektmanagement 2	24	19

Meetings, Teams und Konflikte
Risikoplanung und Risikomanagement
Qualitätsplanung
Projekt Steuerung und Kontrolle
Projektabschluss, Projektrevision und finanzwirtschaftliche Betrachtungen
Weitere Projektmanagement Methoden

Stand vom 01.10.2025 T3INF1005 // Seite 13

LERNEINHEITEN UND INHALTE

LEHR- UND LERNEINHEITEN	PRÄSENZZEIT	SELBSTSTUDIUM
Einführung in technisch-wissenschaftliches Arbeiten	24	19

Flemente wissenschaftlicher Arbeit und ihrer Produkte:

- Inhaltliche, formale und stilistische Aspekte wiss. Arbeitens
- Kategorien technischer und wissenschaftlicher Dokumente und ihre Bewertung
- Anwendung von technischem Englisch
- Durchführung von Quellenrecherchen und deren qualitative Bewertung
- Ausarbeitungen und Darstellungsformen wissenschaftlicher Vorträge unter Berücksichtigung des Semantic Environments
- Aufgabenbeschreibung eines technischen bzw. wissenschaftlichen Projektes
- Erstellung einer exemplarischen und vollständigen Dokumentation
- Erstellung eines englischen und deutschen Kurzberichtes
- Methodischer Hinweis: Für die Umsetzung der praktischen Übungen und des Feedbacks

werden die Studierenden in Intensivarbeitsgruppen eingeteilt und betreut.

BESONDERHEITEN

Entweder

- T3INF1005.0 Schluesselqualifikationen als einzige Unit
- T3INF1005.1 Betriebswirtschaftlehre Pflicht und 2 weitere Units zur Wahl

Weitere Units:

T3INF1005.2 - Fremdsprachen 1

T3INF1005.3 - Vortrags-, Lern- und Arbeitstechniken

T3INF1005.4 - Marketing 1

T3INF1005.5 - Marketing 2

T3INF1005.7 - Intercultural Communication 1

T3INF1005.8 - Intercultural Communication 2

T3INF1005.9 - Fremdsprachen 2

T3INF4103.1 - Projektmanagement 1

T3INF4103.2 - Projektmanagement 2

T3INF4116.1 - Einführung in technisch-wissenschaftliches Arbeiten

VORAUSSETZUNGEN

keine

LITERATUR

- Davis, M.: Scientific Papers and Presentations, Boston, London, San Diego
- Eberhard, K.: Einführung in die Erkenntnis- und Wissenschaftstheorie, Stuttgart
- Heydasch, T., Renner, K.-H.: Einführung in das wissenschaftliche Arbeiten; Fakultät für Kultur- und Sozialwissenschaften; FernUniversität Hagen, Hagen
- H. W. Wieczorrek, P. Mertens: Management von IT Projekten, Springer
- G. K. Kapur: Project Management for Information, Technology, Business and Certification, Prentice Hall
- P. Mangold: IT-Projektmanagement kompakt, Spektrum Akademischer Verlag
- H. W. Wieczorrek, P. Mertens: Management von IT Projekten, Springer
- G. K. Kapur: Project Management for Information, Technology, Business and Certification, Prentice Hall
- P. Mangold: IT Projektmanagement kompakt, Spektrum Akademischer Verlag
- Helmut Kohlert: Marketing für Ingenieure, Oldenbourg
- Marion Steven: Bwl für Ingenieure, Oldenbourg
- Jürgen Härdler: Betriebswirtschaftlehre für Ingenieure. Lehr- und Praxisbuch, Hanser Fachbuch
- Jürgen Härdler: Betriebwirtschaftlehre für Ingenieure: Lehr- und Praxisbuch, Hanser Fachbuch
- Marion Steven: BWL für Ingenieure, Oldenbourg
- Adolf J. Schwab: Managementwissen für Ingenieure: Führung, Organisation, Existenzgründung, Springer
- Managing Intercultural Conflict Effectively: Thousand Oaks, Sage Roger Fisher, W. Ury und B.Patton: Getting to Yes , Penguin
- Robert Gibson: Intercultural Business Communication, Cornelsen und Oxford Nancy Adler: International Dimensions of Organizational Behavior, ITP Geert Hofstede, Cultures and Organizations, McGraw-Hill - Stella Ting: Toomey und John G. Oetzel

Entsprechend der gewählten Sprache

Stand vom 01.10.2025 T3INF1005 // Seite 14

Technische Informatik I (T3INF1006)

Computer Engineering I

FORMALE ANGABEN ZUM MODUL

MODULNUMMERVERORTUNG IM STUDIENVERLAUFMODULDAUER (SEMESTER)MODULVERANTWORTUNGSPRACHET3INF10061. Studienjahr1Prof. Dr.-Ing. Thomas NeidlingerDeutsch/Englisch

EINGESETZTE LEHRFORMEN

LEHRFORMENLEHRMETHODENVorlesung, ÜbungLehrvortrag, Diskussion

EINGESETZTE PRÜFUNGSFORMEN

PRÜFUNGSLEISTUNGPRÜFUNGSUMFANG (IN MINUTEN)BENOTUNGKlausurarbeitSiehe Pruefungsordnungja

WORKLOAD UND ECTS-LEISTUNGSPUNKTE

WORKLOAD INSGESAMT (IN H)DAVON PRÄSENZZEIT (IN H)DAVON SELBSTSTUDIUM (IN H)ECTS-LEISTUNGSPUNKTE150481025

QUALIFIKATIONSZIELE UND KOMPETENZEN

FACHKOMPETENZ

Die Studierenden bekommen ein grundlegendes Basiswissen vermittelt über die Arbeitsweise digitaler Schaltelemente und den Aufbau digitaler Schaltkreise. Diese Kenntnisse bilden die Grundlage zum Verständnis von Rechnerbaugruppen.

METHODENKOMPETENZ

Die Studierenden sind mit Abschluss des Moduls in der Lage, für weitgehend standardisierte Anwendungsfälle in der Praxis die angemessene Methode auszuwählen und anzuwenden.

PERSONALE UND SOZIALE KOMPETENZ

-

ÜBERGREIFENDE HANDLUNGSKOMPETENZ

_

LERNEINHEITEN UND INHALTE

LEHR- UND LERNEINHEITENPRÄSENZZEITSELBSTSTUDIUMDigitaltechnik48102

- Zahlensysteme und Codes
- Logische Verknüpfungen und ihre Darstellung
- Schaltalgebra
- Schaltnetze
- Schaltwerke
- Schaltkreistechnik und Interfacing
- Halbleiterspeicher

BESONDERHEITEN

_

VORAUSSETZUNGEN

keine

Stand vom 01.10.2025 T3INF1006 // Seite 15

LITERATUR

- Elektronik 4: Digitaltechnik, K. Beuth, Vogel Fachbuch Digitaltechnik, K. Fricke, Springer Vieweg Digitaltechnik, R. Woitowitz, Springer Grundlagen der Digitaltechnik, G. W. Wöstenkühler, Hanser

Stand vom 01.10.2025 T3INF1006 // Seite 16

Mathematik II (T3INF2001)

Mathematics II

FORMALE ANGABEN ZUM MODUL

MODULNUMMER	VERORTUNG IM STUDIENVERLAUF	MODULDAUER (SEMESTER)	MODULVERANTWORTUNG	SPRACHE
T3INF2001	2. Studienjahr	2	Prof. Dr. Reinhold Hübl	Deutsch/Englisch

EINGESETZTE LEHRFORMEN

LEHRFORMEN	LEHRMETHODEN
Vorlesung, Übung	Lehrvortrag, Diskussion

EINGESETZTE PRÜFUNGSFORMEN

PRÜFUNGSLEISTUNG	PRÜFUNGSUMFANG (IN MINUTEN)	BENOTUNG
Klausur	Siehe Pruefungsordnung	ja
Klausur	Siehe Pruefungsordnung	ja

WORKLOAD UND ECTS-LEISTUNGSPUNKTE

WORKLOAD INSGESAMT (IN H)	DAVON PRÄSENZZEIT (IN H)	DAVON SELBSTSTUDIUM (IN H)	ECTS-LEISTUNGSPUNKTE
180	72	108	6

QUALIFIKATIONSZIELE UND KOMPETENZEN

FACHKOMPETENZ

Mit Abschluss des Moduls haben die Studierenden die Fähigkeit zu mathematischem Denken und Argumentieren weiterentwickelt. Sie verfügen über Überblickswissen in Bezug auf für die Informatik wichtigen Anwendungsgebiete der Mathematik und Statistik und sind in der Lage, problemadäquate Methoden auszuwählen und anzuwenden.

METHODENKOMPETENZ

PERSONALE UND SOZIALE KOMPETENZ

-

ÜBERGREIFENDE HANDLUNGSKOMPETENZ

Die Studierenden sind in der Lage, Aufgabenstellungen aus der Informatik mathematisch zu modellieren und Software-gestützt zu lösen. Sie können technische und betriebswirtschaftliche Vorgänge und Probleme mit Methoden der mehrdimensionalen Analysis, der Theorie der Differentialgleichungen und der Wahrscheinlichkeitsrechnung und Statistik beschreiben und beherrschen die grundlegenden Lösungsmethoden.

LERNEINHEITEN UND INHALTE

LEHR- UND LERNEINHEITEN	PRÄSENZZEIT	SELBSTSTUDIUM
Angewandte Mathematik	36	54
- Grundlagen der Differential- und Integralrechnung reeller Funktionen mit mehreren		
Veränderlichen sowie von Differentialgleichungen und Differentialgleichungssystemen		
- Numerische Methoden und weitere Beispiele mathematischer Anwendungen in der Informatik		

Statistik 36 54

- Deskriptive Statistik
- Zufallsexperimente, Wahrscheinlichkeiten und Spezielle Verteilungen
- Induktive Statistik
- Anwendungen in der Informatik

Stand vom 01.10.2025 T3INF2001 // Seite 17

BESONDERHEITEN

Dieses Modul beinhaltet zusätzlich bis zu 24h begleitetes Selbststudium in Form von Übungsstunden, Laboren oder Projekten. Hierbei werden Übungsaufgaben und/oder vertiefende Aufgabenstellungen von den Studierenden bearbeitet.

VORAUSSETZUNGEN

_

LITERATUR

- Bamberg, Baur, Krapp: Statistik, Oldenbourg
- Cramer, Kamps: Grundlagen der Wahrscheinlichkeitsrechnung und Statistik, Springer
- Dümbgen: Stochastik für Informatiker, Springer
- Fahrmeir, Heumann, Künstler, Pigeot, Tutz: Statistik: Der Weg zur Datenanalyse, Springer
- Hartmann: Mathematik für Informatiker, Vieweg+Teubner
- Heise, Quattrocchi: Informations- und Codierungstheorie, Springer
- Schwarze: Grundlagen der Statistik 1. Beschreibende Verfahren, MWB Verlag
- Schwarze: Grundlagen der Statistik 2. Wahrscheinlichkeitsrechnung und induktive Statistik, MWB Verlag
- Teschl, Teschl: Mathematik für Informatiker: Band 2, Springer
- Dahmen, Reusken: Numerik für Ingenieure und Naturwissenschaftler, Springer
- Fetzer, Fränkel: Mathematik 2, Springer
- Hartmann: Mathematik für Informatiker, Springer
- Sonar: Angewandte Mathematik, Modellbildung und Informatik, Vieweg+Teubner
- Stoer, Bulirsch: Numerische Mathematik 1, Springer
- Stoer, Bulirsch: Numerische Mathematik 2, Springer
- Teschl, Teschl: Mathematik für Informatiker: Band 2. Analysis und Statistik, Springer

Stand vom 01.10.2025 T3INF2001 // Seite 18

Theoretische Informatik III (T3INF2002)

Theoretical Computer Science III

FORMALE ANGABEN ZUM MODUL

MODULNUMMERVERORTUNG IM STUDIENVERLAUFMODULDAUER (SEMESTER)MODULVERANTWORTUNGSPRACHET3INF20022. Studienjahr1Prof. Dr. Heinrich BraunDeutsch/Englisch

EINGESETZTE LEHRFORMEN

 LEHRFORMEN
 LEHRMETHODEN

 Vorlesung, Übung
 Lehrvortrag, Diskussion

EINGESETZTE PRÜFUNGSFORMEN

PRÜFUNGSLEISTUNGPRÜFUNGSUMFANG (IN MINUTEN)BENOTUNGKlausurSiehe Pruefungsordnungja

WORKLOAD UND ECTS-LEISTUNGSPUNKTE

WORKLOAD INSGESAMT (IN H)DAVON PRÄSENZZEIT (IN H)DAVON SELBSTSTUDIUM (IN H)ECTS-LEISTUNGSPUNKTE180721086

QUALIFIKATIONSZIELE UND KOMPETENZEN

FACHKOMPETENZ

Die Studierenden verstehen die Grundlagen von Formale Sprachen und Automatentheorie. Sie können reguläre Sprachen einerseits durch einen regulären Ausdruck, eine Regex und eine Typ 3 Grammatik formal spezifizieren und andererseits durch einen endlichen Akzeptor entscheiden.

Kontextfreie Sprachen können Sie einerseits durch eine Typ 2 Grammatik spezifizieren. Andererseits verstehen sie die zugehörigen Kellerakzeptoren sowohl Top Down als auch Bottom up als Grundlage für den Übersetzerbau.

Sie kennen den Zusammenhang zwischen Typ 0 Sprachen und Turingmaschine als Grundlage der Berechenbarkeitstheorie.

METHODENKOMPETENZ

Die Studierenden können bei regulären Sprachen aus den verschiedenen Beschreibungsformen einen minimalen endlichen Akzeptor konstruieren. Bei kontextfreien Sprachen können Sie aus der Grammatik die Top Down und Bottom up Kellerakzeptoren (auch mit endlicher Vorausschau) für einfache Anwendungsfälle konstruieren. Sie verstehen die theoretischen Grundlagen der Übersetzerbauwerkzeuge Scanner und Parser für komplexe Anwendungsfälle.

Bei praxisnahen Anwendungen aus der Berechenbarkeitstheorie wie Halteproblem und Äquivalenzproblem können Sie erkennen, ob diese berechenbar bzw. entscheidbar sind.

PERSONALE UND SOZIALE KOMPETENZ

Die Studierenden haben mit Abschluss des Moduls die Kompetenz erworben, sich mit Fachvertretern und Laien über Fachfragen und Aufgabenstellungen im Bereich Formale Sprachen, erkennende Automaten sowie Methoden und Tools zu deren Umsetzung auf wissenschaftlichem Niveau auszutauschen.

ÜBERGREIFENDE HANDLUNGSKOMPETENZ

Die Studierenden können bei einer Anwendung die formale Sprache analysieren und insbesondere erkennen, zu welchem Chomsky-Typ diese gehört und welche formale Methoden (Generatoren und Übersetzerbauwerkzeuge) hierfür geeignet sind.

LERNEINHEITEN UND INHALTE

LEHR- UND LERNEINHEITEN	PRÄSENZZEIT	SELBSTSTUDIUM
Formale Sprachen und Automaten 1	48	72

Stand vom 01.10.2025 T3INF2002 // Seite 19

LERNEINHEITEN UND INHALTE LEHR- UND LERNEINHEITEN **PRÄSENZZEIT** SELBSTSTUDIUM -Grammatiken - Sprachklassen (Chomsky-Hierarchie) - Erkennende Automaten Reguläre Sprachen - Reguläre Grammatiken - Endliche Automaten - Nicht deterministische / deterministische endliche Automaten Kontextfreie Sprachen - Kontextfreie Grammatiken - Verfahren zur Analyse von kontextfreien Grammatiken (CYK) - Kellerautomaten: Top down und Bottom up inklusive k-Vorausschau - Anwendung an einfachen praxisnahen Beispielen - Zusammenhang Turingmaschine, formale Sprachen vom Chomsky Typ 0 und Entscheidbarkeit Formale Sprachen und Automaten 2 24 36 - Abgrenzung verschiedener Sprachklassen (Beweis durch Pumpinglemma) - Kontextsensitive Sprachen - Vertiefung Entscheidbarkeit und Berechenbarkeitstheorie - Turingmächtigkeit von Programmiersprachen (welcher Sprachumfang genügt, um alle berechenbaren Funktionen implementieren zu können) Einführung Compilerbau 24 36 - Phasen des Compilers - Lexikalische Analyse (Scanner) - Syntaktische Analyse (Parser): Top-down Verfahren, Bottom-up Verfahren - Syntaxgesteuerte Übersetzung: Z-Attributierung, IL-Attributierung, Kombination mit Syntaxanalyse-Verfahren - Semantische Analyse: Typüberprüfung

BESONDERHEITEN

VORAUSSETZUNGEN

LITERATUR

- Aho, Sethi, Ullmann: Compilers: Principles, Techniques, and Tools, Addison Wesley; US ed edition
- Helmut Herold: Linux-, Unix-Profitools awk, sed, lex, yacc und make , open source library
- J.E. Hopcroft, R. Motwani, J.D. Ullmann: Einführung in die Automatentheorie, Formale Sprachen und Komplexitätstheorie, Addison-Wesley Longman Verlag
- U. Hedtstück: Einführung in die theoretische Informatik, Oldenburg Wissenschaftsverlag
- J.R. Levine, T. Mason, D. Brown: lex & yacc, O'Reilly Media
- U. Hedtstück: Einführung in die theoretische Informatik, Oldenburg Wissenschaftsverlag
- J.E. Hopcroft, R. Motwani, J.D. Ullmann: Einführung in die Automatentheorie, Formale Sprachen und Komplexitätstheorie, Addison-Wesley Longman Verlag

Stand vom 01.10,2025 T3INF2002 // Seite 20

Software Engineering I (T3INF2003)

Software Engineering I

FORMALE ANGABEN ZUM MODUL

MODULNUMMER	VERORTUNG IM STUDIENVERLAUF	MODULDAUER (SEMESTER)	MODULVERANTWORTUNG	SPRACHE
T3INF2003	2. Studienjahr	2	Prof. Dr. Phil. Antonius Hoof	Deutsch/Englisch

EINGESETZTE LEHRFORMEN

LEHRFORMEN	LEHRMETHODEN
Vorlesung, Übung, Labor	Lehrvortrag, Diskussion, Gruppenarbeit

EINGESETZTE PRÜFUNGSFORMEN

PRÜFUNGSLEISTUNG	PRÜFUNGSUMFANG (IN MINUTEN)	BENOTUNG
Programmentwurf	Siehe Pruefungsordnung	ja

WORKLOAD UND ECTS-LEISTUNGSPUNKTE

WORKLOAD INSGESAMT (IN H)	DAVON PRÄSENZZEIT (IN H)	DAVON SELBSTSTUDIUM (IN H)	ECTS-LEISTUNGSPUNKTE
270	96	174	9

QUALIFIKATIONSZIELE UND KOMPETENZEN

FACHKOMPETENZ

Die Studierenden kennen die Grundlagen des Softwareerstellungsprozesses. Sie können eine vorgegebene Problemstellung analysieren und rechnergestützt Lösungen entwerfen, umsetzen, qualitätssichern und dokumentieren. Sie kennen die Methoden der jeweiligen Projektphasen und können sie anwenden. Sie können Lösungsvorschläge für ein gegebenes Problem konkurrierend bewerten und korrigierende Anpassungen vornehmen.

