

Dieses Modulhandbuch gilt für Studierende die im Zeitraum vom 01.10.2017 – 30.09.2024 immatrikuliert wurden.

Modulhandbuch

Studienbereich Technik

School of Engineering

Studiengang

Informatik

Computer Science

Studienrichtung

Angewandte Informatik

Applied Computer Science

Studienakademie

BAD MERGENTHEIM

Curriculum (Pflicht und Wahlmodule)

Aufgrund der Vielzahl unterschiedlicher Zusammenstellungen von Modulen können die spezifischen Angebote hier nicht im Detail abgebildet werden. Nicht jedes Modul ist beliebig kombinierbar und wird möglicherweise auch nicht in jedem Studienjahr angeboten. Die Summe der ECTS aller Module inklusive der Bachelorarbeit umfasst 210 Credits.

Die genauen Prüfungsleistungen und deren Anteil an der Gesamtnote (sofern die Prüfungsleistung im Modulhandbuch nicht eindeutig definiert ist oder aus mehreren Teilen besteht), die Dauer der Prüfung(en), eventuelle Einreichungsfristen und die Sprache der Prüfung(en) werden zu Beginn der jeweiligen Theoriephase bekannt gegeben.

	FESTGELEGTER MODULBEREICH		
NUMMER	MODULBEZEICHNUNG	VERORTUNG	ECTS
T3INF1001	Mathematik I	1. Studienjahr	8
T3INF1002	Theoretische Informatik I	1. Studienjahr	5
T3INF1003	Theoretische Informatik II	1. Studienjahr	5
T3INF1004	Programmieren	1. Studienjahr	9
T3INF1005	Schlüsselqualifikationen	1. Studienjahr	5
T3INF1006	Technische Informatik I	1. Studienjahr	5
T3INF2001	Mathematik II	2. Studienjahr	6
T3INF2002	Theoretische Informatik III	2. Studienjahr	6
T3INF2003	Software Engineering I	2. Studienjahr	9
T3INF2004	Datenbanken	2. Studienjahr	6
T3INF2005	Technische Informatik II	2. Studienjahr	8
T3INF2006	Kommunikations- und Netztechnik	2. Studienjahr	5
T3INF3001	Software Engineering II	3. Studienjahr	5
T3INF3002	IT-Sicherheit	3. Studienjahr	5
T3_3101	Studienarbeit	3. Studienjahr	10
T3_1000	Praxisprojekt I	1. Studienjahr	20
T3_2000	Praxisprojekt II	2. Studienjahr	20
T3_3000	Praxisprojekt III	3. Studienjahr	8
T3INF4101	Web Engineering	1. Studienjahr	3
T3INF4103	Anwendungsprojekt Informatik	1. Studienjahr	5
T3INF4305	Softwarequalität und Verteilte Systeme	3. Studienjahr	5
T3INF4304	Datenbanken II	3. Studienjahr	5
T3INF4111	Grundlagen der Hard- und Software	1. Studienjahr	5
T3INF4315	Web-Technologien	3. Studienjahr	5
T3INF4272	Programmieren II	2. Studienjahr	5
T3INF4303	Computergraphik und Bildverarbeitung	3. Studienjahr	5
T3INF4343	Vertiefung IT-Security	3. Studienjahr	5
T3INF4322	Architekturen	3. Studienjahr	5
T3INF4334	Künstliche Intelligenz und Maschinelles Lernen	3. Studienjahr	5
T3_3300	Bachelorarbeit	3. Studienjahr	12

Stand vom 01.10.2025 Curriculum // Seite 2

Mathematik I (T3INF1001)

Mathematics I

FORMALE ANGABEN ZUM MODUL

MODULNUMMER	VERORTUNG IM STUDIENVERLAUF	MODULDAUER (SEMESTER)	MODULVERANTWORTUNG	SPRACHE
T3INF1001	1. Studienjahr	2	Prof. Dr. Reinhold Hübl	Deutsch/Englisch

EINGESETZTE LEHRFORMEN

LEHRFORMEN	LEHRMETHODEN
Vorlesung, Übung	Lehrvortrag, Diskussion

EINGESETZTE PRÜFUNGSFORMEN

PRÜFUNGSLEISTUNG	PRÜFUNGSUMFANG (IN MINUTEN)	BENOTUNG
Klausurarbeit	Siehe Pruefungsordnung	ja
Klausurarbeit	Siehe Pruefungsordnung	ja