METHODENKOMPETENZ

Die Studierenden können sich mit Fachvertretern über Problemanalysen und Lösungsvorschläge, sowie über die Zusammenhänge der einzelnen Phasen austauschen. Sie können einfache Softwareprojekte autonom entwickeln oder bei komplexen Projekten effektiv in einem Team mitwirken. Sie können ihre Entwürfe und Lösungen präsentieren und begründen. In der Diskussion im Team können sie sich kritisch mit verschiedenen Sichtweisen auseinandersetzen und diese bewerten.

PERSONALE UND SOZIALE KOMPETENZ

ÜBERGREIFENDE HANDLUNGSKOMPETENZ

Die Studierenden können sich selbsständig in Werkzeuge einarbeiten. Sie verbinden den Softwareentwicklungsprozess mit Techniken des Projektmanagement und beachten während des Projekts Zeit- und Kostenfaktoren.

LERNEINHEITEN UND INHALTE

LEHR- UND LERNEINHEITEN	PRÄSENZZEIT	SELBSTSTUDIUM
Grundlagen des Software-Engineering	96	174

- Vorgehensmodelle
- Phasen des SW-Engineering und deren Zusammenhänge
- Lastenheft und Pflichtenheft, Anwendungsfälle
- Analyse- und Entwurfsmodelle (z.B. Modellierungstechniken von UML oder SADT)
- Softwarearchitektur, Schnittstellenentwurf
- Coderichtlinien und Codequalität: Reviewing und Testplanung, -durchführung und -bewertung
- Continuous Integration
- Versionsverwaltung
- Betrieb und Wartung
- Phasenspezifisch werden verschiedene Arten der Dokumentation behandelt
- Durchführung eines konkreten Softwareentwicklungsprojektes in Projektteams mittlerer Größe

(z.B. eine Web Service / Web App, eine stand-alone Anwendung oder eine Steuerung)

Stand vom 01.10.2025 T3INF2003 // Seite 21

LEHR- UND LERNEINHEITEN PRÄSENZZEIT SELBSTSTUDIUM

BESONDERHEITEN

Die einzelnen Inhalte der Lehrveranstaltung sollen anhand von einem Projekt vertieft werden. In den einzelnen Projektphasen soll auf den Einsatz von geeigneten Methoden, die Dokumentation sowie die Qualitätssicherung eingegangen werden. Geeignete Werkzeuge sollen zum Einsatz kommen. Bei den gruppenorientierten Laborübungen werden außerfachliche Qualifikationen geübt und (Teil) Ergebnisse präsentiert. Dieses Modul beinhaltet zusätzlich bis zu 24h begleitetes Selbststudium in Form von Übungsstunden, Laboren oder Projekten. Hierbei werden Übungsaufgaben und/oder vertiefende Aufgabenstellungen von den Studierenden bearbeitet.

VORAUSSETZUNGEN

LITERATUR

- Helmut Balzert: Lehrbuch der Softwaretechnik: Entwurf, Implementierung, Installation und Betrieb, Spektrum akademischer Verlag
- Helmut Balzert: Lehrbuch der Softwaretechnik: Softwaremanagement, Spektrum akademischer Verlag
- Ian Sommerville: Software Engineering, Pearson Studium
- Peter Liggesmeyer: Software Qualität: Testen, Analysieren und Verifizieren von Software, Spektrum Akademischer Verlag
- Chris Rupp: Requirements-Engineering und -Management: Aus der Praxis von klassisch bis agil, Carl Hanser Verlag GmbH & Co. KG

Stand vom 01.10.2025 T3INF2003 // Seite 22

Datenbanken (T3INF2004)

Database Systems

FORMALE ANGABEN ZUM MODUL

MODULNUMMERVERORTUNG IM STUDIENVERLAUFMODULDAUER (SEMESTER)MODULVERANTWORTUNGSPRACHET3INF20042. Studienjahr2Prof. Dr. Dirk ReichardtDeutsch/Englisch

EINGESETZTE LEHRFORMEN

LEHRFORMENLEHRMETHODENVorlesung, ÜbungLehrvortrag, Diskussion, Gruppenarbeit

EINGESETZTE PRÜFUNGSFORMEN

PRÜFUNGSLEISTUNGPRÜFUNGSUMFANG (IN MINUTEN)BENOTUNGKlausurarbeit oder Kombinierte PrüfungSiehe Pruefungsordnungja

WORKLOAD UND ECTS-LEISTUNGSPUNKTE

WORKLOAD INSGESAMT (IN H)DAVON PRÄSENZZEIT (IN H)DAVON SELBSTSTUDIUM (IN H)ECTS-LEISTUNGSPUNKTE180721086

QUALIFIKATIONSZIELE UND KOMPETENZEN

FACHKOMPETENZ

Die Studierenden kennen die grundlegenden Theorien und Modelle von Datenbanksystemen. Sie können die Grundprinzipien von Datenbanksystemen systematisch darstellen und erläutern. Sie können diese zum Entwurf einer praktisch einsatzfähigen Datenbank nutzen und Datenbankentwürfe bewerten.

METHODENKOMPETENZ

Die Studierenden können die Stärken und Schwächen der Entwurfsmethoden für Datenbanken bewerten und diese bzgl. der Einsatzfähigkeit im beruflichen Umfeld einschätzen.

PERSONALE UND SOZIALE KOMPETENZ

Die Studierenden können ihre Entscheidungs- und Fachkompetenzen im Bereich der Datenbankentwicklung adäquat einschätzen und die Experten anderer Bereiche (insbes. des Anwendungsbereichs) in den Datenbankentwurf einbeziehen.

ÜBERGREIFENDE HANDLUNGSKOMPETENZ

Die Studierenden haben über die fundierte Fachkenntnis hinaus die Fähigkeit erworben, theoretische Konzepte der Datenbanken in praktische Anwendungen umzusetzen.

LERNEINHEITEN UND INHALTE

LEHR- UND LERNEINHEITENPRÄSENZZEITSELBSTSTUDIUMGrundlagen der Datenbanken72108

- Grundkonzepte und Datenmodellierung (u.a Entity Relationship Modell)
- Relationales Datenmodell
- Normalformen
- Relationaler Datenbankentwurf
- Mehrbenutzerbetrieb und Transaktionskonzepte
- Architekturen von Datenbanksystemen
- Einführung in SQL (Praxisprojekt)

BESONDERHEITEN

Das Modul besteht i.d.R. aus theoretischem und praktischem Anteil.

Stand vom 01.10.2025 T3INF2004 // Seite 23

VORAUSSETZUNGEN

Algorithmen und Datenstrukturen, sowie Grundlagen der Logik

LITERATUR

- Ramez A. Elmasri, Shamkant B. Navathe: Grundlagen von Datenbanksystemen, Pearson Studium Alfons Kemper, André Eickler: Datenbanksysteme: Eine Einführung, Oldenbourg Verlag Nikolai Preiß: Entwurf und Verarbeitung relationaler Datenbanken, Oldenbourg Verlag Heide Fraeskorn-Woyke, Birgit Bertelsmeier, Petra Riemer, Elena Bauer: "Datenbanksysteme", Pearson Studium

Stand vom 01.10.2025 T3INF2004 // Seite 24

Technische Informatik II (T3INF2005)

Computer Engineering II

FORMALE ANGABEN ZUM MODUL

MODULNUMMERVERORTUNG IM STUDIENVERLAUFMODULDAUER (SEMESTER)MODULVERANTWORTUNGSPRACHET3INF20052. Studienjahr2Dr. -Ing. Alfred StreyDeutsch/Englisch

EINGESETZTE LEHRFORMEN

LEHRFORMENLEHRMETHODENVorlesung, ÜbungLehrvortrag, Diskussion

EINGESETZTE PRÜFUNGSFORMEN

PRÜFUNGSLEISTUNGPRÜFUNGSUMFANG (IN MINUTEN)BENOTUNGKlausurSiehe Pruefungsordnungja

WORKLOAD UND ECTS-LEISTUNGSPUNKTE

WORKLOAD INSGESAMT (IN H)

DAVON PRÄSENZZEIT (IN H)

DAVON SELBSTSTUDIUM (IN H)

ECTS-LEISTUNGSPUNKTE

144

8

QUALIFIKATIONSZIELE UND KOMPETENZEN

FACHKOMPETENZ

Die Studierenden gewinnen ein grundlegendes Verständnis von den Aufgaben, der Funktionsweise und der Architektur moderner Rechnersysteme. In einem Übungsteil wird ihnen die systemnahe Programmierung anhand eines Beispielprozessors vermittelt. Abgerundet wird dieses hardwarenahe Wissen durch die Unit "Betriebssysteme", welche die Arbeitsweise von Rechenanlagen aus Sicht der Systemsoftware beleuchtet. Die Studierenden sind somit in der Lage, das Zusammenwirken von Hard- und Software in einem Rechner im Detail zu verstehen.

METHODENKOMPETENZ

Die Studierenden kennen mit Abschluss des Moduls die wissenschaftlichen Methoden aus den Bereichen der Rechnerarchitektur und der Betriebssysteme. Sie sind in der Lage, unter Einsatz dieser Methoden die Hard- und Systemsoftware moderner Rechnersysteme zu interpretieren und zu bewerten. Ferner können sie einfache maschinennahe Programme entwerfen und analysieren.

PERSONALE UND SOZIALE KOMPETENZ

ÜBERGREIFENDE HANDLUNGSKOMPETENZ

Die Studierenden sind in der Lage, die Leistungsfähigkeit eines Rechnersystems für eine Anwendung aus der Praxis zu beurteilen. Ferner ist es Ihnen möglich, die rasche Weiterentwicklung auf dem Gebiet der Rechnerhardware mitzuverfolgen und zu verstehen, welche Vor- bzw. Nachteile die Enführung einer neuen IT-Technologie hat. Auch sind sie in der Lage zu verstehen, wie die neue Technologie arbeitet bzw. sie können sich das dazu notwendige neue Wissen jederzeit selbst erarbeiten.

LERNEINHEITEN UND INHALTE

LEHR- UND LERNEINHEITEN	PRÄSENZZEIT	SELBSTSTUDIUM
Rechnerarchitekturen 1	36	54

Stand vom 01.10.2025 T3INF2005 // Seite 25

LEHR- UND LERNEINHEITEN **PRÄSENZZEIT** SELBSTSTUDIUM

- Einführung
- Historie (mechanisch, analog, digital)
- Architektur nach von Neumann
- Systemkomponenten im Überblick
- Grobstruktur der Prozessorinterna
- Rechenwerk
- Addition: Halbaddierer, Volladdierer, Wortaddierer, Bedeutung des Carrybits, Carry Ripple und

Carry Look-Ahead Addierer

- Subtraktion: Transformation aus Addition, Bedeutung des Carrybits
- Multiplikation: Parallel- und Seriell-Multiplizierer
- Division: Konzept
- Arithmetische-logische Einheit (ALU)
- Datenpfad: ALU mit Rechenregister und Ergebnisflags (CCR, Statusbits)
- Steuerwerk: Aufbau, Komponenten und Funktionswiese
- Befehlsdekodierung und Mikroprogrammierung
- Struktur von Prozessorbefehlssätzen
- Klassifizierung und Anwendung von Prozessorregistern (Daten-, Adress- und Status-Register)
- Leistungsbewertung und Möglichkeiten der Leistungssteigerung (z.B. Pipelining)
- Businterface: Daten-, Adress- und Steuerleitungen
- Buskomponenten
- Buszyklen: Lese- und Schreib-Zugriff, Handshaking (insbesondere Waitstates)
- Busarbitrierung und Busmultiplexing
- Fundamentalarchitekturen
- Konzept Systemaufbau und Komponenten: CPU, Hauptspeicher, I/O: Diskussion Anbindung externer Geräte (Grafik, Tastatur, Festplatten, DVD, ...)
- Halbleiterspeicher
- Wahlfreie Speicher: Aufbau, Funktion, Adressdekodierung, interne Matrixorganisation
- RAM: statisch, dynamisch, aktuelle Entwicklungen
- ROM: Maske, Fuse, EPROM, EEPROM, FEPROM, aktuelle Entwicklungen
- Systemaufbau
- Aufteilung des Adressierungsraumes
- Entwerfen von Speicherschemata und der zugehörigen Adress-Dekodierlogik
- Vitale System-Komponenten: Stromversorgung, Rücksetzlogik, Systemtakt, Chipsatz
- Schaltkreise: Interrupt- und DMA-Controller, Zeitgeber- und Uhrenbausteine
- Schnittstellen: Parallel und seriell, Standards (RS232, USB, ...)

Betriebssysteme 36 54

- Einführung
- Historischer Überblick
- Betriebssystemkonzepte
- Prozesse und Threads
- Einführung in das Konzept der Prozesse
- Prozesskommunikation
- Übungen zur Prozesskommunikation: Klassische Probleme
- Scheduling von Prozessen
- Threads
- Speicherverwaltung
- Einfache Speicherverwaltung ohne Swapping und Paging
- Swapping
- Virtueller Speicher
- Segmentierter Speicher
- Dateisysteme
- Dateien und Verzeichnisse
- Implementierung von Dateisystemen
- Sicherheit von Dateisystemen
- Schutzmechanismen
- Neue Entwicklungen: Log-basierte Dateisysteme
- Ein- und Ausgabe: Grundlegende Eigenschaften der E/A- Festplatten
- Anwendung der Grundlagen auf reale Betriebssysteme: UNIX/Linux und Windows (NT, 2000,

XP, Windows7)

Stand vom 01.10.2025 T3INF2005 // Seite 26

LERNEINHEITEN UND INHALTE

LEHR- UND LERNEINHEITEN	PRÄSENZZEIT	SELBSTSTUDIUM
Systemnahe Programmierung 1	24	36

- Programmiermodell für die Maschinenprogrammierung: Befehlssatz, Registersatz und Adressierungsarten
- Umsetzung von Kontrollstrukturen, Auswertung von Ergebnisflags
- Unterprogrammaufruf mit Hilfe des Stacks
- Konventionen
- Konzept und Umsetzung von HW- und SW-Interrupts: Diskussion von HW- und

SW-Mechanismen und Automatismen, Interrupt-Vektortabelle, Spezialfall: Bootvorgang

- Diskussion User- und Supervisor-Modus von Prozessoren
- Praktische Übungen
- Einführung eines Beispielprozessors
- Aufbau des Übungsrechners
- Einarbeitung und Softwareentwicklungs- und Testumgebung für den Übungsrechner
- Selbständige Entwicklung von Maschinenprogrammen mit steigendem Schwierigkeits- und

Strukturierungsgrad

BESONDERHEITEN					

-

VORAUSSETZUNGEN

-

LITERATUR

_

- D. A. Patterson, J. L. Hennessy: Rechnerorganisation und Rechnerentwurf: Die Hardware/Software-Schnittstelle, Oldenbourg Wissenschaftsverlag
- H. Müller, L. Walz: Elektronik 5: Mikroprozessortechnik, Vogel Fachbuch
- A. S. Tanenbaum: Computerarchitektur, Strukturen Konzepte Grundlagen, Pearson Studium
- W. Oberschelp, G. Vossen: Rechneraufbau und Rechnerstrukturen, Oldenbourg Wissenschaftsverlag
- T. Flik: Mikroprozessortechnik und Rechnerstrukturen, Springer
- W. Schiffmann, R. Schmitz: Technische Informatik 2, Springer
- A. Fertig: Rechnerarchitektur, Books on Demand
- Tanenbaum A.S.: Moderne Betriebssysteme, Pearson Studium
- Mandl P.: Grundkurs Betriebssysteme, Springer Vieweg
- Glatz E.: Betriebssysteme: Grundlagen, Konzepte, Systemprogrammierung, dpunkt Verlag

Stallings W.: Operating Systems: Internals and Design Principles, Prentice Hall

Stand vom 01.10.2025 T3INF2005 // Seite 27

Kommunikations- und Netztechnik (T3INF2006)

Communication and Networks

FORMALE ANGABEN ZUM MODUL

MODULNUMMERVERORTUNG IM STUDIENVERLAUFMODULDAUER (SEMESTER)MODULVERANTWORTUNGSPRACHET3INF20062. Studienjahr1Prof. Friedemann StockmayerDeutsch/Englisch

EINGESETZTE LEHRFORMEN

LEHRFORMEN

Vorlesung, Vorlesung, Labor, Vorlesung, Übung

Lehrvortrag, Diskussion, Lehrvortrag, Diskussion, Gruppenarbeit

EINGESETZTE PRÜFUNGSFORMEN

PRÜFUNGSLEISTUNGPRÜFUNGSUMFANG (IN MINUTEN)BENOTUNGKlausurSiehe Pruefungsordnungja

LEHRMETHODEN

WORKLOAD UND ECTS-LEISTUNGSPUNKTE

WORKLOAD INSGESAMT (IN H)DAVON PRÄSENZZEIT (IN H)DAVON SELBSTSTUDIUM (IN H)ECTS-LEISTUNGSPUNKTE225841415

QUALIFIKATIONSZIELE UND KOMPETENZEN

FACHKOMPETENZ

Das Modul vermittelt Grundlagenkenntnisse über Kommunikationsnetze. Mit Abschluss des Moduls verfügen die Studierenden über ein detailliertes Verständnis im Bereich der Kommunikations- und Netztechnik bzgl. Aufbau, Funktion, Zusammenwirken der einzelnen Komponenten, sowie über die bei der Kommunikation eingesetzten Technologien, Dienste und Protokolle.

METHODENKOMPETENZ

-

PERSONALE UND SOZIALE KOMPETENZ

-

ÜBERGREIFENDE HANDLUNGSKOMPETENZ

Das Modul führt mehrere Disziplinen zusammen: Grundlagen aus Rechnertechnik bzw. Rechnernetze, Digitaltechnik, Programmieren sowie der Ansatz für Software-Architekturen. Das Modul erschließt komplexe und übergreifende Zusammenhänge.