WORKLOAD UND ECTS-LEISTUNGSPUNKTE

WORKLOAD INSGESAMT (IN H)	DAVON PRÄSENZZEIT (IN H)	DAVON SELBSTSTUDIUM (IN H)	ECTS-LEISTUNGSPUNKTE
240	96	144	8

QUALIFIKATIONSZIELE UND KOMPETENZEN

FACHKOMPETENZ

Mit Abschluss des Moduls haben die Studierenden die Fähigkeit zu mathematischem Denken und Argumentieren entwickelt. Sie verfügen über ein Grundverständnis der diskreten Mathematik, der linearen Algebra und der Analysis einer reellen Veränderlichen. Sie sind in der Lage, diese Kenntnisse auf Probleme aus dem Bereich der Ingenieurwissenschaften und Informatik anzuwenden.

METHODENKOMPETENZ

Mathematik fördert logisches Denken, klare Strukturierung, kreative explorierende Verhaltensweisen und Durchhaltevermögen.

PERSONALE UND SOZIALE KOMPETENZ

-

ÜBERGREIFENDE HANDLUNGSKOMPETENZ

Die Studierenden sind in der Lage, naturwissenschaftlich-technische Vorgänge mit Hilfe der diskreten Mathematik, der linearen Algebra und der Analysis zu beschreiben. Sie beginnen, Algorithmen der numerischen Mathematik zu nutzen und diese in lauffähige Programme umzusetzen.

LERNEINHEITEN UND INHALTE

LEHR- UND LERNEINHEITEN	PRÄSENZZEIT	SELBSTSTUDIUM
Lineare Algebra	48	72

- Grundlagen der diskreten Mathematik
- Grundlegende algebraische Strukturen
- Vektorräume und lineare Abbildungen
- Determinanten, Eigenwerte, Diagonalisierbarkeit
- Anwendungsbeispiele

Analysis 48 72

- Folgen und Reihen, Stetigkeit
- Differentialrechnung einer Veränderlichen im Reellen
- Integralrechnung einer Veränderlichen im Reellen
- Anwendungsbeispiele

Stand vom 01.10.2025 T3INF1001 // Seite 3

BESONDERHEITEN

Dieses Modul beinhaltet zusätzlich bis zu 24h begleitetes Selbststudium in Form von Übungsstunden, Laboren oder Projekten. Hierbei werden Übungsaufgaben und/oder vertiefende Aufgabenstellungen von den Studierenden bearbeitet.

VORAUSSETZUNGEN

LITERATUR

- Beutelspacher: Lineare Algebra, Vieweg+Teubner
- Fischer: Lineare Algebra, Vieweg+Teubner
- Hartmann: Mathematik für Informatiker, Vieweg+Teubner
- Kreußler, Pfister: Mathematik für Informatiker: Algebra, Analysis, Diskrete Strukturen, Springer
- Lau: Algebra und Diskrete Mathematik 1, Springer
- Teschl, Teschl: Mathematik für Informatiker: Band 1. diskrete Mathematik und lineare Algebra, Springer
- Estep: Angewandte Analysis in einer Unbekannten, Springer
- Hartmann: Mathematik für Informatiker, Vieweg+Teubner
- Hildebrandt: Analysis 1, Springer
- Teschl, Teschl: Mathematik für Informatiker: Band 2. Analysis und Statistik, Springer

Stand vom 01.10.2025 T3INF1001 // Seite 4

Theoretische Informatik I (T3INF1002)

Theoretical Computer Science I

FORMALE ANGABEN ZUM MODUL

MODULNUMMERVERORTUNG IM STUDIENVERLAUFMODULDAUER (SEMESTER)MODULVERANTWORTUNGSPRACHET3INF10021. Studienjahr1Prof. Dr.,rer.,nat. Bernd SchwinnDeutsch/Englisch

EINGESETZTE LEHRFORMEN

LEHRFORMENLEHRMETHODENVorlesung, ÜbungLehrvortrag, Diskussion

EINGESETZTE PRÜFUNGSFORMEN

PRÜFUNGSLEISTUNGPRÜFUNGSUMFANG (IN MINUTEN)BENOTUNGKlausurarbeitSiehe Pruefungsordnungja

WORKLOAD UND ECTS-LEISTUNGSPUNKTE

WORKLOAD INSGESAMT (IN H)

DAVON PRÄSENZZEIT (IN H)

DAVON SELBSTSTUDIUM (IN H)

ECTS-LEISTUNGSPUNKTE

90

5

QUALIFIKATIONSZIELE UND KOMPETENZEN

FACHKOMPETENZ

Die Studierenden können die theoretischen Grundlagen der Aussage- und Prädikatenlogik verstehen. Die Studierenden verstehen die formale Spezifikation von Algorithmen und ordnen diese ein. Die Studierenden beherrschen das Modell der logischen Programmierung und wenden es an.