LERNEINHEITEN UND INHALTE

LEHR- UND LERNEINHEITENPRÄSENZZEITSELBSTSTUDIUMNetztechnik3639

- Aufgaben der Kommunikations- und Netztechnik
- Referenzmodelle und deren Schnittstellen
- Netzelemente
- Normen und Standards
- Festnetze LAN/MAN: Unterscheidung, Aufbau, Funktion, Aktuelle Entwicklungen
- Protokolle TCP/IP mit IPv4 und IPv6
- Netzkopplung und Sicherheitstechniken

Stand vom 01.10.2025 T3INF2006 // Seite 28

LERNEINHEITEN UND INHALTE LEHR- UND LERNEINHEITEN

Labor Netztechnik	12	63	
Das Labor Netztechnik ergänzt die Vorlesung durch praktische Übungen an Kommunikationsnetzen (z.B. Netzlabor). Aktuelle netzspezifische Themen werden im Rahmen des Selbststudiums erarbeitet. Optional: Erarbeitung grundlegender Begriffe aus "Signale und Syteme", Systemantwort mit Faltungssumme bzw. Integral, Transformationen (Fourier, Laplace), verknüpft mit Übungs- und Laboreinheiten.	12	03	

PRÄSENZZEIT

36

SELBSTSTUDIUM

39

- Signale und Systeme 1
 Grundlegende Begriffe und Einführung in Signale und Systeme (kontinuierlich)
- Systemantwort mittels Faltungsintegral/Faltungssumme
- Fourier-Reihe
- Transformationen (Fourier, Laplace)

BESONDERHEITEN

- Die beiden Units Labor Netztechnik bzw. Signale und Systeme I werden alternativ angeboten

VORAUSSETZUNGEN

LITERATUR

- E. Pehl, Digitale und analoge Nachrichtenübertragung, Hüchting Telekommunikation
- J.-R. Ohm, H.D. Lüke, Signalübertragung, Springer
- D.Ch. von Grünigen, Digitale Signalverarbeitung, Hanser Fachbuch
- Kurose, Ross: Computernetzwerke: Der Top Down Ansatz, Pearson Studium IT
- Tanenbaum, A.S:Computer Networks, Prentice Hall A.Sikora: Technische Grundlagen der Rechnerkommunikation, Hanser Fachbuch

Weiterführende Literatur wird über eine aktuelle Literaturrecherche beschafft (Internet, Online-Kataloge, Fachzeitschriften, Bibliotheken).

Stand vom 01.10.2025 T3INF2006 // Seite 29

Software Engineering II (T3INF3001)

Software Engineering II

FORMALE ANGABEN ZUM MODUL

MODULNUMMER	VERORTUNG IM STUDIENVERLAUF	MODULDAUER (SEMESTER)	MODULVERANTWORTUNG	SPRACHE
T3INF3001	3. Studienjahr	1	Prof. DrIng. Andreas Judt	Deutsch/Englisch

EINGESETZTE LEHRFORMEN

LEHRFORMEN	LEHRMETHODEN
Vorlesung, Übung	Lehrvortrag, Diskussion

EINGESETZTE PRÜFUNGSFORMEN

PRÜFUNGSLEISTUNG	PRÜFUNGSUMFANG (IN MINUTEN)	BENOTUNG
Programmentwurf	Siehe Pruefungsordnung	ja

WORKLOAD UND ECTS-LEISTUNGSPUNKTE

WORKLOAD INSGESAMT (IN H)	DAVON PRÄSENZZEIT (IN H)	DAVON SELBSTSTUDIUM (IN H)	ECTS-LEISTUNGSPUNKTE
150	48	102	5

QUALIFIKATIONSZIELE UND KOMPETENZEN

FACHKOMPETENZ

Die Studierenden sind in der Lage, komplexe Problemstellungen aus der Praxis zu analysieren und aufzuarbeiten. Sie gewinnen die für die Lösung relevanten Informationen, können eine geeignete Softwarearchitektur mit relevanten Techniken entwickeln und nach aktuellen Verfahren zertifizieren.

METHODENKOMPETENZ

Die Studierenden sind mit Abschluss des Moduls in der Lage, für komplexe Praxisanwendungen eine angemessene Methode auszuwählen und anzuwenden. Sie können die Möglichkeiten, Praktikabilität und Grenzen der eingesetzten Methode einschätzen und sind in der Lage, Handlungsalternativen aufzuzeigen und technisch sowie wirtschaftlich zu bewerten.

PERSONALE UND SOZIALE KOMPETENZ

Die Studierenden sind sich ihrer Rolle und Verantwortung im Unternehmen bewusst. Sie können technische, theoretische und wirtschaftliche Fragestellungen gegeneinander abwiegen und lösungsorientiert umsetzen.

ÜBERGREIFENDE HANDLUNGSKOMPETENZ

Die Studierenden haben gelernt, sich schnell in neuen Situationen zurechtzufinden und sich in neue Aufgaben und Teams zu integrieren. Die Studierenden überzeugen als selbstständig denkende und verantwortlich handelnde Persönlichkeiten mit kritischer Urteilsfähigkeit. Sie zeichnen sich aus durch fundiertes fachliches Wissen, Verständnis für übergreifende Zusammenhänge sowie die Fähigkeit, theoretisches Wissen in die Praxis zu übertragen. Sie lösen Probleme im beruflichen Umfeld methodensicher und zielgerichtet und handeln dabei teamorientiert.

LERNEINHEITEN UND INHALTE

LEHR- UND LERNEINHEITEN	PRÄSENZZEIT	SELBSTSTUDIUM
Advanced Software Engineering	48	102

- Unified Process mit Phasen- und Prozesskomponenten
- Anwendungsfälle
- Entwurfsmuster
- Refactoring
- Design-Heuristiken und -Regeln
- Methoden der Softwarequalitätssicherung
- Requirements Engineering
- Usability/SW-Ergonomie
- SW Management (z.B. ITIL)
- Aktuelle Themen und Trends des Software Engineerings

Stand vom 01.10.2025 T3INF3001 // Seite 30

	FR									

LEHR- UND LERNEINHEITEN PRÄSENZZEIT SELBSTSTUDIUM

BESONDERHEITEN

VORAUSSETZUNGEN

LITERATUR

- Fowler, M.: Refactoring: Improving the Design of Existing Code, Addison-Wesley
- Gamma, E./Helm, R./Johnson, R./Vlissides, J.: Design Patterns, Addison-Wesley
 ITIL Service Lifecycle Publication Suite: German Translation, TSO Verlag
- Jacobson, I./Christerson, M./Jonsson, P./Övergaard, G.: Object-oriented software engineering a use case driven approach, Addison-Wesley Nielsen: Usability Engineering (Interactive Technologies), Morgan Kaufmann
- Pohl/Rupp: Basiswissen Requirements Engineering: Aus- und Weiterbildung nach IREB-Standard zum Certified Professional for Requirements Engineering Foundation Level, dpunkt.verlag GmbH
- Richter/Flückiger: Usability Engineering kompakt: Benutzbare Produkte gezielt entwickeln (IT kompakt), Springer Vieweg

Stand vom 01.10.2025 T3INF3001 // Seite 31

IT-Sicherheit (T3INF3002)

IT-Security

FORMALE ANGABEN ZUM MODUL

MODULNUMMER	VERORTUNG IM STUDIENVERLAUF	MODULDAUER (SEMESTER)	MODULVERANTWORTUNG	SPRACHE
T3INF3002	3. Studienjahr	1	Prof. Friedemann Stockmayer	Deutsch/Englisch

EINGESETZTE LEHRFORMEN

LEHRFORMENLEHRMETHODENVorlesung, Übung, LaborLehrvortrag, Diskussion

EINGESETZTE PRÜFUNGSFORMEN

PRÜFUNGSLEISTUNGPRÜFUNGSUMFANG (IN MINUTEN)BENOTUNGKlausurSiehe Pruefungsordnungja

WORKLOAD UND ECTS-LEISTUNGSPUNKTE

WORKLOAD INSGESAMT (IN H)	DAVON PRÄSENZZEIT (IN H)	DAVON SELBSTSTUDIUM (IN H)	ECTS-LEISTUNGSPUNKTE
150	48	102	5

QUALIFIKATIONSZIELE UND KOMPETENZEN

FACHKOMPETENZ

Die Studierenden sind mit Abschluss des Moduls sensibilisiert bzgl. Sicherheit in wesentlichen Bereichen der IT. Sie sind in der Lage, nach einer Bedrohungsanalyse einzelne Schwachstellen zu erkennen und entsprechende Maßnahmen zu ergreifen, um eine angemessene IT-Sicherheit im Rahmen eines Sicherheitskonzeptes zu gewährleisten. Sie

kennen die Stärken und Schwächen der möglichen Maßnahmen in ihrem beruflichen Anwendungsfeld und können diese in konkreten Handlungssituationen gegeneinander abwägen.

Das erworbene Fachwissen kann in Diskussionen zum Thema IT-Architekturen (Konzeption, Implementierung, Portierung) eingebracht werden und in der Entwicklung von Lösungsansätzen und Spezifikation von IT-Systemen angewendet werden.

METHODENKOMPETENZ

PERSONALE UND SOZIALE KOMPETENZ

Die Studierenden haben die Kompetenz erworben, bei der Bewertung von Informationstechnologien auch gesellschaftliche und ethische Aspekte zu berücksichtigen. Dies gilt speziell für das Abwägen von Interessen der Sicherheit bei IT-Systemen gegenüber dem informationellen Selbstbestimmungsrecht der von der Datenverarbeitung betroffenen Personen.

ÜBERGREIFENDE HANDLUNGSKOMPETENZ

Das Modul führt die Studierenden zu einem bewussten und vorsichtigen Umgang mit Daten jeglicher Art. Entscheidungen werden stets vor dem Hintergrund der IT-Sicherheit getroffen.

Einüben wissenschaftlicher Arbeitsweise, Recherchieren und Bewerten aktueller Fachliteratur.

LERNEINHEITEN UND INHALTE

ELINEINIETEN OND INTIACTE		
LEHR- UND LERNEINHEITEN	PRÄSENZZEIT	SELBSTSTUDIUM
IT-Sicherheit	48	102

Stand vom 01.10.2025 T3INF3002 // Seite 32

LEHR- UND LERNEINHEITEN PRÄSENZZEIT SELBSTSTUDIUM

- Grundlegende Begriffe und Sicherheitsprobleme
- Bedrohungsanalyse und Sicherheitskonzepte
- Basismechanismen (Verschlüsselung, Hash-Funktionen, Authentication Codes,

Signaturalgorithmen, Public-Key Verfahren etc.) und deren kryptografische Grundlagen

- Sicherheitsmodelle
- Netzwerksicherheit und Sicherheitsprotokolle (z.B. X.509, OAuth)
- Sicherheit Web-basierter Anwendungen und Dienste (z.B. XSS, SQL-Injection, Rest, Soap)
- Datenschutz
- Embedded Security
- Aktuelle Themen

BESONDERHEITEN

VORAUSSETZUNGEN

LITERATUR

- Jonathan Katz, Y. Lindell, Introduction to Modern Cryptography, Chapmann & Hall CRC Press, Cryptography and Network Security
- M. Bishop: Computer Security, Addison-Wesley-Longman
- C. Eckert: IT-Sicherheit, Oldenbourg
- W. Stallings, L. Brown: Computer Security: Principles and Practice, Pearson * Education
- C. Pfleeger, S. Lawrence Pfleeger, Security in Computing
- Laurens Van Houtven, Crypto 101, www.crypto101.io
- Ivan Ristic, Bulletproof SSL nd TLS, Feisty Druck

Stand vom 01.10.2025 T3INF3002 // Seite 33

Studienarbeit (T3 3101)

Student Research Projekt

FORMALE ANGABEN ZUM MODUL

MODULNUMMERVERORTUNG IM STUDIENVERLAUFMODULDAUER (SEMESTER)MODULVERANTWORTUNGSPRACHET3_31013. Studienjahr2Prof. Dr.-Ing. Joachim FrechDeutsch

EINGESETZTE LEHRFORMEN

LEHRFORMENLEHRMETHODENIndividualbetreuungProjekt

EINGESETZTE PRÜFUNGSFORMEN

PRÜFUNGSLEISTUNGPRÜFUNGSUMFANG (IN MINUTEN)BENOTUNGStudienarbeitSiehe Pruefungsordnungja

WORKLOAD UND ECTS-LEISTUNGSPUNKTE

WORKLOAD INSGESAMT (IN H)DAVON PRÄSENZZEIT (IN H)DAVON SELBSTSTUDIUM (IN H)ECTS-LEISTUNGSPUNKTE3001228810

QUALIFIKATIONSZIELE UND KOMPETENZEN

FACHKOMPETENZ

Die Studierenden können sich unter begrenzter Anleitung in ein komplexes, aber eng umgrenztes Gebiet vertiefend einarbeiten und den allgemeinen Stand des Wissens erwerben.

Sie können selbstständig Lösungen entwickeln und Alternativen bewerten. Dazu nutzen sie bestehendes Fachwissen und bauen es selbständig im Thema der Studienarbeit aus.

Die Studierenden kennen und verstehen die Notwendigkeit des wissenschaftlichen Recherchierens und Arbeitens. Sie sind in der Lage eine wissenschaftliche Arbeit effizient zu steuern und wissenschaftlich korrekt und verständlich zu dokumentieren.

METHODENKOMPETENZ

Die Studierenden haben die Kompetenz erworben, relevante Informationen mit wissenschaftlichen Methoden zu sammeln und unter der Berücksichtigung wissenschaftlicher Erkenntnisse zu interpretieren.

PERSONALE UND SOZIALE KOMPETENZ

Die Studierenden können ausdauernd und beharrlich auch größere Aufgaben selbstständig ausführen. Sie können sich selbst managen und Aufgaben zum vorgesehenen Termin erfüllen.

Sie können stichhaltig und sachangemessen argumentieren, Ergebnisse plausibel darstellen und auch komplexe Sachverhalte nachvollziehbar begründen.

ÜBERGREIFENDE HANDLUNGSKOMPETENZ

LERNEINHEITEN UND INHALTE

LEHR- UND LERNEINHEITENPRÄSENZZEITSELBSTSTUDIUMStudienarbeit12288

Stand vom 01.10.2025 T3_3101 // Seite 34

BESONDERHEITEN

Es wird auf die "Leitlinien für die Bearbeitung und Dokumentation der Module Praxisprojekt I bis III, Studienarbeit und Bachelorarbeit" der Fachkommission Technik der Dualen Hochschule Baden-Württemberg hingewiesen.

Die "Große Studienarbeit" kann nach Vorgaben der Studien- und Prüfungsordnung als vorgesehenes Modul verwendet werden. Ergänzend kann die "Große Studienarbeit" auch nach Freigabe durch die Studiengangsleitung statt der Module "Studienarbeit II" und "Studienarbeit II" verwendet werden.

VORAUSSETZUNGEN

LITERATUR

Kornmeier, M., Wissenschaftlich schreiben leicht gemacht für Bachelor, Master und Dissertation, Bern

Stand vom 01.10.2025 T3_3101 // Seite 35

Praxisprojekt I (T3_1000)

Work Integrated Project I

FORMALE ANGABEN ZUM MODUL

MODULNUMMERVERORTUNG IM STUDIENVERLAUFMODULDAUER (SEMESTER)MODULVERANTWORTUNGSPRACHET3_10001. Studienjahr2Prof. Dr.-Ing. Joachim FrechDeutsch

EINGESETZTE LEHRFORMEN

LEHRFORMENLEHRMETHODENPraktikum, SeminarLehrvortrag, Diskussion, Projekt

EINGESETZTE PRÜFUNGSFORMEN

PRÖFUNGSLEISTUNGPRÖFUNGSUMFANG (IN MINUTEN)BENOTUNGProjektarbeitSiehe PruefungsordnungBestanden/ Nicht-BestandenAblauf- und ReflexionsberichtSiehe PruefungsordnungBestanden/ Nicht-Bestanden

WORKLOAD UND ECTS-LEISTUNGSPUNKTE

WORKLOAD INSGESAMT (IN H)DAVON PRÄSENZZEIT (IN H)DAVON SELBSTSTUDIUM (IN H)ECTS-LEISTUNGSPUNKTE600459620

QUALIFIKATIONSZIELE UND KOMPETENZEN

FACHKOMPETENZ

Die Absolventinnen und Absolventen erfassen industrielle Problemstellungen in ihrem Kontext und in angemessener Komplexität. Sie analysieren kritisch, welche Einflussfaktoren

zur Lösung des Problems beachtet werden müssen und beurteilen, inwiefern einzelne theoretische Modelle einen Beitrag zur Lösung des Problems leisten können.

Die Studierenden kennen die zentralen manuellen und maschinellen Grundfertigkeiten des jeweiligen Studiengangs, sie

können diese an praktischen Aufgaben anwenden und haben deren Bedeutung für die Prozesse im Unternehmen kennen gelernt.

Sie kennen die wichtigsten technischen und organisatorischen Prozesse in Teilbereichen ihres Ausbildungsunternehmens und können deren Funktion darlegen.

Die Studierenden können grundsätzlich fachliche Problemstellungen des jeweiligen Studiengangs beschreiben und fachbezogene Zusammenhänge erläutern.

METHODENKOMPETENZ

Absolventinnen und Absolventen kennen übliche Vorgehensweisen der industriellen Praxis und können diese selbstständig umsetzen. Dabei bauen sie auf ihr theoretisches Wissen sowie ihre Berufserfahrung auf.

PERSONALE UND SOZIALE KOMPETENZ

Die Relevanz von Personalen und Sozialen Kompetenz ist den Studierenden für den reibungslosen Ablauf von industriellen Prozessen bewusst und sie können eigene Stärken und Schwächen benennen. Den Studierenden gelingt es, aus Erfahrungen zu lernen, sie übernehmen Verantwortung für die übertragene Aufgaben, mit denen sie sich auch persönlich identifizieren. Die Studierenden übernehmen Verantwortung im Team, integrieren und tragen durch ihr Verhalten zur gemeinsamen Zielerreichung bei.

ÜBERGREIFENDE HANDLUNGSKOMPETENZ

Die Studierenden zeigen Handlungskompetenz, indem sie

ihr theoretisches Fachwissen nutzen, um in berufspraktischen Situationen angemessen, authentisch und erfolgreich zu agieren.

Dazu gehören auch das eigenständige kritische Beobachten, das systematische Suchen alternativer Lösungsansätze sowie eine erste Einschätzung der Anwendbarkeit von Theorien für Praxis.

LERNEINHEITEN UND INHALTE

LEHR- UND LERNEINHEITEN	PRÄSENZZEIT	SELBSTSTUDIUM
Projektarbeit 1	0	560

Stand vom 01.10.2025 T3_1000 // Seite 36

LEHR- UND LERNEINHEITEN	PRÄSENZZEIT	SELBSTSTUDIUM
Es wird auf die jeweiligen Praxispläne der Studiengänge der Fakultät Technik verwiesen		
Wissenschaftliches Arbeiten 1	4	36

Das Seminar "Wissenschaftliches Arbeiten I" findet während der Theoriephase statt. Eine Durchführung im gesamten Umfang in einem Semester oder die Aufteilung auf zwei Semester ist möglich. Für einige Grundlagen kann das WBT "Wissenschaftliches Arbeiten" der DHBW genutzt werden.