METHODENKOMPETENZ

Die Studierenden haben die Kompetenzen erworben, komplexere Unternehmensanwendungen durch abstraktes Denken aufzuteilen und zu beherrschen sowie fallabhängig logisches Schließen und Folgern einzusetzen.

PERSONALE UND SOZIALE KOMPETENZ

_

ÜBERGREIFENDE HANDLUNGSKOMPETENZ

Die Studierenden haben mit Abschluss des Moduls die Kompetenz erworben, sich mit Fachvertretern und Laien über Fachfragen und Aufgabenstellungen in den Bereichen Logik, logische Folgerung sowie Verifikation und abstraktes Denken auf wissenschaftlichem Niveau auszutauschen.

LERNEINHEITEN UND INHALTE

LEHR- UND LERNEINHEITENPRÄSENZZEITSELBSTSTUDIUMGrundlagen und Logik6090

- Algebraische Strukturen: Relationen, Ordnung, Abbildung
- Formale Logik: Aussagenlogik, Prädikatenlogik
- Algorithmentheorie; Komplexität, Rekusion, Terminierung, Korrektheit (mit Bezug zur Logik)
- Grundkenntnisse der deklarativen (logischen/funktionalen/....) Programmierung

BESONDERHEITEN

VORAUSSETZUNGEN

-

Stand vom 01.10.2025 T3INF1002 // Seite 5

LITERATUR

- Siefkes, Dirk: Formalisieren und Beweisen: Logik für Informatiker, Vieweg Kelly, J.: The Essence of Logic, Prentice Hall Alagic, Arbib: The Design of Well-Structured and Correct Programs, Springer Clocksin, W.F.; Mellish, C.S.: Programming in Prolog, Springer

Stand vom 01.10.2025 T3INF1002 // Seite 6

Theoretische Informatik II (T3INF1003)

Theoretical Computer Science II

FORMALE ANGABEN ZUM MODUL

MODULNUMMERVERORTUNG IM STUDIENVERLAUFMODULDAUER (SEMESTER)MODULVERANTWORTUNGSPRACHET3INF10031. Studienjahr1Prof. Dr. rer. nat. Stephan SchulzDeutsch/Englisch

EINGESETZTE LEHRFORMEN

LEHRFORMENLEHRMETHODENVorlesung, ÜbungLehrvortrag, Diskussion

EINGESETZTE PRÜFUNGSFORMEN

PRÜFUNGSLEISTUNGPRÜFUNGSUMFANG (IN MINUTEN)BENOTUNGKlausurarbeitSiehe Pruefungsordnungja

WORKLOAD UND ECTS-LEISTUNGSPUNKTE

WORKLOAD INSGESAMT (IN H)DAVON PRÄSENZZEIT (IN H)DAVON SELBSTSTUDIUM (IN H)ECTS-LEISTUNGSPUNKTE150481025

QUALIFIKATIONSZIELE UND KOMPETENZEN

FACHKOMPETENZ

Die Studierenden verfügen über vertieftes Wissen:

- Algorithmenansätze für wichtige Problemklassen der Informatik
- Komplexitätsbegriff und Komplezitätsberechnungen für Algorithmen
- wichtige abstrakte Datentypen und ihre Eigenschaften

METHODENKOMPETENZ

Die Studierenden können die Notwendigkeit einer Komplexitätsanalyse für ein Program bewerten und ein angemessenes Maß für den Einsatz im beruflichen Umfeld wählen.

PERSONALE UND SOZIALE KOMPETENZ

Die Studierenden können ihre Entscheidungs- und Fachkompetenz im Bereich Auswahl und Entwurf von Algorithmen und Datenstrukturen einschätzen und über diese Themen mit Fachvertretern und Laien effektiv und auf wissenschaftlichem Niveau kommunizieren.