- Leitlinien des wissenschaftlichen Arbeitens
- Themenwahl und Themenfindung bei der T1000 Arbeit
- Typische Inhalte und Anforderungen an eine T1000 Arbeit
- Aufbau und Gliederung einer T1000 Arbeit
- Literatursuche, -beschaffung und -auswahl
- Nutzung des Bibliotheksangebots der DHBW
- Form einer wissenschaftlichen Arbeit (z.B. Zitierweise, Literaturverzeichnis)
- Hinweise zu DV-Tools (z.B. Literaturverwaltung und Generierung von Verzeichnissen in der Textverarbeitung)

BESONDERHEITEN

Es wird auf die "Leitlinien für die Bearbeitung und Dokumentation der Module Praxisprojekt I bis III, Studienarbeit und Bachelorarbeit" der Fachkommission Technik der Dualen Hochschule Baden-Württemberg hingewiesen.

Der Absatz "1.2 Abweichungen" aus Anlage 1 zur Studien- und Prüfungsordnung für die Bachelorstudiengänge im Studienbereich Technik der Dualen Hochschule Baden-Württemberg

(DHBW) bei den Prüfungsleistungen dieses Moduls keine Anwendung.

VORAUSSETZUNGEN

LITERATUR

- Web-based Training "Wissenschaftliches Arbeiten"
- Kornmeier, M., Wissenschaftlich schreiben leicht gemacht für Bachelor, Master und Dissertation, Bern

Stand vom 01.10.2025 T3_1000 // Seite 37

Praxisprojekt II (T3_2000)

Work Integrated Project II

FORMALE ANGABEN ZUM MODUL

MODULNUMMER	VERORTUNG IM STUDIENVERLAUF	MODULDAUER (SEMESTER)	MODULVERANTWORTUNG	SPRACHE
T3_2000	2. Studienjahr	2	Prof. DrIng. Joachim Frech	Deutsch

EINGESETZTE LEHRFORMEN

LEHRFORMEN	LEHRMETHODEN
Praktikum, Vorlesung	Lehrvortrag, Diskussion, Gruppenarbeit, Projekt

EINGESETZTE PRÜFUNGSFORMEN

PRÜFUNGSLEISTUNG	PRÜFUNGSUMFANG (IN MINUTEN)	BENOTUNG
Projektarbeit	Siehe Pruefungsordnung	ja
Ablauf- und Reflexionsbericht	Siehe Pruefungsordnung	Bestanden/ Nicht-Bestanden
Mündliche Prüfung	30	ja

WORKLOAD UND ECTS-LEISTUNGSPUNKTE

WORKLOAD INSGESAMT (IN H)	DAVON PRÄSENZZEIT (IN H)	DAVON SELBSTSTUDIUM (IN H)	ECTS-LEISTUNGSPUNKTE
600	5	595	20

QUALIFIKATIONSZIELE UND KOMPETENZEN

FACHKOMPETENZ

Die Studierenden erfassen industrielle Problemstellungen in einem angemessenen Kontext und in angemessener Komplexität. Sie analysieren kritisch, welche Einflussfaktoren zur Lösung des Problems beachtet werden müssen und können beurteilen, inwiefern theoretische Modelle einen Beitrag zur Lösung des Problems

METHODENKOMPETENZ

Die Studierenden kennen die im betrieblichen Umfeld üblichen Methoden, Techniken und Fertigkeiten und können bei der Auswahl deren Stärken und Schwächen einschätzen, so dass sie die Methoden sachangemessen und situationsgerecht auswählen. Die ihnen übertragenen Aufgaben setzen die Studierenden durch durchdachte Konzepte, fundierte Planung und gutes Projektmanagement erfolgreich um. Dabei bauen sie auf ihr theoretisches Wissen sowie ihre wachsende Berufserfahrung auf.

PERSONALE UND SOZIALE KOMPETENZ

Den Studierenden ist die Relevanz von Personalen und Sozialen Kompetenz für den reibungslosen Ablauf von industriellen Prozessen sowie ihrer eigenen Karriere bewusst; sie können eigene Stärken und Schwächen benennen. Den Studierenden gelingt es, aus Erfahrungen zu lernen, sie übernehmen selbstständig Verantwortung für die übertragene Aufgaben, mit denen sie sich auch persönlich identifizieren. Die Studierenden übernehmen Verantwortung im Team, integrieren andere und tragen durch ihr überlegtes Verhalten zur gemeinsamen Zielerreichung bei.

ÜBERGREIFENDE HANDLUNGSKOMPETENZ

Die Studierenden zeigen wachsende Handlungskompetenz, indem sie ihr theoretisches Fachwissen und ihr wachsendes Erfahrungswissen nutzen, um in sozialen berufspraktischen Situationen angemessen und erfolgreich zu agieren.

Dazu gehören auch das eigenständige kritische Beobachten, das systematische Suchen alternativer Denk- und Lösungsansätze sowie das Hinterfragen von bisherigen Vorgehensweisen. Die Studierenden zeichnen sich durch Eigenverantwortung und Tatkraft aus, sie sind auch im Kontext einer globalisierten Arbeitswelt handlungsfähig.

LERNEINHEITEN OND INHALTE			
LEHR- UND LERNEINHEITEN	PRÄSENZZEIT	SELBSTSTUDIUM	
Projektarbeit 2	0	560	

Es wird auf die jeweiligen Praxispläne der Studiengänge der Fakultät Technik verwiesen.

Stand vom 01.10.2025 T3_2000 // Seite 38

LEHR- UND LERNEINHEITEN	PRÄSENZZEIT	SELBSTSTUDIUM
Wissenschaftliches Arbeiten 2	4	26

Das Seminar "Wissenschaftliches Arbeiten II" findet während der Theoriephase statt. Eine Durchführung im gesamten Umfang in einem Semester oder die Aufteilung auf zwei Semester ist möglich. Für einige Grundlagen kann das WBT "Wissenschaftliches Arbeiten" der DHBW genutzt werden.

- Leitlinien des wissenschaftlichen Arbeitens
- Themenwahl und Themenfindung bei der T2000 Arbeit
- Typische Inhalte und Anforderungen an eine T2000 Arbeit
- Aufbau und Gliederung einer T2000 Arbeit
- Vorbereitung der Mündlichen T2000 Prüfung

Mündliche Prüfung	1	9	
-------------------	---	---	--

BESONDERHEITEN

Entsprechend der jeweils geltenden Studien- und Prüfungsordnung für die Bachelorstudiengänge im Studienbereich Technik der Dualen Hochschule Baden-Württemberg (DHBW) sind die mündliche Prüfung und die Projektarbeit separat zu bestehen. Die Modulnote wird aus diesen beiden Prüfungsleistungen mit der Gewichtung 50:50 berechnet.

Es wird auf die "Leitlinien für die Bearbeitung und Dokumentation der Module Praxisprojekt I bis III, Studienarbeit und Bachelorarbeit" der Fachkommission Technik der Dualen Hochschule Baden-Württemberg hingewiesen.

VORAUSSETZUNGEN	
-	
LITERATUR	

-

Stand vom 01.10.2025 T3_2000 // Seite 39

Praxisprojekt III (T3_3000)

Work Integrated Project III

FORMALE ANGABEN ZUM MODUL

MODULNUMMER	VERORTUNG IM STUDIENVERLAUF	MODULDAUER (SEMESTER)	MODULVERANTWORTUNG	SPRACHE
T3_3000	3. Studienjahr	1	Prof. DrIng. Joachim Frech	Deutsch

EINGESETZTE LEHRFORMEN

LEHRFORMEN	LEHRMETHODEN
Praktikum, Seminar	Lehrvortrag, Diskussion, Projekt

EINGESETZTE PRÜFUNGSFORMEN

PRÜFUNGSLEISTUNG	PRÜFUNGSUMFANG (IN MINUTEN)	BENOTUNG
Hausarbeit	Siehe Pruefungsordnung	Bestanden/ Nicht-Bestanden
Ablauf- und Reflexionsbericht	Siehe Pruefungsordnung	Bestanden/ Nicht-Bestanden

WORKLOAD UND ECTS-LEISTUNGSPUNKTE

WORKLOAD INSGESAMT (IN H)	DAVON PRÄSENZZEIT (IN H)	DAVON SELBSTSTUDIUM (IN H)	ECTS-LEISTUNGSPUNKTE
240	4	236	8

QUALIFIKATIONSZIELE UND KOMPETENZEN

FACHKOMPETENZ

Die Studierenden erfassen industrielle Problemstellungen in einem breiten Kontext und in moderater Komplexität. Sie haben ein gutes Verständnis von organisatorischen und inhaltlichen Zusammenhängen sowie von Organisationsstrukturen, Produkten, Verfahren, Maßnahmen, Prozessen, Anforderungen und gesetzlichen Grundlagen. Sie analysieren kritisch, welche Einflussfaktoren zur Lösung des Problems beachtet werden müssen und können beurteilen, inwiefern theoretische Modelle einen Beitrag zur Lösung des Problems leisten können.

METHODENKOMPETENZ

Die Studierenden kennen die im betrieblichen Umfeld üblichen Methoden, Techniken und Fertigkeiten und können bei der Auswahl deren Stärken und Schwächen einschätzen, so dass sie die Methoden sachangemessen, situationsgerecht und umsichtig auswählen. Die ihnen übertragenen Aufgaben setzen die Studierenden durch durchdachte Konzepte, fundierte Planung und gutes Projektmanagement auch bei sich häufig ändernden Anforderungen systematisch und erfolgreich um. Dabei bauen sie auf ihr theoretisches Wissen sowie ihre wachsende Berufserfahrung auf.

PERSONALE UND SOZIALE KOMPETENZ

Die Studierenden weisen auch im Hinblick auf ihre persönlichen personalen und sozialen Kompetenzen einen hohen Grad an Reflexivität auf, was als Grundlage für die selbstständige persönliche Weiterentwicklun genutzt wird.

Den Studierenden gelingt es, aus Erfahrungen zu lernen, sie übernehmen selbstständig Verantwortung für die übertragene Aufgaben, mit denen sie sich auch persönlich identifizieren.

Die Studierenden übernehmen Verantwortung für sich und andere. Sie sind konflikt und kritikfähig.

ÜBERGREIFENDE HANDLUNGSKOMPETENZ

Die Studierenden zeigen umfassende Handlungskompetenz, indem sie ihr theoretisches Fachwissen und ihr wachsendes Erfahrungswissen nutzen, um in berufspraktischen Situationen angemessen und erfolgreich zu agieren.

Dazu gehören auch das eigenständige kritische Beobachten, das systematische Suchen alternativer Denk- und Lösungsansätze sowie das Hinterfragen von bisherigen Vorgehensweisen. Die Studierenden zeichnen sich durch Eigenverantwortung und Tatkraft aus, sie sind auch im Kontext einer globalisierten Arbeitswelt handlungsfähig. Sie weisen eine reflektierte Haltung zu gesellschaftlichen, soziale und ökologischen Implikationen des eigenen Handelns auf.

LERNEINHEITEN UND INHALTE

LEHR- UND LERNEINHEITEN	PRÄSENZZEIT	SELBSTSTUDIUM
Projektarbeit 3	0	220

Es wird auf die jeweiligen Praxispläne der Studiengänge der Fakultät Technik verwiesen

Stand vom 01.10.2025 T3_3000 // Seite 40

LEHR- UND LERNEINHEITENPRÄSENZZEITSELBSTSTUDIUMWissenschaftliches Arbeiten 3416

Das Seminar "Wissenschaftliches Arbeiten III" findet während der Theoriephase statt. Eine Durchführung im gesamten Umfang in einem Semester oder die Aufteilung auf zwei Semester ist möglich. Für einige Grundlagen kann das WBT "Wissenschaftliches Arbeiten" der DHBW genutzt werden.

- Was ist Wissenschaft?
- Theorie und Theoriebildung
- Überblick über Forschungsmethoden (Interviews, etc.)
- Gütekriterien der Wissenschaft
- Wissenschaftliche Erkenntnisse sinnvoll nutzen (Bezugssystem, Stand der Forschung/Technik)
- Aufbau und Gliederung einer Bachelorarbeit
- Projektplanung im Rahmen der Bachelorarbeit
- Zusammenarbeit mit Betreuern und Beteiligten

BESONDERHEITEN

Es wird auf die "Leitlinien für die Bearbeitung und Dokumentation der Module Praxisprojekt I bis III, Studienarbeit und Bachelorarbeit" der Fachkommission Technik der Dualen Hochschule Baden-Württemberg hingewiesen.

VORAUSSETZUNGEN

LITERATUR

- Web-based Training "Wissenschaftliches Arbeiten"
- Kornmeier, M., Wissenschaftlich schreiben leicht gemacht für Bachelor, Master und Dissertation,, Bern
- Minto, B., The Pyramid Principle: Logic in Writing, Thinking and Problem Solving, London
- Zelazny, G., Say It With Charts: The Executives's Guide to Visual Communication, Mcgraw-Hill Professional.

Kornmeier, M., Wissenschaftlich schreiben leicht gemacht für Bachelor, Master und Dissertation, Bern

Stand vom 01.10.2025 T3_3000 // Seite 41

Web Engineering (T3INF4101)

Web Engineering

FORMALE ANGABEN ZUM MODUL

MODULNUMMERVERORTUNG IM STUDIENVERLAUFMODULDAUER (SEMESTER)MODULVERANTWORTUNGSPRACHET3INF41011. Studienjahr1Prof. Dr. Rolf AssfalgDeutsch/Englisch

EINGESETZTE LEHRFORMEN

LEHRFORMENLEHRMETHODENLabor, Vorlesung, ÜbungLaborarbeit, Lehrvortrag, Diskussion

EINGESETZTE PRÜFUNGSFORMEN

PRÜFUNGSLEISTUNGPRÜFUNGSUMFANG (IN MINUTEN)BENOTUNGKlausurarbeit oder Kombinierte PrüfungSiehe Pruefungsordnungja

WORKLOAD UND ECTS-LEISTUNGSPUNKTE

WORKLOAD INSGESAMT (IN H)

DAVON PRÄSENZZEIT (IN H)

DAVON SELBSTSTUDIUM (IN H)

ECTS-LEISTUNGSPUNKTE

42

3

QUALIFIKATIONSZIELE UND KOMPETENZEN

FACHKOMPETENZ

Die Studierenden setzen die erarbeiteten Theorien und Modelle in Bezug zu ihren Erfahrungen aus der beruflichen Praxis und können deren Grenzen und praktische Anwendbarkeit einschätzen.

METHODENKOMPETENZ

Die Studierenden sind mit Abschluss des Moduls in der Lage, für weitgehend standardisierte Anwendungsfälle in der Praxis die angemessene Methode auszuwählen und anzuwenden. Sie kennen die Stärken und Schwächen der Methode in ihrem beruflichen Anwendungsfeld und können diese in konkreten Handlungssituationen gegeneinander abwägen.

PERSONALE UND SOZIALE KOMPETENZ

Die Studierenden können sowohl eigenständig, also auch im Team zielorientiert und nachhaltig handeln

ÜBERGREIFENDE HANDLUNGSKOMPETENZ

LERNEINHEITEN UND INHALTE

LEHR- UND LERNEINHEITENPRÄSENZZEITSELBSTSTUDIUMWeb-Engineering 13639

- Einführung in HTML und CSS in der aktuellen Version.
- Grundlagen der Internetprotokolle und ihre zugehörigen Technologien.
- Betrachtung einer Client-Programmiersprache und/oder einer oder mehrerer serverseitig eingesetzten Programmiersprache.
- Optional: Dokumentauszeichnungssprache XML
- Optional: Spezielle Dokumenttypen zur Darstellung von 2D oder 3D-Grafik.
- Optional: Grundlagen der Mediengestaltung, soweit nicht bereits in anderen Modulen abgedeckt.

LEHR- UND LERNEINHEITEN	PRÄSENZZEIT	SELBSTSTUDIUM
Labor Webengineering 1	12	3

- Praktische Übungen zu HTML-Grundlagen - Praktische Übungen zu den/der im Rahmen der Vorlesung eingeführten Programmiersprache/EN

BESONDERHEITEN

Die Prüfungsdauer bezieht sich auf die Klausur.

VORAUSSETZUNGEN

-

LITERATUR

- www.w3c.org
- wiki.selfhtml.org

www.w3c.org de.selfhtml.org

Studienbereich Technik // School of Engineering
Informatik // Computer Science
Informatik
MANNHEIM

Physik (T3INF4105)

Physics

FORMALE ANGABEN ZUM MODUL

MODULNUMMERVERORTUNG IM STUDIENVERLAUFMODULDAUER (SEMESTER)MODULVERANTWORTUNGSPRACHET3INF41051. Studienjahr1Prof. Dr.-Ing. Thomas NeidlingerDeutsch/Englisch

EINGESETZTE LEHRFORMEN

LEHRFORMENLEHRMETHODENVorlesung, ÜbungLehrvortrag, Diskussion

EINGESETZTE PRÜFUNGSFORMEN

PRÜFUNGSLEISTUNGPRÜFUNGSUMFANG (IN MINUTEN)BENOTUNGKlausurarbeitSiehe Pruefungsordnungja

WORKLOAD UND ECTS-LEISTUNGSPUNKTE

WORKLOAD INSGESAMT (IN H)

DAVON PRÄSENZZEIT (IN H)

DAVON SELBSTSTUDIUM (IN H)

ECTS-LEISTUNGSPUNKTE

66

5

QUALIFIKATIONSZIELE UND KOMPETENZEN

FACHKOMPETENZ

Die Studierenden kennen die wesentlichen physikalischen Größen und Einheiten der Mechanik, Schwingungslehre und Optik sowie die zugehörigen physikalischen Grundgesetze und Prinzipien. Sie können physikalische Sätze auf ausgewählte - auch komplexere - Systeme und Problemstellungen anwenden, als Lösungsansatz formulieren und Lösungen mit sinnvoller Genauigkeit berechnen.

METHODENKOMPETENZ

Die Studierenden sind mit Abschluss des Moduls in der Lage, für weitgehend standardisierte Anwendungsfälle in der Praxis die angemessene Methode auszuwählen und anzuwenden.

PERSONALE UND SOZIALE KOMPETENZ

-

ÜBERGREIFENDE HANDLUNGSKOMPETENZ

_

LERNEINHEITEN UND INHALTE

LEHR- UND LERNEINHEITEN	PRÄSENZZEIT	SELBSTSTUDIUM
Physik 1	48	38

LEHR- UND LERNEINHEITEN PRÄSENZZEIT SELBSTSTUDIUM

- Technische Mechanik
- Mechanische Größen und ihre Einheiten
- Koordinatensysteme
- Kinematik
- Newtonsche Axiome und Punktmechanik
- Zentralpotential und Kreisbewegung
- Erhaltungssätze
- Dynamik starrer Körper
- Schwingungen und Wellen 1
- Schwingungen in der Mechanik und Akustik
- Freie Schwingungen
- Gedämpfte und erzwungene Schwingungen
- Resonanz
- Ebene Wellen
- Zylinder und Kugelwellen
- Longitudinalwellen und Transversalwellen

Physik 2 36 28

- Schwingungen und Wellen 2
- Stehende Wellen
- Elektromagnetische Wellen und Felder
- Hertzscher Dipol
- Wellenleitung Wellenwiderstand
- Dopplereffekt
- Wellengruppen und Dispersion
- Glasfaserleiter
- Amplitudenmodulation und Frequenzmodulation
- Technische Optik
- Geometrische Optik
- Brechung und Brechungsindex
- Sphärische Linsen und Spiegel
- Wellenoptik und Huygenssches Prinzip
- Beugung an Spalt und Gitter
- Interferometer und Spektrometer
- Polarisation
- Interferenz in polarisiertem Licht
- Optische Wellenleiter
- Quantenoptik und Photoeffekt
- Laserprinzip
- He-Ne-Laser und Halbleiterlaser

BESONDERHEITEN

VORAUSSETZUNGEN

keine

LITERATUR

- Physik für Ingenieure, M. Stohrer, R. Martin, E. Hering, Springer
- Physik, P. A. Tipler, G. Mosca, Springer Spektrum
- Physik für Ingenieure, H. Lindner, Hanser

Computergraphik und Bildverarbeitung (T3INF4303)

Computer Graphic and Image Processing

FORMALE ANGABEN ZUM MODUL

MODULNUMMERVERORTUNG IM STUDIENVERLAUFMODULDAUER (SEMESTER)MODULVERANTWORTUNGSPRACHET3INF43033. Studienjahr1Prof . Dr. Marcus StrandDeutsch/Englisch

EINGESETZTE LEHRFORMEN

LEHRFORMENLEHRMETHODENVorlesung, ÜbungLehrvortrag, Diskussion

EINGESETZTE PRÜFUNGSFORMEN

PRÜFUNGSLEISTUNGPRÜFUNGSUMFANG (IN MINUTEN)BENOTUNGKlausur oder Kombinierte PrüfungSiehe Pruefungsordnungja

WORKLOAD UND ECTS-LEISTUNGSPUNKTE

WORKLOAD INSGESAMT (IN H)
DAVON PRÄSENZZEIT (IN H)
DAVON SELBSTSTUDIUM (IN H)
ECTS-LEISTUNGSPUNKTE
72
78
5

QUALIFIKATIONSZIELE UND KOMPETENZEN

FACHKOMPETENZ

Die Studierenden lernen die Grundlagen der graphischen Datenverarbeitung kennen. Hierbei insbesondere Darstellungsverfahren und Manipulation von graphischen Objekten und die Interaktion mit graphischen Systemen. Es werden mathematische und technische Grundlagen zur Aufnahme, Transformation und Auswertung digitaler Bilder vermittelt und erarbeitet. Verschiedene Eingabemechanismen und Manipulationsmethoden an der Mensch - Maschine Schnittstelle als Grundlage des graphischen Dialogs sind den Studierenden bekannt. Sie kennen außerdem diverse Standards und Systeme in der graphischen Datenverarbeitung und der digitalen Bildverarbeitung und können sie bewerten.

METHODENKOMPETENZ

..._

PERSONALE UND SOZIALE KOMPETENZ

Die Studierenden können die Arbeitsweise marktüblicher Software auf diesem Fachgebiet verstehen und sie sind in der Lage eine Bewertung dieser Systeme durchzuführen.

ÜBERGREIFENDE HANDLUNGSKOMPETENZ

Durch die in diesem Modul erworbenen Fähigkeiten können die Absolventen die grundlegende Arbeitesweise vieler auf digitaler Grafik und Bildverarbeitung basierender Systeme verstehen, so z.B. CAD, Computerspiele, Bildanalyse etc.

LERNEINHEITEN UND INHALTE

LEHR- UND LERNEINHEITENPRÄSENZZEITSELBSTSTUDIUMComputergraphik3639

- Einführung in die interaktive 3D-Computergrafik
- Kurven- und Flächendarstellung (Polynom-, Bezier-, B-Spline- und Nurbs-Darstellung)
- Koordinatensysteme und Transformationen in 2D und 3D
- Visualisierungsverfahren

LEHR- UND LERNEINHEITENPRÄSENZZEITSELBSTSTUDIUMDigitale Bildverarbeitung3639

- Einführung in die Methoden der Bildverarbeitung
- Bildaufnahme (Digitalisierung, Abtastung, Rasterung)
- Speicherung von Bilddaten (Datenkompressionsverfahren)
- Bildaufbereitung (Histogramm Glättung, Kontrastverstärkung)
- Operationen im Ortsbereich (lokale Operatoren, Faltungsfilter)
- Operationen im Frequenzbereich
- Segmentierung (Schwellwertverfahren, Kantendetektoren)
- Bildanalyse (Morphologische Verfahren, Merkmalsextraktion, Kanten- und Flächenbestimmung)
- Klassifizierung (Neuronale Netze)

Die Lehrinhalte sind durch einen praktischen Übungsteil im PC-Labor zu vertiefen.

BESONDERHEITEN

VORAUSSETZUNGEN

-

LITERATUR

- Burger, W./ Burge, M.: Digitale Bildverarbeitung" X.media.press, Springer Vieweg
- Gonzalez, Woods, Eddins: Digital Image Processing using Mathlab (Übungsbuch), Prentice-Hall
- Gonzalez, Woods: Digital Image Processing, Prentice Hall Int.
- Jähne: Digitale Bildverarbeitung. Springer Berlin
- Tönnis, K.: Grundlagen der Bildverarbeitung, Pearson Studium
- F.S. Hill/S.M. Kelley: Computer Graphics using OpenGL, Pearson Prentice Hall

Big Data Architectures (T3INF4349)

Big Data Architectures

FORMALE ANGABEN ZUM MODUL

MODULNUMMERVERORTUNG IM STUDIENVERLAUFMODULDAUER (SEMESTER)MODULVERANTWORTUNGSPRACHET3INF43493. Studienjahr1Prof. Dr. Dirk ReichardtDeutsch/Englisch

EINGESETZTE LEHRFORMEN

LEHRFORMEN LEHRMETHODEN

Vorlesung, Vorlesung, Übung, Labor Lehrvortrag, Diskussion, Gruppenarbeit

EINGESETZTE PRÜFUNGSFORMEN

PRÜFUNGSLEISTUNGPRÜFUNGSUMFANG (IN MINUTEN)BENOTUNGKlausur oder Kombinierte Prüfung (Klausur und Programmentwurf)90ja

WORKLOAD UND ECTS-LEISTUNGSPUNKTE

WORKLOAD INSGESAMT (IN H)DAVON PRÄSENZZEIT (IN H)DAVON SELBSTSTUDIUM (IN H)ECTS-LEISTUNGSPUNKTE186721145

QUALIFIKATIONSZIELE UND KOMPETENZEN

FACHKOMPETENZ

Die Studierenden kennen Grundlagen von Big Data IT Architekturen und insbesondere verteilter IT-Systeme, deren Architekturen (Middleware), zentrale Dienste sowie Algorithmen zur Synchronisation und Datenhaltung. Die Studierenden sollen traditionelle und moderne Architekturen von Rechnersysteme zur Massendatenverarbeitung kennen und bewerten können Schwerpunkte bilden dabei die einzelnen Komponenten und deren Zusammenwirken in einem heterogenen und verteilten System.

METHODENKOMPETENZ

Die Studierenden sind mit Abschluss des Moduls in der Lage, Kernaspekte einer Spezifikation zu analysieren, um eine geeignete IT-Architektur insbesondere für Big Data Anwendungen auszuwählen oder zu entwickeln. Das erworbene Fachwissen kann in Diskussionen zum Thema IT-Architekturen (Konzeption, Implementierung, Portierung) eingebracht werden und in der Entwicklung von Lösungsansätzen und Spezifikation von IT-Systemen angewendet werden.

PERSONALE UND SOZIALE KOMPETENZ

ÜBERGREIFENDE HANDI UNGSKOMPETENZ

LERNEINHEITEN UND INHALTE

LEHR- UND LERNEINHEITENPRÄSENZZEITSELBSTSTUDIUMVerteilte Systeme3639

- Einführung in die verteilten Systeme
- Anforderungen und Modelle
- Hard- und Softwarekonzepte
- Multiprozessor, Multicomputer
- Betriebssystemunterstützung, Prozess-Management
- Verteilte Dateisysteme, verteilter Speicher
- Kommunikation in verteilten Systemen
- Synchronisation, Zeit und Nebenläufigkeit, Transaktionen
- Konsistenz und Replikation
- Middlewarearchitekturen
- Standard (Internet) Anwendungen
- Verteilte Programmierung z.B. mit RPC/RMI

LEHR- UND LERNEINHEITENPRÄSENZZEITSELBSTSTUDIUMIT Architekturen3675

- Grundlagen und Einführung in Rechnerarchitekturen
- Großrechnerarchitekturen
- Parallele Systeme (SMP, Cluster-Systeme)
- Cloud Architekturen / Grid Computing
- Speichersysteme (Storage Area Network (SAN) und Network Attached Storage (NAS), etc.)
- Betriebssystemkonzepte
- Betrieb von Rechneranlagen
- Einsatz von IT Architekturen für Big Data

BESONDERHEITEN

Die Prüfungsdauer gilt für die Klausur

VORAUSSETZUNGEN

-

LITERATUR

- Coulouris, J.Dollimore, T.Kindberg, Distributed Systems: Concepts and Design, Pearson
- A.S. Tanenbaum, Distributed Systems: Principles and Paradigms, Prentice Hall
- S. Heinzel, Middleware in Java: Leitfaden zum Entwurf verteilter Anwendungen, Vieweg+Teubner
- Günther Bengel, Grundkurs Verteilte Systeme, Springer Verlag
- Tanenbaum, A. S.; Austin, T.: Rechnerarchitektur, Pearson, aktuelle Auflage

Maschinelles Lernen (T3INF4331)

Machine Learning

FORMALE ANGABEN ZUM MODUL

MODULNUMMERVERORTUNG IM STUDIENVERLAUFMODULDAUER (SEMESTER)MODULVERANTWORTUNGSPRACHET3INF43313. Studienjahr1Prof. Dr. Veit SchenkDeutsch/Englisch

EINGESETZTE LEHRFORMEN

LEHRFORMENLEHRMETHODENLabor, Vorlesung, Übung, LaborLaborarbeit, Lehrvortrag, Diskussion, Gruppenarbeit

EINGESETZTE PRÜFUNGSFORMEN

PRÜFUNGSLEISTUNGPRÜFUNGSUMFANG (IN MINUTEN)BENOTUNGKlausurarbeit oder Kombinierte PrüfungSiehe Pruefungsordnungja

WORKLOAD UND ECTS-LEISTUNGSPUNKTE

WORKLOAD INSGESAMT (IN H)DAVON PRÄSENZZEIT (IN H)DAVON SELBSTSTUDIUM (IN H)ECTS-LEISTUNGSPUNKTE15072785

QUALIFIKATIONSZIELE UND KOMPETENZEN

FACHKOMPETENZ

Die Studierenden kennen die grundlegenden Methoden und Verfahren des Maschinellen Lernens und können diese gemeinsam mit den Methoden der Künstlichen Intelligenz/Wissensrepräsentation und der digitalen Sprachverarbeitung auf eine Aufgabenstellung in einem Projekt anwenden.

METHODENKOMPETENZ

Die Methoden des Maschinellen Lernens sind den Studierenden bekannt und sie können diese mit asnderen Methoden und Verfahren in Zusammenhang bringen und anwenden.

PERSONALE UND SOZIALE KOMPETENZ

-

ÜBERGREIFENDE HANDLUNGSKOMPETENZ

_

LERNEINHEITEN UND INHALTE

LEHR- UND LERNEINHEITEN	PRÄSENZZEIT	SELBSTSTUDIUM
Labor Maschinelle Lernverfahren	36	39
Die Methoden und Algorithmen aus der Unit T3INF9004.2 "Grundlagen Maschineller Lernverfahren" werden in dem Labor auf reale Anwendungsszenarien angewendet.		
Grundlagen Maschineller Lernverfahren	36	39

- Einführung in das Maschinelle Lernen
- Symbolische Lernverfahren
- Grundlagen Neuronaler Netze
- Probabilistische Lernmodelle
- Erweiterte Konzepte und Deep Learning
- Entwurf und Implementierung ausgewählter Techniken für eine Anwendung

BESONDERHEITEN

Klausurdauer nur 60 Minuten, da die andere Unit mit der Prüfungsform Laborarbeit (LA) abgenommen wird. Die Prüfungsdauer richtet sich nach der Studien- und Prüfungsordnung.

VORAUSSETZUNGEN

LITERATUR

- Toshinori Munakata, "Fundamentals of the new Artificial Intelligence", Springer Verlag, aktuelle Auflage Christoph Beierle, Gabriele Kern-Isberner, "Methoden Wissensbasierter Systeme Grundlagen Algorithmen Anwendungen", Vieweg Verlag, aktuelle Auflage
- Ethem Alpaydin, "Maschinelles Lernen", Oldenbourg, aktuelle Auflage

Advanced Machine Learning (T3INF4381)

Advanced Machine Learning

FORMALE ANGABEN ZUM MODUL

MODULNUMMERVERORTUNG IM STUDIENVERLAUFMODULDAUER (SEMESTER)MODULVERANTWORTUNGSPRACHET3INF43813. Studienjahr2Prof. Dr. Nathan Sudermann-MerxDeutsch/Englisch

EINGESETZTE LEHRFORMEN

LEHRFORMENLEHRMETHODENVorlesung, ÜbungLehrvortrag, Diskussion

EINGESETZTE PRÜFUNGSFORMEN

PRÜFUNGSLEISTUNGPRÜFUNGSUMFANG (IN MINUTEN)BENOTUNGKombinierte Prüfung oder KlausurSiehe Pruefungsordnungja

WORKLOAD UND ECTS-LEISTUNGSPUNKTE

WORKLOAD INSGESAMT (IN H)DAVON PRÄSENZZEIT (IN H)DAVON SELBSTSTUDIUM (IN H)ECTS-LEISTUNGSPUNKTE15072785

QUALIFIKATIONSZIELE UND KOMPETENZEN

FACHKOMPETENZ

Mit Abschluss des Moduls beherrschen die Studierenden moderne und fortgeschrittene Verfahren des maschinellen Lernens und sind in der Lage, diese zur Lösung praxisrelevanter Problemstellungen anzuwenden.

METHODENKOMPETENZ

Die Studierenden verstehen die zugrundeliegenden mathematischen Konzepte der Machine Learning Modelle und können ihre Stärken und Grenzen verantwortlich abschätzen und entsprechend einsetzen.

PERSONALE UND SOZIALE KOMPETENZ

-

ÜBERGREIFENDE HANDLUNGSKOMPETENZ

_

LERNEINHEITEN UND INHALTE

LEHR- UND LERNEINHEITENPRÄSENZZEITSELBSTSTUDIUMAdvanced Machine Learning7278

- Deep Learning (Convolutional Neural Networks, Recurrent Neural Networks),
- Generative/Discriminative Models,
- Gradient Boosting,
- Reinforcement Learning

BESONDERHEITEN

VORAUSSETZUNGEN

Mathematik I, Mathematik II, Theoretische Informatik I, Theoretische Informatik II, Programmieren

LITERATUR

- Friedman, J. H.: Greedy function approximation: a gradient boosting machine, Annals of statistics Goodfellow, I./Bengio, Y./Courville, A.: Deep learning, MIT press Sutton, R. S./Barto, A.G.: Reinforcement learning: An introduction, MIT press

Advanced Statistical Learning (T3INF4388)

Advanced Statistical Learning

FORMALE ANGABEN ZUM MODUL

MODULNUMMERVERORTUNG IM STUDIENVERLAUFMODULDAUER (SEMESTER)MODULVERANTWORTUNGSPRACHET3INF43883. Studienjahr2Prof. Dr. Nathan Sudermann-MerxDeutsch/Englisch

EINGESETZTE LEHRFORMEN

LEHRFORMENLEHRMETHODENVorlesung, ÜbungLehrvortrag, Diskussion

EINGESETZTE PRÜFUNGSFORMEN

PRÜFUNGSLEISTUNGPRÜFUNGSUMFANG (IN MINUTEN)BENOTUNGKombinierte Prüfung oder KlausurSiehe Pruefungsordnungja

WORKLOAD UND ECTS-LEISTUNGSPUNKTE

WORKLOAD INSGESAMT (IN H)DAVON PRÄSENZZEIT (IN H)DAVON SELBSTSTUDIUM (IN H)ECTS-LEISTUNGSPUNKTE15072785

QUALIFIKATIONSZIELE UND KOMPETENZEN

FACHKOMPETENZ

Mit Abschluss des Moduls beherrschen die Studierenden fortgeschrittene Verfahren aus dem Bereich des Maschinellen Lernens, aus dem Blickwinkel der Statistik. Sie sind in der Lage, unter Verwendung von Verteilungsannahmen Rückschlüsse in Bezug auf die Signifikanz, Robustheit oder Unsicherheit der betrachteten Modelle zu ziehen.

METHODENKOMPETENZ

Die Studierenden verstehen die zugrundeliegenden mathematischen Konzepte der Statistical Learning Modelle und können ihre Stärken und Grenzen verantwortlich abschätzen.

PERSONALE UND SOZIALE KOMPETENZ

ÜBERGREIFENDE HANDLUNGSKOMPETENZ

LERNEINHEITEN UND INHALTE

LEHR- UND LERNEINHEITENPRÄSENZZEITSELBSTSTUDIUMAdvanced Statistical Learning7278

- Statistical Learning unter Verwendung der Skriptsprache R
- Variable Importance
- Uncertainty Measures
- Robustheit der verwendeten Verfahren
- Model and Variable Selection
- Regularisierung
- Causal of Inference

BESONDERHEITEN

VORAUSSETZUNGEN

Mathematik I, Mathematik II, Theoretische Informatik II, Programmieren, Grundlagen KI und Machine Learning

LITERATUR

- Bishop, C.M.: Pattern Recognition and Machine Learning, New York: Springer
- Hastie, T./Tibshirani, R/Friedman, J: The Elements of Statistical Learning, New York: Springer
- James, G./Witten, D./Hastie, T./Tibshirani, R: An Introduction to Statistical Learning, New York: Springer

Optimization Models (T3INF4393)

Optimization Models

FORMALE ANGABEN ZUM MODUL

MODULNUMMERVERORTUNG IM STUDIENVERLAUFMODULDAUER (SEMESTER)MODULVERANTWORTUNGSPRACHET3INF43933. Studienjahr1Prof. Dr. Nathan Sudermann-MerxDeutsch/Englisch

EINGESETZTE LEHRFORMEN

LEHRFORMENLEHRMETHODENVorlesung, ÜbungLehrvortrag, Diskussion

EINGESETZTE PRÜFUNGSFORMEN

PRÜFUNGSLEISTUNGPRÜFUNGSUMFANG (IN MINUTEN)BENOTUNGKlausur120ja

WORKLOAD UND ECTS-LEISTUNGSPUNKTE

WORKLOAD INSGESAMT (IN H)DAVON PRÄSENZZEIT (IN H)DAVON SELBSTSTUDIUM (IN H)ECTS-LEISTUNGSPUNKTE15072785

QUALIFIKATIONSZIELE UND KOMPETENZEN

FACHKOMPETENZ

Die Studierenden sind der Lage, mathematische Optimierungsmodelle zur Lösung von Praxisproblemen zu erstellen. Sie kennen die Stärken und Grenzen der einzusetzenden Modelle und können diese in Programmiersprachen wie Python implementieren.