ÜBERGREIFENDE HANDLUNGSKOMPETENZ

Die Studierenden haben die Kompetenz erworben:

- effiziente Datenstruktuten für praktische Probleme auszuwählen und anzupassen
- durch abstraktes Denken größere Probleme in überschaubare Einheiten aufzuteilen und zu lösen
- Algorithmen für definierte Probleme zu entwerfen

LERNEINHEITEN UND INHALTE

LEHR- UND LERNEINHEITEN	PRÄSENZZEIT	SELBSTSTUDIUM
Algorithmen und Komplexität	48	102

- Grundbegriffe der Berechnungskomplexität O-Notation
- Algorithmen: Suchalgorithmen Sortieralgorithmen Hashing: offenes Hashing, geschlossenes Hashing
- Datenstrukturen: Mengen, Listen, Keller, Schlangen Bäume, binäre Suchbäume, balancierte Räume
- Graphen: Spezielle Graphenalgortihmen, Semantische Netze
- Codierung: Kompression, Fehlererkennende Codes, Fehlerkorrigierende Codes

Stand vom 01.10.2025 T3INF1003 // Seite 7

VORAUSSETZUNGEN

Programmieren, Mathematische Grundlagen

LITERATUR

- Robert Sedgewick, Kevin Wayne: Algorithms, Addison Wesley
 Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, Clifford Stein: Introduction to Algorithms, MIT Press
 Niklaus Wirth: Algorithmen und Datenstrukturen, Teubner Verlag

Stand vom 01.10.2025 T3INF1003 // Seite 8

Programmieren (T3INF1004)

Programming

FORMALE ANGABEN ZUM MODUL

MODULNUMMER	VERORTUNG IM STUDIENVERLAUF	MODULDAUER (SEMESTER)	MODULVERANTWORTUNG	SPRACHE
T3INF1004	1. Studienjahr	2	Prof. Dr. rer.nat. Alexander Auch	Deutsch/Englisch

EINGESETZTE LEHRFORMEN

LEHRFORMEN	LEHRMETHODEN
Vorlesung, Übung	Lehrvortrag, Diskussion, Gruppenarbeit

EINGESETZTE PRÜFUNGSFORMEN

PRÜFUNGSLEISTUNG	PRÜFUNGSUMFANG (IN MINUTEN)	BENOTUNG
Programmentwurf	Siehe Pruefungsordnung	ja

WORKLOAD UND ECTS-LEISTUNGSPUNKTE

WORKLOAD INSGESAMT (IN H)	DAVON PRÄSENZZEIT (IN H)	DAVON SELBSTSTUDIUM (IN H)	ECTS-LEISTUNGSPUNKTE
270	96	174	9

QUALIFIKATIONSZIELE UND KOMPETENZEN

FACHKOMPETENZ

Die Studierenden kennen die Grundelemente der prozeduralen und der objektorientierten Programmierung. Sie können die Syntax und Semantik dieser Sprachen und können ein Programmdesign selbstständig entwerfen, codieren und ihr Programm auf Funktionsfähigkeit testen. Sie kennen verschiedene Strukturierungsmöglichkeiten und Datenstrukturen und können diese exemplarisch anwenden.

METHODENKOMPETENZ

Die Studierenden sind in der Lage, einfache Programme selbständig zu erstellen und auf Funktionsfähigkeit zu testen, sowie einfache Entwurfsmuster in ihren Programmentwürfen einzusetzen. Die Studierenden können eine Entwicklungsumgebung verwenden um Programme zu erstellen, zu strukturieren und auf Fehler hin zu untersuchen (inkl. Debugger).

PERSONALE UND SOZIALE KOMPETENZ

Die Studierenden können ihren Programmentwurf sowie dessen Codierung im Team erläutern und begründen. Sie können existierenden Code analysieren und beurteilen. Sie können sich selbstständig in Entwicklungsumgebungen einarbeiten und diese zur Programmierung und Fehlerbehebung einsetzen.

ÜBERGREIFENDE HANDLUNGSKOMPETENZ

Die Studierenden können eigenständig Problemstellungen der Praxis analysieren und zu deren Lösung Programme entwerfen, programmieren und testen.

LERNEINHEITEN LIND INHALTE

LEHR- UND LERNEINHEITEN	PRÄSENZZEIT	SELBSTSTUDIUM
Programmieren	96	174

Stand vom 01.10.2025 T3INF1004 // Seite 9

LEHR- UND LERNEINHEITEN PRÄSENZZEIT SELBSTSTUDIUM

Kenntnisse in prozeduraler Programmierung:

- Algorithmenbeschreibung
- Datentypen
- E/A-Operationen und Dateiverarbeitung
- Operatoren
- Kontrollstrukturen
- Funktionen
- Stringverarbeitung
- Strukturierte Datentypen
- dynamische Datentypen
- Zeiger
- Speicherverwaltung

Kenntnisse in objektorientierter Programmierung:

- objektorientierter Programmentwurf
- Idee und Merkmale der objektorientierten Programmierung
- Klassenkonzept
- Operatoren
- Überladen von Operatoren und Methoden
- Vererbung und Überschreiben von Operatoren
- Polymorphismus
- Templates oder Generics
- Klassenbibliotheken
- Speicherverwaltung, Grundverständnis Garbage Collection

BESONDERHEITEN

Dieses Modul beinhaltet zusätzlich bis zu 24h begleitetes Selbststudium in Form von Übungsstunden, Laboren oder Projekten. Hierbei werden Übungsaufgaben und/oder vertiefende Aufgabenstellungen von den Studierenden bearbeitet.

VORAUSSETZUNGEN

LITERATUR

- B.W. Kerninghan, D.M Richie: Programmieren in C, Hanser
- Günster: Einführung in Java, Rheinwerk Computing
- Habelitz: Programmieren lernen mit Java, Rheinwerk Computing
- McConnell: Code Complete: A Practical Handbook of Software Construction, Microsoft Press
- Prinz, Crawford: C in a Nutshell, O'Reilly
- R. Klima, S. Selberherr: Programmieren in C, Springer
- Ullenboom: Java ist auch eine Insel, Rheinwerk Computing

Stand vom 01.10.2025 T3INF1004 // Seite 10

Schlüsselqualifikationen (T3INF1005)

Key Skills

FORMALE ANGABEN ZUM MODUL

MODULNUMMERVERORTUNG IM STUDIENVERLAUFMODULDAUER (SEMESTER)MODULVERANTWORTUNGSPRACHET3INF10051. Studienjahr2Prof. Dr. Jürgen VollmerDeutsch/Englisch

EINGESETZTE LEHRFORMEN

LEHRFORMENLEHRMETHODENVorlesung, ÜbungLehrvortrag, Diskussion, Lehrvortrag, Diskussion, Gruppenarbeit, Projekt

EINGESETZTE PRÜFUNGSFORMEN

PRÜFUNGSLEISTUNGPRÜFUNGSUMFANG (IN MINUTEN)BENOTUNGKombinierte Prüfung - Klausurarbeit (< 50 %)</td>Siehe Pruefungsordnungja

WORKLOAD UND ECTS-LEISTUNGSPUNKTE

WORKLOAD INSGESAMT (IN H)DAVON PRÄSENZZEIT (IN H)DAVON SELBSTSTUDIUM (IN H)ECTS-LEISTUNGSPUNKTE15084665

QUALIFIKATIONSZIELE UND KOMPETENZEN

FACHKOMPETENZ

Die Studierenden haben Grundkenntnisse der Wirtschaftswissenschaften erworben und können ihre fachlichen Aufgaben im betrieblichen Kontext einordnen.

METHODENKOMPETENZ

Die Studierenden haben ökonomische, interkulturelle und arbeitswissenschaftliche Grundkompetenzen für Beruf und Studium erworben.

PERSONALE UND SOZIALE KOMPETENZ

Die Studierenden können ihre Standpunkte in einem (ggf. interdisziplinär und interkulturell zusammengesetzten) Team vertreten und respektieren andere Sichtweisen. Sie können sich selbst und ihre Projekte organisieren und mit Kritik und Konflikten angemessen umgehen.

ÜBERGREIFENDE HANDLUNGSKOMPETENZ

Über die Sachkompetenz hinaus soll das Denken in fachübergreifenden Zusammenhängen geschult werden, sowie strategische Handlungskompetenz und unternehmerisches Denken vermittelt werden.