METHODENKOMPETENZ

Die Studierenden verstehen die zugrundeliegenden mathematischen Konzepte der verschiedenen Modelle und können daraus eine angemessene Wahl der Methodik ableiten.

PERSONALE UND SOZIALE KOMPETENZ

-

ÜBERGREIFENDE HANDLUNGSKOMPETENZ

_

LERNEINHEITEN UND INHALTE

LEHR- UND LERNEINHEITEN	PRÄSENZZEIT	SELBSTSTUDIUM
Optimization Models	72	78

Optimierungsmodelle, deren Lösungsalgorithmen ausreichend schnell sind, um große Anwendungsprobleme lösen zu können, z.B.

- Unrestringierte kontinuierliche quadratische Optimierungsprobleme (UQP),
- Lineare kontinuierliche Optimierungsprobleme (LP),
- Lineare gemischt-ganzzahlige Optimierungsprobleme (MILP) und
- Quadratische gemischt-ganzzahlige Optimierungsprobleme (MIQP)

Lösung dieser mathematischen Probleme mit Hilfe aktueller Solver-Technologie (Gurobi, CLPEX oder XPRESS) über APIs

BESONDERHEITEN

-

VORAUSSETZUNGEN

Mathematik I, Mathematik II, Theoretische Informatik I, Theoretische Informatik II, Programmieren

LITERATUR

- Hürlimann, T.: Puzzles and Games: A Mathematical Modeling Approach, Friboug: University of Friboug Stein, O.: Grundzüge der Globalen Optimierung, Heidelberg: Springer Williams, H. P.: Model Building in Mathematical Programming, New Jersey: Wiley

Programming and Problem Solving with Python (T3INF4394)

Programming and Problem Solving with Python

FORMALE ANGABEN ZUM MODUL

MODULNUMMERVERORTUNG IM STUDIENVERLAUFMODULDAUER (SEMESTER)MODULVERANTWORTUNGSPRACHET3INF43941. Studienjahr1Prof. Dr. Nathan Sudermann-MerxDeutsch/Englisch

EINGESETZTE LEHRFORMEN

LEHRFORMEN LEHRMETHODEN

Vorlesung, Übung Lehrvortrag, Diskussion, Fallstudien

EINGESETZTE PRÜFUNGSFORMEN

PRÜFUNGSLEISTUNGPRÜFUNGSUMFANG (IN MINUTEN)BENOTUNGKombinierte Prüfung - Kombinierte PrüfungSiehe Pruefungsordnungja

WORKLOAD UND ECTS-LEISTUNGSPUNKTE

WORKLOAD INSGESAMT (IN H)DAVON PRÄSENZZEIT (IN H)DAVON SELBSTSTUDIUM (IN H)ECTS-LEISTUNGSPUNKTE15072785

QUALIFIKATIONSZIELE UND KOMPETENZEN

FACHKOMPETENZ

Mit Abschluss des Moduls verfügen die Studierenden über fundierte Kenntnisse der Programmierung in Python und sind in der Lage diese einzusetzen, um praktische Probleme, etwa aus den Bereichen Machine Learning und Data Science, zu lösen.

METHODENKOMPETENZ

Die Studierenden sind in der Lage für ausgewählte Anwendungsfälle aus der Praxis eine Lösungsstrategie zu entwickeln und diese unter Verwendung angemessener Methoden zu implementieren.

PERSONALE UND SOZIALE KOMPETENZ

_

ÜBERGREIFENDE HANDLUNGSKOMPETENZ

Die Studierenden eignen sich durch die Kombination aus Programmierelementen und Problemlösungsstrategien eine übergreifende Handlungskompetenz zur Lösung praktischer Probleme an. Jedes dieser Elemente ist auch auf weitere Themen übertragbar, so sind Programmierkenntnisse in Python auch für sich genommen essenziell und die Problemlösestrategien lassen sich aufbauend ggf. auch in anderen Programmiersprachen realisieren.

LERNEINHEITEN UND INHALTE

LEHR- UND LERNEINHEITENPRÄSENZZEITSELBSTSTUDIUMProgramming and Problem Solving with Python7278

Grundlagen der Programmierung in Python

- Datentypen
- Kontrollstrukturen und Funktionen
- Objekte und Klassen
- Tests und Code Style
- Ausgewählte Libraries

Bearbeitung praktischer Aufgaben, z.B. in Coding Interviews oder Coding Challenges, z.B. aus den Bereichen Machine Learning und Data Science oder der Mathematik

BESONDERHEITEN

-

VORAUSSETZUNGEN

LITERATUR

- Beazley, D./Jones, B.K.: Python Cookbook, O'Reilly Downey, A.B.: Think Python: How to Think Like a Computer Scientist, O'Reilly Shaw, Z.A.: Learn Python 3 the Hard Way, Addison-Wesley Wastl, E.: https://adventofcode.com/

Wahlmodul Informatik (T3INF4901)

Elective Module Computer Science

FORMALE ANGABEN ZUM MODUL

MODULNUMMERVERORTUNG IM STUDIENVERLAUFMODULDAUER (SEMESTER)MODULVERANTWORTUNGSPRACHET3INF49012. Studienjahr1Dr. -Ing. Alfred StreyDeutsch/Englisch

EINGESETZTE LEHRFORMEN

LEHRFORMEN LEHRMETHODEN

-, Vorlesung, Vorlesung, Labor, Vorlesung, Übung, Vorlesung, Übung,
Labor -, Lehrvortrag, Diskussion, Lehrvortrag, Diskussion, Fallstudien,
Lehrvortrag, Diskussion, Gruppenarbeit

EINGESETZTE PRÜFUNGSFORMEN

PRÜFUNGSLEISTUNGPRÜFUNGSUMFANG (IN MINUTEN)BENOTUNGKlausur oder Kombinierte PrüfungSiehe Pruefungsordnungja

WORKLOAD UND ECTS-LEISTUNGSPUNKTE

WORKLOAD INSGESAMT (IN H)DAVON PRÄSENZZEIT (IN H)DAVON SELBSTSTUDIUM (IN H)ECTS-LEISTUNGSPUNKTE15072785

QUALIFIKATIONSZIELE UND KOMPETENZEN

FACHKOMPETENZ

Die Studierenden verfügen über die in den Wahlunits beschriebenen Fachkenntnisse, sie können diese beschreiben, systematisch darstellen und können diese entsprechend anwenden, um Probleme zu analysieren.

METHODENKOMPETENZ

Die Studierenden kennen das Spektrum an Methoden und Techniken zur Bearbeitung komplexer, wissenschaftlicher Probleme in ihrem Studienfach oder auch Randgebiete, aus denen sie angemessene Methoden auswählen und anwenden, mit Bekanntem verknüpfen, um neue Lösungen zu erarbeiten. Sie können die Vorund Nachteile der ausgewählten Methode erläutern.

PERSONALE UND SOZIALE KOMPETENZ

Die Studierenden können sowohl eigenständig, also auch im Team zielorientiert und nachhaltig handeln.

ÜBERGREIFENDE HANDLUNGSKOMPETENZ

Die Studierenden können Problemstellungen durch den Einsatz geeigneter Methoden lösen. Sie können ihr Wissen auch in ungewohnten Situationen anwenden. Die Studierenden sind in der Lage, die Ergebnisse ihrer Arbeit zu präsentieren.

LERNEINHEITEN UND INHALTE

LEHR- UND LERNEINHEITENPRÄSENZZEITSELBSTSTUDIUMCompilerbau3639

- Lexikalische Analyse
- Syntaktische Analyse
- Syntaxgesteuerte Übersetzung
- Semantische Analyse
- Laufzeit-Organisation
- Zwischencode-Erzeugung
- Code-Optimierung
- Code-Erzeugung

LEHR- UND LERNEINHEITEN	PRÄSENZZEIT	SELBSTSTUDIUM
Web-Engineering 2	36	39
 Vertiefung oder Erlernen einer serverseitigen Programmiersprache und/oder die Vertiefung oder Erlernen clientseitiger Programmierung als Ergänzung und Fortführung von Unit Web-Engineering 1 		
- Spezielle Verwendungskontexte client- oder serverseitigen Programme unter Einbezug üblicher Frameworks/Bibliotheken der verwendeten Programmiersprache.		
- Optional: Spezielle Ausführungsplattformen für Webanwendungen		
- Optional: Einführung in die Architekturmuster und Konzepte moderner Webanwendungen		
Fahrerinformationssysteme	36	39
- Methoden der Informations- und Entwicklung der Fahrerinformationssysteme - Abgrenzung gegenüber Sicherheitssystemen - Assistenzfunktionen und Unterhaltungssysteme - Funktionsumfang und Bedienung eines Fahrerinformationssystems - Aufbau eines Fahrerinformationssystems - Einbindung des Systems ins Kfz - Vernetzung im Kfz und Interaktion mit anderen Systemen - Sensoren: Gyroscope, Odometer - Galileo Grundlagen - Koppelortung - Map Matching - Routensuche (Algorithmen) - TMC, RDS, DAB und Nachfolge - HMI (Human Machine Interface)		
Informatik und Ethik	36	39
 - Einführung in die Ethik, Digitale Ethik - Recht und Ethik - Verantwortung und Verantwortlichkeit des Programmierers - Ethics by Design, Values by Design, Privacy by Design - Fallbesprechungen und aktuelle Rechtsprechung 		
Einführung in Java	36	39
- Allgemeines über Java - Datentypen und Kontrollstrukturen - Klassen, Objekte und Methoden - Interfaces - Exceptions - Ein-/Ausgabe - Collections - Sichtbarkeit - Vererbung und Polymorphie - Programmstrukturen wie Packages, Jars, - Modellierung mit UML - Swing oder Java FX		
Programmieren mit Rust	36	39
 Rust ganz kurz - Geschichte, Einordnung als Programmiersprache Arbeitsumgebung und Ecosystem - Build-Tool chain cargo , Editor/IDE Grundlegende Programmkonstrukte Arten von Strings in Rust Fehlerbehandlung Ownership-Mechanismus - Life-Time / Ownership / References / Borrowing Komplexe Datenstrukturen, Enums, Pattern-Matching Management für große Projekte - Packages, Module, Creates Collections- und Error-Types 		

- Collections- und Error-Types
- Automatisierte Tests
- Funktionale Konzepte
- Smart Pointer
- Concurrency Projekte aus den Einsatzbereichen von Rust wie Verteilte Systeme, Data-Science und Web-Anwendungen

LEHR- UND LERNEINHEITEN	PRÄSENZZEIT	SELBSTSTUDIUM
Wireless LANs	36	39
- Historische Entwicklung - Grundlagen (Modulation, FHSS, DSSS, OFDM, OFDMA) - Von IEEE802.11 bis IEEE802.11ax (Physical Layer, MAC Layer, Erweiterungen) - Security - Antennen - Antennenleitung - Netzplanung		
App-Entwicklung mit Flutter und Dart	36	39
- Einführung in Flutter (Kurze Geschichte zu Flutter, Wer hat Flutter entwickelt, Zahlen & Fakten) - Grundlagen in Flutter (Ähnlichkeit zu anderen Sprachen, Beispiele der Sprache, Vorteile) - Installation Flutter und Emulator - Pagemanagement - Diverse andere kleine Punkte (wichtige Bibliotheken etc.) - Projektumsetzung mit Flutter und Dart		
Organisatorische Grundlagen der Informationssicherheit	36	39
Informationssicherheit — Begriffsdefinition und Bedeutung Rollen und Verantwortlichkeiten in Unternehmen Sicherheitsprozesse und Sicherheitsziele Berechtigungskonzepte Datenschutz Sensible Daten und Data Leaks Ethisches Verhalten und Responsible Disclosure Standards und Normen (z.B. IT-Grundschutz, ISO/IEC 27001) Organisatorische Behandlung von Spam- und Phishing-Mails, Passwörtern Fallbeispiele aus dem Alltag im Unternehmen und im Privaten		
Autonomes Fahren	36	39
- Automatisierungslevel im Automobilbereich - Grundlagen der Bildverarbeitung - Einführung in Deep Learning - Motion Planning - Einführung in die Interprozesskommunikation mit ROS - Regelungsansätze mit MATLAB Simulink - State Machine anhand MATLAB Stateflow		
Agile Produktentwicklung und User Stories	36	39
- Einführung: Agile Prinzipien und User Stories - Struktur von User Stories - Kundenorientiertes Denken - Story und Journey Mapping - Test Driven Design - Änderungsmanagement - Nicht-funktionale Anforderungen		

- Nicht-funktionale Anforderungen
 Technical debt
 Verfeinerung und Prioritätensetzung
 Backlog Management

LEHR- UND LERNEINHEITEN	PRÄSENZZEIT	SELBSTSTUDIUM
Forschungsseminar: Grundsätze und Praxis	36	39

Dieser Kurs führt die Studierenden in die grundlegenden Prinzipien und praktischen Prozesse der akademischen Forschung ein. Die Studierenden werden lernen, wie man Forschungsfragen formuliert, Literaturrecherchen durchführt, Methoden entwickelt, Daten sammelt und analysiert und Ergebnisse effektiv kommuniziert. Der Schwerpunkt liegt auf der Entwicklung von kritischem Denken, wissenschaftlicher Integrität und akademischen Schreibfähigkeiten. In angeleiteten Workshops und praktischen Projekten setzen sich die Studierenden mit ethischen Überlegungen auseinander (z. B. Integrität der Forschung, Plagiat, Autorenschaft) und reflektieren über die soziale Verantwortung der Wissenschaft. Der Kurs gipfelt in einem unabhängigen oder teambasierten Forschungsprojekt, das den Studierenden die Möglichkeit gibt, den gesamten Forschungszyklus vom Vorschlag bis zur Präsentation zu durchlaufen.

Grundlagen der Forschung

- Formulierung klarer, fokussierter Forschungsfragen und Hypothesen.
- Durchführung umfassender Literaturrecherchen und kritischer Überprüfungen.

Planung und Durchführung von Forschung

- Auswahl geeigneter Methoden (qualitativ, quantitativ, gemischte Methoden).
- Entwicklung grundlegender Fähigkeiten zur Datenerfassung und -analyse.

Wissenschaftliche Integrität

- Verstehen von Forschungsethik, Autorenschaft und verantwortungsvollem Verhalten in der Forschung.
- Umgang mit allgemeinen ethischen Dilemmas in der Forschungspraxis.

Kommunikation

- Verfassen von Forschungsvorschlägen und -berichten nach akademischen Standards.
- Mündliche und visuelle Präsentation von Forschungsergebnissen vor einem akademischen Publikum.

Forschungsprozess

- Abschluss eines betreuten Forschungsprojekts unter Anwendung der
- Reflexion des persönlichen Lernens und der breiteren Auswirkungen der Forschung.

Consulting, Sales und Recht 36 39

A) Consulting & Sales

- Consulting
- -Verhandlungsführung
- Selbstmanagement/Marketing
- Moderation
- Grundlagen des Technischen Vertriebs
- Der industrielle Kaufprozess
- Akquisitionsplanung und Account Management
- Distribution und Vertriebswege

B) Rechtsfragen für die Informatik

- Systematik des deutschen Rechts
- Zivilrecht und bürgerliches Recht
- Rechtssubjekte, Rechtsobjekte, Rechtsfähigkeit
- Vertragsrecht Allgemeines zur Vertragslehre
- Vertragsbegründung
- Stellvertretung
- Einbeziehung von AGB in den Vertrag
- Einwendungen
- Verbraucherschutz
- EContracting, Der Vertrag im Cyberlaw
- Leistungsstörungen
- Mängelhaftung im Kaufrecht, Urheberrecht, Gewerblicher Rechtsschutz
- Urheberrecht, Recht am eigenen Bild, Markenrecht
- Patente, Gebrauchsmuster, Geschmacksmuster
- Wettbewerbsrecht, Datenschutzrecht

LEHR- UND LERNEINHEITEN	PRÄSENZZEIT	SELBSTSTUDIUM
C# /.Net 1	36	39

- Überblick über das .NET Framework
- Grundlegende Sprachbestandteile, u.a. Statements, Ausdrücke, Typsystem und Generics, Attribute
- Grundlagen von .NET: CLR, .NET-Bytecode, Reflection
- Weiterführende Sprachbestandteile, u.a. Iteratoren, wichtige Interfaces und Klassen
- Einführung in die Oberflächenprogrammierung mit Windows Forms und WPF
- Spezialthemen wie Concurrent Programming, GUI-Frameworks, Zugriffe auf native Code

C++ 36 39

- Geschichtliche Einordnung der Sprache C++
- Wesentliche Sprachmerkmale, Vor- und Nachteile der Sprache C++
- Unterschiede zur Sprache Java
- Dateiorganisation in C++ , Modulkonzept, Header- und Implementierungsfile, Präprozessor
- Hauptprogramm, Programmeintrittspunkt, Übersetzen und Binden
- Ein- und Ausgabestream, Namespace
- Formatierte Ausgabe, Strings aus der Sprache C, ANSI/ISO Klasse 'string'
- Zeiger, Objektinstanzen, void* Zeiger und NULL Zeiger
- Konstruktor/Destruktor
- Initialisierungen in C++
- Kopieren von Objekten, flache Kopie, tiefe Kopie, Copy Konstruktor
- Überladen des Assignment Operators
- Symbolische Konstanten
- Initialisieren von Klassenattributen, konstante Attribute
- Rein lesende Methoden, 'const' nach Methodensignatur
- Aufzählungstypen, -konstanten
- Default-Parameter
- Überladen von Operatoren
- Vererbung, Konstruktoren bei der Vererbung
- Friend Klasse, Sichtbarkeitsregeln
- Mehrfachvererbung, Zugriffskontrolle bei Vererbung
- Virtuelle Methoden, Polymorphie
- Abstrakte Klassen
- 'const' vor Parametern einer Funktion/Methode
- ,const' vor dem Rückgabewert einer Funktion/Methode

Linux 1 36 39

- Grundsätzliches/Einleitung: Geschichte, Was ist eigentliche Linux, Unterschiede Windows/Linux, Lizenzen, Distributionen, Support, Dokumentationskonzepte
- Installation und erste praktische Erfahrungen: Knoppix, Suse oder eine andere Major-Distribution, KDE- und andere Oberflächen
- Shell/Konsole: Shell und ihre Kommandos, Pipes
- Benutzer, Dateirechte, Prozesse, Bootprozess von Linux, Runlevels
- Dateisystem: Dateitypen, Standardfilesystem (FHS), Logdateien
- Netzwerk: Einleitung/Netzkonfiguration, Eatzgebiete von Linux im Netzwerk, Servertypen (inetd/standalone)
- typische Server und wichtige Implementierung (ssh, mail, http, op3, imap, NIS, ldap, X11), Fehlersuche im Netzwerk, pratische Übungen für apache/nfs/samb, Sicherheit im Netzwerk
- Verschiedenes: vmware und andere OS-Emulatoren, Echtzeitlinux, Linux auf embedded-Devices

Diskrete Mathematik 1 36 39

- Basic Concepts and Structures: Integers and Division. The Euclidean Algorithm. Polynomials. The Ring Z of Integers. Systems of Equations. Modular Arithmetic. Systems of Congruences. The Chinese RemainderTheorem. Finite Groups and Vector Spaces. Finite Rings and Fields.
- Selected Topics of Number Theory: The Fundamental Theorem of Arithmetic. Fermat's Little Theorem. Euler's Theorem. Fermat Numbers. Square-free Numbers.
- Applications: Computer Arithmetic with Large integers. Matrices. Cryptography. Affine Ciphers. The Hill n-Cipher. Diffie-Hellman Private Key Generation. RSA Encryption and Decryption.

LERNEINHEITEN UND INHALTE		
LEHR- UND LERNEINHEITEN	PRÄSENZZEIT	SELBSTSTUDIUM
Agentenbasierte Systeme	36	39
 Grundlagen von Agenten und Agentensystemen Aufbau von Agenten und Agentensystemen Kommunikation in Agentensystemen Co-operatives Problemlösen Grundlagen der Spieltheorie Agenten im Software Engineering Agentenframeworks Ontologien Mobile Agenten 		
Signale und Systeme 2	36	39
- Einführung in Signale und Systeme (Diskret) - Diskrete Fourier-Transformation - Z-Transformation - Nichtrekursive- und rekursive Systeme - Digitale Filter - Wavelet-Transformation		
Cloud Computing	36	39
 - Warum Cloud Computing? Einführung - Grundlagen des Cloud-Computing - Architekturen und Anbieter - Besonderheiten der Cloud - Software-Technologien für die Cloud - Strategien für die Migration in die Cloud - Realisierung der Cloud (Warehouse Scale Datacenter, WSC) - Trends 		
Cross Plattform Web Development	36	39
 - Grundlagen JavaScript - Grundlagen Node.js - HTTP Server mit Express JS - MongoDB und Mongoose - Angular JS - Ionic Framework - Apache Cordova - Websockets und evtl. Wunschthemen. Die Inhalte werden stets praktisch angewendet. so wird während der Vorlesung gemeinsam eine beispielhafte Anwendung entwickelt. 		
Programmiertechniken für eingebettete Systeme	36	39
 Definition von eingebetteten Systemen Einführung; Wiederholung in C++ - Konzepte zur effizienten Programmierung in C++ - Speicherverwaltung und Allokationstechniken Implementierung von Zustandsautomaten Code wartbar schreiben Umgang mit statischen Variablen 		
Internet of Things	7.6	30
Internet of Things - Einführung in IoT - Anwendungsgebiete - Technologien (auf einer aktuellen IoT-Plattform) - Kommunikationsprotokolle - Sensorik und Datenerfassung - Plattformen	36	39
December of the Dath of	7./	70
Programmieren mit Python - Finführung historisch" in Python	36	39

- Einführung "historisch" in Python
 Syntax und Basis-Programmierung
 Python in der Webprogrammierung
 Darstellung von Daten mit dem Zusatzpaket Matplotlib in Python
 Datenanalyse mit Python
 Python und Django
 Anwendungsbeispiel

EHR- UND LERNEINHEITEN	PRÄSENZZEIT	SELBSTSTUDIUM
Grundlagen der Android Programmierung	36	39
Geschichte und Entwicklung des Android Betriebssystems Java Grundlagen Android Grundlagen und Unterschiede Programmierung und Konfiguration von Android Apps Verknüpfung von Hardware und Software Workshop mit diversen Programmieraufgaben (Sensorik auslesen, einfache Anwendungen erstellen)		
Programmieren mit PHP	36	39
Einführung Grundlagen und Syntax Datenbankanbindung Informationstransfer Sicherheit Anwendungsbeispiele		
Quantencomputer	36	39
Historie des Quantencomputers Technologien, z.B. Quantenmechanik, die für das Verständnis von Quantencomputing notwendig sind Aktueller Stand der Technologie Ideen für die zukünftige Nutzung		
Netztechniken der Zugangs- und Weitverkehrsnetze	36	39
Entwicklung der Zugangs- und Weitverkehrsnetze Grundlagen und Techniken der drahtgebundenen und drahtlosen Zugangsnetze Grundlagen und Techniken der Weitverkehrsnetze		
Augmented Reality	36	39
Grundlagen der erweiterten Realität (Augmented Reality, AR) Abgrenzung zur virtuellen Realität (Virtual Reality, VR) Einführung in die verwendete AR-Brille Arbeiten mit der Entwicklungsumgebung und Grafik-Engine Projekterstellung Erläuterung des holografischen Emulationsmodus Positionierung von 3D-Objekten im 3D-Raum Dynamische Instanziierung von Objekten zur Laufzeit Dynamische Erstellung von 3D-Raumdaten Bewegung und Interaktion mit 3D-Objekten		
App-Entwicklung mit Swift	36	39
Überblick über mobile Betriebssysteme Einführung in die Entwicklungsumgebung Xcode iOS-Entwicklung mit Swift Oberflächen-Entwicklung mit dem Interface Builder Swift auf anderen Plattforme		
Microservices	36	39
VIICI O SCI VICCS	J0	J7

- Einführung in die Thematik
 Microservices: Konzepte, Vorteile, Design Prinzipien,
 Vor- und Nachteile des Microservice-Ansatzes
- Microservices vs. SOA
- Die übergreifende Architektur von Microservice-Systemen
- Die Architektur einzelner Services
 Design und Entwicklung einer komplexeren Anwendung bestehend aus mehreren Microservices
 optional: Einführung in die Programmiersprache Node.js, praktische Übungen, warum ideal
- geeignet für Microservices
- optional: Docker: Konzepte, praktisches Arbeiten mit Docker, Deployment der Anwendung mit Docker

LEHR- UND LERNEINHEITENPRÄSENZZEITSELBSTSTUDIUMUser Experience & User Interface Design3639

- Einführung in User Experience
- Identifikation und Bewertung der Nutzeranforderungen
- Kollaborative Konzepterarbeitung
- Anfertigung von prototypischen Designs
- Kenntnis der Methoden zur Messung von Benutzerfreundlichkeit
- Durchführung und Auswertung von Usability Tests

BESONDERHEITEN

Das Modul beinhaltet zwei wählbare Units aus einem vorgegebenen Auswahlkatalog, davon kann eine durch die Studiengangsleitung vorgegeben werden. Wählbare Units:

T3INF4211.1 - Compilerbau

T3INF4212.1 - Web-Engineering 2

T3INF4382.1 - Fahrerinformationssysteme

T3INF4901.1 - Einführung in Java

T3INF4901.2 - Programmieren mit Rust

T3INF4902.8 - Consulting, Sales und Recht

T3INF9001.2 - C# /.Net 1

T3INF9001.3 - C++

T3INF9001.6 - Linux 1

T3INF9002.1 - Diskrete Mathematik 1

T3INF9007.11 - Signale und Systeme 2

T3INF9007.3 - Cloud Computing

T3INF9007.6 - Cross Plattform Web Development

T3INF9007.8 - Programmiertechniken für eingebettete Systeme

T3INF9009.3 - Internet of Things

T3INF9012.1 - Programmieren mit Python

T3INF9012.2 - Programmieren mit PHP

T3INF9012.3 - Quantencomputer

T3INF9012.4 - Netztechniken der Zugangs- und Weitverkehrsnetze

T3INF9012.5 - Augmented Reality

T3INF9012.6 - App-Entwicklung mit Swift

T3INF9012.7 - Microservices

T3INF9012.8 - Grundlagen der Android Programmierung

T3INF9012.9 - User Experience & User Interface Design

T3INF4901.3 - Wireless LANs

T3INF4901.4 - App-Entwicklung mit Flutter und Dart

T3INF4901.5 - Organisatorische Grundlagen der Informationssicherheit

T3INF4901.6 - Autonomes Fahren

T3INF4901.7 - Agile Produktentwicklung und User Stories

Die Prüfungsdauer richtet sich nach der Studien- und Prüfungsordnung.

VORAUSSETZUNGEN

LITERATUR

- A. Tanenbaum, "Computernetzwerke", Pearson-Studium
- D. Conrads, "Telekommunikation", Vieweg+Teubner
- Kristof Obermann, "Datennetztechnologien für Next Generation Networks", Springer Vieweg
- Andreas Keller, "Datenübertragug im Kabelnetz", Springer
- Andreas Keller, "Breitbandkabel und Zugangsnetze", Springer
- Alfred V. Aho, Monica S. Lam, Ravi Sethi and Jeffrey D. Ullman: Compilers: Principles, Techniques, and Tools, Addision-Wesley Verlag
- Reinhard Wilhelm, Dieter Maurer: Übersetzerbau, Springer Verlag
- Niklaus Wirth: Compilerbau: Eine Einführung, Teubner Verlag
- Bernhard Bauer, Riita Höllerer: Übersetzung objektorientierter Programmiersprachen: "Konzepte, Abstrakte Maschinen Und Praktikum "Java-Compiler"", Spinger Verlag
- Andrew W. Appel: Modern Compiler Implementation In Java, Cambridge University Press
- Belcher, W. L.: Writing Your Journal Article in Twelve Weeks: A Guide to Academic Publishing Success, University of Chicago Press
- Booth, W. C./Colomb, G. G./Williams, J. M.: The Craft of Research, University of Chicago Press
- Zobel, J.: Writing for Computer Science, Springer
- Bergsmann, J.: Requirements Engineering für die agile Softwareentwicklung: Methoden, Techniken und Strategien, dpunkt.verlag GmbH
- Cohn, M.: Agile estimating and planning, Upper Saddle River: Prentice Hall Ptr
- Patton, J./Patton, P.: Economy, User Story Mapping, O'Reilly Media
- Berlit: Wettbewerbsrecht, C.H. Beck
- Fisher, Roger; Ury, William; Patton, Bruce: "Das Harvard-Konzept", Houghton Mifflin & Co
- Gola / Klug; Grundzüge des Datenschutzrechts, C.H. Beck
- Ilzhöfer, Volker: Patent- Marken- und Urheberrecht, Vahlen
- Kaputa: "Die Kunst der Selbstvermarktung So verkaufen Sie sich besser", Ambitionsverlag
- Klunzinger: Einführung in das Bürgerliche Recht, Vahlen
- Kotler, Keller, Opresnik: "Marketing Management", Pearson
- Moos: Datenschutzrecht schnell erfasst, Springer
- Scheer, Köppen: "Consulting: Wissen für die Strategie, Prozess- und IT-Beratung", Springer
- Wilhelm, Thomas; Edmüller, Andreas: "Moderation", Hauke
- Bjarne Stroustrup: The C++ Programming Language. Addison-Wesley
- Torsten T. Will: C++: Das umfassende Handbuch zu Modern C++. Rheinwerk Computing
- BSI Publikationen: https://www.bsi.bund.de
- Kersten, H./Klett, G.: Der IT Security Manager: Aktuelles Praxiswissen für IT Security Manager und IT-Sicherheitsbeauftragte in Unternehmen und Behörden, Springer
- Schneier, B.: Click Here to Kill Everybody: Security and Survival in a Hyper-connected World, Norton
- Christian Wenz, Tobias Hauser, "PHP 7 und MySQL: Von den Grundlagen bis zur professionellen Programmierung", Rheinwerk Computing
- Florence Maurice, "PHP 7 und MySQL: Ihr praktischer Einstieg in die Programmierung dynamischer Websites", dpunkt.verlag GmbH
- Christopher Kormanyos: Real-Time C++: Efficient Object-Oriented and Template Microcontroller Programming. Springer
- Daniel Stender: Cloud-Infrastrukturen Das Handbuch für DevOps-Teams und

Administratoren. Rheinwerk Verlag

- Boris Scholl: Cloud Native: Using containers, functions, and data to build next-generation applications. O'Reilly
- Eberhard Wolff: Microservices: Grundlagen flexibler Softwarearchitekturen, dpunkt Verlag
- Sam Newman: Building Microservices: Designing Fine-Grained System, O'Reilly Media
- Elad Erom: "Pro MEAN Stack Development", Apress
- Jeff Dickey: "Write Modern Web Apps with the MEAN Stack", Peachpit Press
- Gast , Matthew S.: 802.11n A survival Guide. O'Reilly-Verlag
- Nett, Edgar, Mock, Michael, Gergeleit, Martin: Das drahtlose Ethernet. Addison-Wesley-Verlag
- Rech, Jörg: Wireless LANs 802.11-WLAN-Technologie und praktische Umsetzung im Detail. Heise-Verlag
- Roshan, Pejman, Leary, Jonathan: 802.11 Wireless LAN Fundamentals. Ciscopress-Verlag
- Gerald Teschl: Mathematik für Informatiker Band 1: Diskrete Mathematik und Lineare Algebra. Springer
- Alfred Beutelspacher, Diskrete Mathematik für Einsteiger. Springer
- Christof Paar, Kryptographie verständlich. Springer
- Gesellschaft für Informatik e.V: Ethische Leitlinien (https://gi.de/ueber-uns/organisation/unsere-ethischen-leitlinien/)
- -Gesellschaft für Informatik e.V: Gewissensbits Fallbeispiele zu Informatik und Ethik (https://gewissensbits.gi.de/)
- Gesellschaft für Informatik e.V: Fachgruppe Informatik und Ethik (https://fg-ie.gi.de/) (https://fg-ie.gi.de/links.html: hier gibt es weitere Hinweise zu relevanter Literatur)
- Grimm, Petra; Keber, Tobias O.; Zöllner, Oliver (Hrsg.:) Schriftenreihe Medienethik. Stuttgart: Franz Steiner Verlag.
- Hellmund, A.-M., et al.: Robot operating system: A modular software framework for automated driving. IEEE 19th International Conference on Intelligent Transportation Systems (ITSC), Rio de Janeiro, Brazil, 2016
- SAE International Releases Updated Visual Chart for Its "Levels of Driving Automation" Standard for Self-Driving Vehicles. URL:
- https://www.sae.org/news/press-room/2018/12/sae-international-releases-updated-visual-chart-for-its-"levels-of-driving-automation"-standard-for-self-driving-vehicles
- Uçar, A., et al.: Object recognition and detection with deep learning for autonomous driving applications. SIMULATION. 2017;93(9)
- J. P. Dowling, "Schrödinger's killer app: race to build the world's first quantum computer", CRC Press

- J. Russel, Peter Norvig, "Künstliche Intelligenz Ein moderner Ansatz", Pearson Studium, aktuelle Auflage
- M.Wouldridge, "An Introduction to Multi Agent Systems", John Wiley and Sons, aktuelle Auflage
- Gerhard Weiss (Ed.), "Multiagent Systems A Modern Approach to Distributed Artificial Intelligence", The MIT Press, aktuelle Auflage
- Yoav Shoham, Kevin Layton-Brown, "Multiagent Systems: Algorithmic, Game-Theoretic, and Logical Foundations", Cambridge University Press, aktuelle Auflage
- James R. Parker, "Python: An Introduction to Programming", Mercure Learning & Information
- Johannes Ernesti, "Python 3: Das umfassende Handbuch: Sprachgrundlagen, Objektorientierte Programmierung, Modularisierung", Rheinwerk Computing
- Kofler, M: Linux: Debiam Fedore, openSue, Ubuntu, Addison-Wesley,
- Kofler, M: Linux- Kommandoreferenz, Addison-Wesley,
- D.J. Barett, Torsten Wilhelm: Lunix kurz und gut, O'Reilly
- Krüger, G.; Handbuch der Java-Programmierung, O' Reilly
- Ullenboom, Christian; Java ist auch eine Insel, Rheinwerk Computing
- Meiller, Dieter: Moderne App-Entwicklung mit Dart und Flutter: Eine umfassende Einführung. De Gruyter
- Payne, Rap: Beginning App Development with Flutter: Create Cross-Platform Mobile Apps, Apress
- Zametti, Frank: Practical Flutter: Improve your Mobile Development with Google's Latest Open-Source SDK, Apress
- Robert Schiefele: C# Kompendium: Professionell C# Programmieren lernen. BMU Verlag
- Andrew Troelsen: Pro C# 9 with .NET 5: Foundational Principles and Practices in Programming, Apress
- Sprenger, F.; Engemann, C.: Internet der Dinge: Über smarte Objekte, intelligente Umgebungen und die technische Durchdringung der Welt, transcript
- Ruppert, S.: IoT für Java-Entwickler, entwickler.press
- T.S. McNamara: "Rust in Action", Manning Publications
- J. Blandy, J. Orendorff: "Programming Rust Fast, Safe Systems Development", O'Reilly Media
- Thomas Künneth: Android 11: Das Praxisbuch für Entwickler. Rheinwerk Computing
- Uwe Post: Android-Apps entwickeln mit Java. Rheinwerk Computing
- Sebastian Witt: Let's code Android! Rheinwerk Computing
- Werner, M.: Signale und Systeme, Vieweg
- Unbehauen, R.: Systemtheorie 1, Oldenburg
- Oppenheim, A.V., Schafer, R.W.: Zeitdiskrete Signalverarbeitung, Pearson
- D.Ch. von Grünigen, Digitale Signalverarbeitung: Bausteine, Systeme, Anwendungen
- www.w3c.org
- de.selfhtml.org
- s. spezifisches Themengebiet, Literatur wird in Form passender Manuskripte oder Tutorials ausgegeben
- -Bosch Kraftfahrzeugtechnisches Taschenbuch, Robert Bosch GmbH -Sicherheits- und Komfortsysteme, Robert Bosch GmbH
- -Thomas Sillmann: "Das Swift-Handbuch: Apps programmieren für macOS, iOS, watchOS und tvOS.", Carl Hanser Verlag
- Dörner, Ralf; Broll, Wolfgang; Grimm, Paul; Jung, Bernhard: Virtual und

Augmented Reality (VR / AR): Grundlagen und Methoden der Virtuellen und

Augmentierten Realität. Berlin Heidelberg New York: Springer-Verlag.

• Tönnis, Marcus: Augmented Reality: Einblicke in die Erweiterte Realität. Berlin Heidelberg New York: Springer-Verlag.