LERNEINHEITEN UND INHALTE

LEHR- UND LERNEINHEITENPRÄSENZZEITSELBSTSTUDIUMBetriebswirtschaftslehre3628

- Einführung in die theoretischen Ansätze und Methoden in der Betriebswirtschaftslehre
- Ziele und Planung in der Betriebswirtschaftslehre
- Führungsstile und konzepte
- Rechtsformen
- Bilanzen
- Gewinn- und Verlustrechnung
- Kostenrechnung
- Finanzierung und Investition
- Ganzheitliches Unternehmensplanspiel

Stand vom 01.10.2025 T3INF1005 // Seite 11

LERNEINHEITEN UND INHALTE		
LEHR- UND LERNEINHEITEN	PRÄSENZZEIT	SELBSTSTUDIUM
Fremdsprachen 1	24	19
- Schriftliche Kommunikation:Entwerfen und Auswerten von Berichten, Stellungnahmen, Reden, Protokollen - Mündliche Kommunikation: Im Rahmen einer Diskussion argumentieren und schlussfolgern. Perfekt Präsentieren		
Vortrags-, Lern- und Arbeitstechniken	24	19
-Verbale vs. non-verbale Kommunikation -Kommunikationsziel, Botschaft, Adressatenkreis-Auswahl -Inhaltliche Strukturierung -Ablaufgestaltung -Rednerverhalten (z.B. Körpersprache, Stimmmodulation) -Medieneinsatz mit praktischen Beispielen -Lernfunktion im		
Marketing 1	24	19
- Einführung in Marketing - Marktforschung - Marketingplanung - Marketinginstrumentarium - Produkt- und Sortimentspolitik - Werbe- oder Kommunikationspolitik - Preispolitik - Distributionspolitik		
Marketing 2	24	19
Verschiedene Themen der Vorlesung Marketing 1 werden hier vertieft.		
Intercultural Communication 1	24	19
- Major Theories of Intercultural Communications z.B. Hall - Kluckhohn and Strodtbeck - Hofstede - Trompenaars and Hamden-Turner - Exercises - Role Place - Case Studies - Small Group Work - Presentations		
Intercultural Communication 2	24	19
- Conflict Management - Negotiation - Exercises - Role Place - Case Studies - Small Group Work - Presentations		
Fremdsprachen 2	24	19
- Schriftliche Kommunikation:Entwerfen und Auswerten von Berichten, Stellungnahmen, Reden, Protokollen - Mündliche Kommunikation: Im Rahmen einer Diskussion argumentieren und schlussfolgern. Perfekt Präsentieren		
Projektmanagement 1	24	19
 Was ist Projektmanagement? Rahmenbedingungen Projekt- und Ziel-Definitionen Auftrag und Ziele Unterlagen für die Projektplanung Aufwandsschätzung Projektorganisation Projektphasenmodelle Planungsprozess und Methodenplanung Personalplanung Terminplanung Kostenplanung und betriebswirtschaftliche Hintergründe Einführung in Steuerung, Kontrolle und Projektabschluss Projektmanagement mit IT Unterstützung (z.B. MS Project) Übungen zu den einzelnen Teilen 		
Projektmanagement 2	24	19

- Meetings, Teams und Konflikte
 Risikoplanung und Risikomanagement
 Qualitätsplanung
 Projekt Steuerung und Kontrolle
 Projektabschluss, Projektrevision und finanzwirtschaftliche Betrachtungen
 Weitere Projektmanagement Methoden

Stand vom 01.10.2025 T3INF1005 // Seite 12

LERNEINHEITEN UND INHALTE

LEHR- UND LERNEINHEITEN	PRÄSENZZEIT	SELBSTSTUDIUM
Einführung in technisch-wissenschaftliches Arbeiten	24	19

Flemente wissenschaftlicher Arbeit und ihrer Produkte:

- Inhaltliche, formale und stilistische Aspekte wiss. Arbeitens
- Kategorien technischer und wissenschaftlicher Dokumente und ihre Bewertung
- Anwendung von technischem Englisch
- Durchführung von Quellenrecherchen und deren qualitative Bewertung
- Ausarbeitungen und Darstellungsformen wissenschaftlicher Vorträge unter Berücksichtigung des Semantic Environments
- Aufgabenbeschreibung eines technischen bzw. wissenschaftlichen Projektes
- Erstellung einer exemplarischen und vollständigen Dokumentation
- Erstellung eines englischen und deutschen Kurzberichtes
- Methodischer Hinweis: Für die Umsetzung der praktischen Übungen und des Feedbacks

werden die Studierenden in Intensivarbeitsgruppen eingeteilt und betreut.

BESONDERHEITEN

Entweder

- T3INF1005.0 Schluesselqualifikationen als einzige Unit
- T3INF1005.1 Betriebswirtschaftlehre Pflicht und 2 weitere Units zur Wahl

Weitere Units:

T3INF1005.2 - Fremdsprachen 1

T3INF1005.3 - Vortrags-, Lern- und Arbeitstechniken

T3INF1005.4 - Marketing 1

T3INF1005.5 - Marketing 2

T3INF1005.7 - Intercultural Communication 1

T3INF1005.8 - Intercultural Communication 2

T3INF1005.9 - Fremdsprachen 2

T3INF4103.1 - Projektmanagement 1

T3INF4103.2 - Projektmanagement 2

T3INF4116.1 - Einführung in technisch-wissenschaftliches Arbeiten

VORAUSSETZUNGEN

keine

LITERATUR

- Davis, M.: Scientific Papers and Presentations, Boston, London, San Diego
- Eberhard, K.: Einführung in die Erkenntnis- und Wissenschaftstheorie, Stuttgart
- Heydasch, T., Renner, K.-H.: Einführung in das wissenschaftliche Arbeiten; Fakultät für Kultur- und Sozialwissenschaften; FernUniversität Hagen, Hagen
- H. W. Wieczorrek, P. Mertens: Management von IT Projekten, Springer
- G. K. Kapur: Project Management for Information, Technology, Business and Certification, Prentice Hall
- P. Mangold: IT-Projektmanagement kompakt, Spektrum Akademischer Verlag
- H. W. Wieczorrek, P. Mertens: Management von IT Projekten, Springer
- G. K. Kapur: Project Management for Information, Technology, Business and Certification, Prentice Hall
- P. Mangold: IT Projektmanagement kompakt, Spektrum Akademischer Verlag
- Helmut Kohlert: Marketing für Ingenieure, Oldenbourg
- Marion Steven: Bwl für Ingenieure, Oldenbourg
- Jürgen Härdler: Betriebswirtschaftlehre für Ingenieure. Lehr- und Praxisbuch, Hanser Fachbuch
- Jürgen Härdler: Betriebwirtschaftlehre für Ingenieure: Lehr- und Praxisbuch, Hanser Fachbuch
- Marion Steven: BWL für Ingenieure, Oldenbourg
- Adolf J. Schwab: Managementwissen für Ingenieure: Führung, Organisation, Existenzgründung, Springer
- Managing Intercultural Conflict Effectively: Thousand Oaks, Sage Roger Fisher, W. Ury und B.Patton: Getting to Yes , Penguin
- Robert Gibson: Intercultural Business Communication, Cornelsen und Oxford Nancy Adler: International Dimensions of Organizational Behavior, ITP Geert Hofstede, Cultures and Organizations, McGraw-Hill - Stella Ting: Toomey und John G. Oetzel

Entsprechend der gewählten Sprache

Stand vom 01.10.2025 T3INF1005 // Seite 13

Technische Informatik I (T3INF1006)

Computer Engineering I

FORMALE ANGABEN ZUM MODUL

MODULNUMMERVERORTUNG IM STUDIENVERLAUFMODULDAUER (SEMESTER)MODULVERANTWORTUNGSPRACHET3INF10061. Studienjahr1Prof. Dr.-Ing. Thomas NeidlingerDeutsch/Englisch

EINGESETZTE LEHRFORMEN

LEHRFORMENLEHRMETHODENVorlesung, ÜbungLehrvortrag, Diskussion

EINGESETZTE PRÜFUNGSFORMEN

PRÜFUNGSLEISTUNGPRÜFUNGSUMFANG (IN MINUTEN)BENOTUNGKlausurarbeitSiehe Pruefungsordnungja

WORKLOAD UND ECTS-LEISTUNGSPUNKTE

WORKLOAD INSGESAMT (IN H)DAVON PRÄSENZZEIT (IN H)DAVON SELBSTSTUDIUM (IN H)ECTS-LEISTUNGSPUNKTE150481025

QUALIFIKATIONSZIELE UND KOMPETENZEN

FACHKOMPETENZ

Die Studierenden bekommen ein grundlegendes Basiswissen vermittelt über die Arbeitsweise digitaler Schaltelemente und den Aufbau digitaler Schaltkreise. Diese Kenntnisse bilden die Grundlage zum Verständnis von Rechnerbaugruppen.

METHODENKOMPETENZ

Die Studierenden sind mit Abschluss des Moduls in der Lage, für weitgehend standardisierte Anwendungsfälle in der Praxis die angemessene Methode auszuwählen und anzuwenden.