• Jesmond Allen, James Chudley: Smashing UX Design, Foundations for

Designing Online User Experiences, John Wiley & Sons

- Josh Seiden, Jeff Gothelf: Lean UX, 2nd Edition, O'Reilly Media, Inc.
- Carol M. Barnum: Usability Testing Essentials, Elsevier Inc.
- Elizabeth F Churchill, Rochelle King, Caitlin Tan: Designing with Data, O'Reilly Media, Inc.
- Bella Martin, Bruce Hanington: Universal Methods of Design, Rockport Publishers

Bachelorarbeit (T3 3300)

Bachelor Thesis

FORMAI	I F ANGAREN	7IIM MODIII

MODULNUMMERVERORTUNG IM STUDIENVERLAUFMODULDAUER (SEMESTER)MODULVERANTWORTUNGSPRACHET3_33003. Studienjahr1Prof. Dr.-lng. Joachim Frech

EINGESETZTE LEHRFORMEN

LEHRFORMENLEHRMETHODENIndividualbetreuungProjekt

EINGESETZTE PRÜFUNGSFORMEN

PRÜFUNGSLEISTUNGPRÜFUNGSUMFANG (IN MINUTEN)BENOTUNGBachelor-ArbeitSiehe Pruefungsordnungja

WORKLOAD UND ECTS-LEISTUNGSPUNKTE

WORKLOAD INSGESAMT (IN H)DAVON PRÄSENZZEIT (IN H)DAVON SELBSTSTUDIUM (IN H)ECTS-LEISTUNGSPUNKTE360635412

QUALIFIKATIONSZIELE UND KOMPETENZEN

FACHKOMPETENZ

-

METHODENKOMPETENZ

-

PERSONALE UND SOZIALE KOMPETENZ

-

ÜBERGREIFENDE HANDLUNGSKOMPETENZ

Die Studierenden erfassen industrielle Problemstellungen in einem breiten Kontext und in realistischer Komplexität. Sie haben ein gutes Verständnis von organisatorischen und inhaltlichen Zusammenhängen sowie von Organisationsstrukturen, Produkten, Verfahren, Maßnahmen, Prozessen, Anforderungen und gesetzlichen Grundlagen. Sie analysieren kritisch, welche Einflussfaktoren zur Lösung des Problems beachtet werden müssen und können beurteilen, inwiefern theoretische Modelle einen Beitrag zur Lösung des Problems leisten können. Die Studierenden können sich selbstständig, nur mit geringer Anleitung in theoretische Grundlagen eines Themengebiets vertiefend einarbeiten und den allgemeinen Stand des Wissens erwerben. Sie können auf der Grundlage von Theorie und Praxis selbstständig Lösungen entwickeln und Alternativen bewerten. Sie sind in der Lage eine wissenschaftliche Arbeit als Teil eines Praxisprojektes effizient zu steuern und wissenschaftlich korrekt und verständlich zu dokumentieren.

Die Studierenden zeichnen sich durch Eigenverantwortung und Tatkraft aus, sie sind auch im Kontext einer globalisierten Arbeitswelt handlungsfähig. Sie weisen eine reflektierte Haltung zu gesellschaftlichen, soziale und ökologischen Implikationen des eigenen Handelns auf.

LERNEINHEITEN UND INHALTE

LEHR- UND LERNEINHEITEN	PRÁSENZZEIT	SELBSTSTUDIUM
Bachelorarbeit	6	354

BESONDERHEITEN

Es wird auf die "Leitlinien für die Bearbeitung und Dokumentation der Module Praxisprojekt I bis III, Studienarbeit und Bachelorarbeit" der Fachkommission Technik der DHBW hingewiesen.

Stand vom 01.10.2025 T3_3300 // Seite 70

LITERATUR

Kornmeier, M., Wissenschaftlich schreiben leicht gemacht für Bachelor, Master und Dissertation, Bern

Stand vom 01.10.2025 T3_3300 // Seite 71

Künstliche Intelligenz und Maschinelles Lernen (T3INF4334)

Artificial Intelligence and Machine Learning

FORMALE ANGABEN ZUM MODUL

MODULNUMMERVERORTUNG IM STUDIENVERLAUFMODULDAUER (SEMESTER)MODULVERANTWORTUNGSPRACHET3INF43343. Studienjahr2Prof. Dr. Dirk ReichardtDeutsch/Englisch

EINGESETZTE LEHRFORMEN

LEHRFORMEN

Vorlesung, Übung, Labor

Lehrvortrag, Diskussion, Lehrvortrag, Diskussion, Gruppenarbeit

EINGESETZTE PRÜFUNGSFORMEN

PRÜFUNGSLEISTUNGPRÜFUNGSUMFANG (IN MINUTEN)BENOTUNGKlausurarbeit oder Kombinierte PrüfungSiehe Pruefungsordnungja

LEHRMETHODEN

WORKLOAD UND ECTS-LEISTUNGSPUNKTE

WORKLOAD INSGESAMT (IN H)DAVON PRÄSENZZEIT (IN H)DAVON SELBSTSTUDIUM (IN H)ECTS-LEISTUNGSPUNKTE15072785

QUALIFIKATIONSZIELE UND KOMPETENZEN

FACHKOMPETENZ

Die Studierenden kennen die Einsatzgebiete und typischen Szenarien der künstlichen Intelligenz. Sie sind in der Lage zu erkennen, in welchen Anwendungen Methoden der künstlichen Intelligenz vorteilhaft sind. Die Studienrenden können grundlegende Methoden der künstlichen Intelligenz am praktischen Beispiel einsetzen.

Die Studierenden verfügen je nach Unitwahl über vertiefte Fachkenntnisse zu Evolutionary Computing, Maschinellem Lernen, Agentensystemen oder Emotional Computing.

METHODENKOMPETENZ

Die Studierenden können Problemstellungen der realen Welt erfassen und mit Fachexperten das benötigte Wissen zur Implementierung einer intelligenten Anwendung extrahieren.

Die Studierenden habem methodische Kenntnisse erworben um intelligente Softwaresysteme zu entwickeln (abh. von Wahlunit).

PERSONALE UND SOZIALE KOMPETENZ

Die Auswirkungen der Aspekte interaktiver intelligenter und autonomer Systeme auf die Gesellschaft und das soziale Miteinander können die Studierenden reflektierend analysieren und sich damit auseinandersetzen.

Sie können mit Fachvertretern und Laien über fachliche Fragen und Probleme des Themenfelds KI diskutieren.

ÜBERGREIFENDE HANDLUNGSKOMPETENZ

LERNEINHEITEN UND INHALTE

LEHR- UND LERNEINHEITEN	PRÄSENZZEIT	SELBSTSTUDIUM
Grundlagen der Künstlichen Intelligenz	36	39

LEHR- UND LERNEINHEITEN **PRÄSENZZEIT** SELBSTSTUDIUM - Grundlagen und Definition von Wissen und Modellbildung - Einsatz von Logik und automatischer Beweisführung - Einsatz von Heuristiken (u.a. heuristische Suche) - Repräsentation unscharfer Probleme (z.B. Probabilistische Netze, Evidenztheorie / Dempster -Shafer / Fuzzy Systeme) - Analogie und Ähnlichkeit - Grundlagen des Maschinelles Lernens - Anwendungsgebiete Künstlicher Intelligenz (z.B. Design digitaler Schaltungen, Big Data, Autonome Systeme, Intelligente Interaktion) - Praktische Anwendungen von Methoden der künstlichen Intelligenz Labor Künstliche Intelligenz 36 39 Labor begleitend zur Unit Grundlagen der Künstlichen Intelligenz zur Vertiefung der gelehrten Methoden. Einzelne angrenzende Methoden können ergänzt und am Projektbeispiel vertieft Grundlagen Maschineller Lernverfahren 36 39 - Einführung in das Maschinelle Lernen - Symbolische Lernverfahren - Grundlagen Neuronaler Netze - Probabilistische Lernmodelle - Erweiterte Konzepte und Deep Learning - Entwurf und Implementierung ausgewählter Techniken für eine Anwendung Agentenbasierte Systeme 36 39 - Grundlagen von Agenten und Agentensystemen - Aufbau von Agenten und Agentensystemen - Kommunikation in Agentensystemen - Co-operatives Problemlösen - Grundlagen der Spieltheorie - Agenten im Software Engineering - Agentenframeworks - Ontologien - Mobile Agenten **Evolutionary Computing** 36 39 - Historie und Einsatzgebiete von Evolutionären Algorithmen - Grundprinzipien (Mutation, Rekombination, Mating-Pool-Auswahlverfahren, Fitness-Funktion, Generationenmodelle) - Anwendung genetischer Algorithmen auf einfache Praxis-Probleme Emotion in Interaktiven Systemen 36 39 - Einführung und Motivation - Psychologische Grundlagen der Emotion - Emotionserkennung (Audio/Video/Physiolog. Sensorik etc.) - Emotionsdarstellung (Avatare etc.) - Grundlegende Emotionsmodelle - Einsatz von Emotionalen Agenten in interaktiven Systemen - Projekt zu Emotionen in Anwendungssystemen **BESONDERHEITEN** Die Studiengangsleitung legt abhängig von aktuellen Gegebenheiten die Wahlunit fest. Die Prüfungsdauer richtet sich nach der Studien- und Prüfungsordnung.

VORAUSSETZUNGEN

LITERATUR

- Beierle, C./Kern-Isberner, G.: Methoden Wissensbasierter Systeme Grundlagen Algorithmen Anwendungen, Vieweg Verlag
- Ertel: Grundkurs Künstliche Intelligenz: Eine praxisorientierte Einführung, Springer Vieweg, aktuelle Auflage
- Kruse, et.al.: Computational Intelligence: Eine methodische Einführung in Künstliche Neuronale Netze, Evolutionäre Algorithmen, Fuzzy-Systeme und Bayes-Netze, Vieweg+Teubner Verlag
- Russel, S. J./Norvig, P: Künstliche Intelligenz Ein moderner Ansatz, Pearson Studium
- Christoph Beierle, Gabriele Kern-Isberner: Methoden Wissensbasierter Systeme Grundlagen Algorithmen Anwendungen, Vieweg Verlag, aktuelle Auflage
- Stuart J. Russel, Peter Norvig: Künstliche Intelligenz Ein moderner Ansatz, Pearson Studium, , aktuelle Auflage
- Ertel: Grundkurs Künstliche Intelligenz: Eine praxisorientierte Einführung, Springer Vieweg, aktuelle Auflage
- Kruse, et.al.: Computational Intelligence: Eine methodische Einführung in Künstliche Neuronale Netze, Evolutionäre Algorithmen, Fuzzy-Systeme und Bayes-Netze, Vieweg+Teubner Verlag, aktuelle Auflage
- Friedemann Schulz von Thun, "Miteinander Reden 1 Störungen und Klärungen", Rowohlt Verlag.
- S.L.Breazeal, "Designing Sociable Robots", MIT Press.
- Watzlawick, Beavin, Jackson, "Menschliche Kommunikation", Verlag Hans Huber, aktuellste Auflage.
- Rosalind Picard, "Affective Computing", aktuellste Auflage
- Byron Reeves, Clifford Nass, "The Media Equation", CSLI Publications, aktuellste Auflage.
- J. Russel, Peter Norvig, "Künstliche Intelligenz Ein moderner Ansatz", Pearson Studium, aktuelle Auflage
- M.Wouldridge, "An Introduction to Multi Agent Systems", John Wiley and Sons, aktuelle Auflage
- Gerhard Weiss (Ed.), "Multiagent Systems A Modern Approach to Distributed Artificial Intelligence", The MIT Press, aktuelle Auflage
- Yoav Shoham, Kevin Layton-Brown, "Multiagent Systems: Algorithmic, Game-Theoretic, and Logical Foundations", Cambridge University Press, aktuelle Auflage
- Toshinori Munakata, "Fundamentals of the new Artificial Intelligence", Springer Verlag, aktuelle Auflage
- A.E.Eiben, J.E.Smith, "Introduction to Evolutionary Computing", Springer Verlag, aktuelle Auflage
- Toshinori Munakata, "Fundamentals of the new Artificial Intelligence", Springer Verlag, aktuelle Auflage
- Christoph Beierle, Gabriele Kern-Isberner, "Methoden Wissensbasierter Systeme Grundlagen Algorithmen Anwendungen", Vieweg Verlag, aktuelle Auflage
- Ethem Alpaydin, "Maschinelles Lernen", Oldenbourg, aktuelle Auflage

Ethik in Informatik und KI (T3INF4389)

Ethics in Computer Science and Artificial Intelligence

FORMALE ANGABEN ZUM MODUL

 MODULNUMMER
 VERORTUNG IM STUDIENVERLAUF
 MODULDAUER (SEMESTER)
 MODULVERANTWORTUNG
 SPRACHE

 T3INF4389
 3. Studienjahr
 2
 Prof. Dr. Nathan Sudermann-Merx
 Deutsch/Englisch

EINGESETZTE LEHRFORMEN

LEHRFORMEN LEHRMETHODEN

Vorlesung, Übung Lehrvortrag, Diskussion, Fallstudien

EINGESETZTE PRÜFUNGSFORMEN

PRÜFUNGSLEISTUNGPRÜFUNGSUMFANG (IN MINUTEN)BENOTUNGKombinierte Prüfung - Kombinierte PrüfungSiehe Pruefungsordnungja

WORKLOAD UND ECTS-LEISTUNGSPUNKTE

WORKLOAD INSGESAMT (IN H)DAVON PRÄSENZZEIT (IN H)DAVON SELBSTSTUDIUM (IN H)ECTS-LEISTUNGSPUNKTE15072785

QUALIFIKATIONSZIELE UND KOMPETENZEN

FACHKOMPETENZ

Mit Abschluss des Moduls können die Studierenden Fragestellungen der Informatik und insbesondere der Künstlichen Intelligenz unter ethischen Gesichtspunkten kritisch und verantwortungsvoll hinsichtlich ihres gesellschaftlichen Einflusses beurteilen.

METHODENKOMPETENZ

-

PERSONALE UND SOZIALE KOMPETENZ

Die Studierenden verfügen über ein kritisches Urteilsvermögen hinsichtlich ethischer Fragestellungen im Zusammenhang in Themengebieten der Informatik, insbesondere Künstlicher Intelligenz.

ÜBERGREIFENDE HANDLUNGSKOMPETENZ

_

LERNEINHEITEN UND INHALTE

LEHR- UND LERNEINHEITENPRÄSENZZEITSELBSTSTUDIUMData and Society7278

- Grundlegende Konzepte der Ethik und ihr Zusammenhang zur Informatik
- Risiken und Chancen durch KI-gestützte Technologien für Individuen und die Gesellschaft
- Verantwortungsvoller Umgang mit KI-gestützten Technologien ("Responsible AI")

BESONDERHEITEN

Die Fallstudien können auch in Form einer Gruppenarbeit erfolgen.

VORAUSSETZUNGEN

-

LITERATUR

- Bostrom, N./Yudkowsky, E.: The ethics of artificial intelligence. Artificial intelligence safety and security, Chapman and Hall Floridi, L. (Ed.): The Blackwell Guide to the Philosophy of Computing and Information, John Wiley & Sons Johnson, D.G.: Computer ethics, Englewood Cliffs Lessig, L.: Code: And Other Laws of Cyberspace, Version 2.0, Basic Books

Nachhaltige Energiesysteme (T3_9007)

Sustainable Energy Systems

FORMALE ANGABEN ZUM MODUL

MODULNUMMERVERORTUNG IM STUDIENVERLAUFMODULDAUER (SEMESTER)MODULVERANTWORTUNGSPRACHET3_90073. Studienjahr1Prof. Dr.-Ing. Alexandra DunzDeutsch

EINGESETZTE LEHRFORMEN

LEHRFORMEN LEHRMETHODEN

Vorlesung, Labor Lehrvortrag, Diskussion, Gruppenarbeit

EINGESETZTE PRÜFUNGSFORMEN

PRÜFUNGSLEISTUNGPRÜFUNGSUMFANG (IN MINUTEN)BENOTUNGKlausurt oder Kombinierte Prüfung120ja

WORKLOAD UND ECTS-LEISTUNGSPUNKTE

WORKLOAD INSGESAMT (IN H)DAVON PRÄSENZZEIT (IN H)DAVON SELBSTSTUDIUM (IN H)ECTS-LEISTUNGSPUNKTE15060905

QUALIFIKATIONSZIELE UND KOMPETENZEN

FACHKOMPETENZ

Die Studierenden sind in der Lage, mit den in den Modulinhalten genannten Techniken ingenieurmäßige Fragestellungen in ihrem Arbeitsumfeld zu diesem Thema zu erkennen, sie methodisch grundlagenorientiert zu analysieren und zu lösen.

METHODENKOMPETENZ

Die Studierenden sind mit Abschluss des Moduls in der Lage, für weitgehend standardisierte Anwendungsfälle in der Praxis die angemessene Methode auszuwählen und anzuwenden. Sie kennen die Stärken und Schwächen der Methode in ihrem beruflichen Anwendungsfeld und können diese in konkreten Handlungssituationen gegeneinander abwägen.

PERSONALE UND SOZIALE KOMPETENZ

-

ÜBERGREIFENDE HANDLUNGSKOMPETENZ

-

LERNEINHEITEN UND INHALTE

LEHR- UND LERNEINHEITENPRÄSENZZEITSELBSTSTUDIUMNachhaltige Energiesysteme6090

- Einführung in die nachhaltige Energietechnik und -wirtschaft
- Grundlagen der erneuerbaren Energien wie Photovoltaik, Solarthermie, Windkraft, Wasserkraft, Brennstoffzellen und Biomasse; aufgebaut auf vorhandenem Wissen der

Thermodynamik, Strömungslehre und Elektronik

- Energieeffiziente Gebäudetechnik
- Energiewirtschaftliche Prozesse

BESONDERHEITEN

Die Prüfungsdauer bezieht sich auf die Klausur.

VORAUSSETZUNGEN

-

Stand vom 01.10.2025 T3_9007 // Seite 77

LITERATUR

- Kaltschmitt, M; Streicher, W; Wiese, A: Erneuerbare Energien, Springer Vieweg
- Quaschning, V: Regenerative Energiesysteme, Hanser-Verlag
- Wastter, H: Nachhaltige Energiesysteme, Vieweg + Teubner
 Zahoransky, Richard A.: Energietechnik Systeme zur Energieumwandlung. Vieweg+Teubner
 Hadamovsky, Jonas: Solarstrom Solarthermie. Vogel-Verlag
 Cerbe; Hoffmann: Einführung in die Wärmelehre. Carl Hanser Verlag München Wien

- Baehr, H.D.: Thermodynamik. Springer Verlag Hau, Erich: Windkraftanlagen Grundlagen, Technik, Einsatz, Wirtschaftlichkeit. Springer Verlag
- Recknagel; Sprenger: Taschenbuch für Heizungs- und Klimatechnik. Oldenbourg-Verlag München Tiator; Schenker: Wärmepumpen und Wärmepumpenanlagen. Vogel-Verlag

Stand vom 01.10.2025 T3_9007 // Seite 78