PERSONALE UND SOZIALE KOMPETENZ

-

ÜBERGREIFENDE HANDLUNGSKOMPETENZ

-

LERNEINHEITEN UND INHALTE

LEHR- UND LERNEINHEITENPRÄSENZZEITSELBSTSTUDIUMDigitaltechnik48102

- Zahlensysteme und Codes
- Logische Verknüpfungen und ihre Darstellung
- Schaltalgebra
- Schaltnetze
- Schaltwerke
- Schaltkreistechnik und Interfacing
- Halbleiterspeicher

BESONDERHEITEN

_

VORAUSSETZUNGEN

keine

Stand vom 01.10.2025 T3INF1006 // Seite 14

LITERATUR

- Elektronik 4: Digitaltechnik, K. Beuth, Vogel Fachbuch Digitaltechnik, K. Fricke, Springer Vieweg Digitaltechnik, R. Woitowitz, Springer Grundlagen der Digitaltechnik, G. W. Wöstenkühler, Hanser

Stand vom 01.10.2025 T3INF1006 // Seite 15

Mathematik II (T3INF2001)

Mathematics II

FORMALE ANGABEN ZUM MODUL

MODULNUMMERVERORTUNG IM STUDIENVERLAUFMODULDAUER (SEMESTER)MODULVERANTWORTUNGSPRACHET3INF20012. Studienjahr2Prof. Dr. Reinhold HüblDeutsch/Englisch

EINGESETZTE LEHRFORMEN

LEHRFORMENLEHRMETHODENVorlesung, ÜbungLehrvortrag, Diskussion

EINGESETZTE PRÜFUNGSFORMEN

PRÜFUNGSLEISTUNGPRÜFUNGSUMFANG (IN MINUTEN)BENOTUNGKlausurSiehe PruefungsordnungjaKlausurSiehe Pruefungsordnungja

WORKLOAD UND ECTS-LEISTUNGSPUNKTE

WORKLOAD INSGESAMT (IN H)DAVON PRÄSENZZEIT (IN H)DAVON SELBSTSTUDIUM (IN H)ECTS-LEISTUNGSPUNKTE180721086

QUALIFIKATIONSZIELE UND KOMPETENZEN

FACHKOMPETENZ

Mit Abschluss des Moduls haben die Studierenden die Fähigkeit zu mathematischem Denken und Argumentieren weiterentwickelt. Sie verfügen über Überblickswissen in Bezug auf für die Informatik wichtigen Anwendungsgebiete der Mathematik und Statistik und sind in der Lage, problemadäquate Methoden auszuwählen und anzuwenden.

METHODENKOMPETENZ

PERSONALE UND SOZIALE KOMPETENZ

_

ÜBERGREIFENDE HANDLUNGSKOMPETENZ

Die Studierenden sind in der Lage, Aufgabenstellungen aus der Informatik mathematisch zu modellieren und Software-gestützt zu lösen. Sie können technische und betriebswirtschaftliche Vorgänge und Probleme mit Methoden der mehrdimensionalen Analysis, der Theorie der Differentialgleichungen und der Wahrscheinlichkeitsrechnung und Statistik beschreiben und beherrschen die grundlegenden Lösungsmethoden.

LERNEINHEITEN UND INHALTE

LEHR- UND LERNEINHEITEN	PRÄSENZZEIT	SELBSTSTUDIUM
Angewandte Mathematik	36	54

- Grundlagen der Differential- und Integralrechnung reeller Funktionen mit mehreren Veränderlichen sowie von Differentialgleichungen und Differentialgleichungssystemen
- Numerische Methoden und weitere Beispiele mathematischer Anwendungen in der Informatik

Statistik 36 54

- Deskriptive Statistik
- Zufallsexperimente, Wahrscheinlichkeiten und Spezielle Verteilungen
- Induktive Statistik
- Anwendungen in der Informatik

Stand vom 01.10.2025 T3INF2001 // Seite 16

BESONDERHEITEN

Dieses Modul beinhaltet zusätzlich bis zu 24h begleitetes Selbststudium in Form von Übungsstunden, Laboren oder Projekten. Hierbei werden Übungsaufgaben und/oder vertiefende Aufgabenstellungen von den Studierenden bearbeitet.

VORAUSSETZUNGEN

-

LITERATUR

- Bamberg, Baur, Krapp: Statistik, Oldenbourg
- Cramer, Kamps: Grundlagen der Wahrscheinlichkeitsrechnung und Statistik, Springer
- Dümbgen: Stochastik für Informatiker, Springer
- Fahrmeir, Heumann, Künstler, Pigeot, Tutz: Statistik: Der Weg zur Datenanalyse, Springer
- Hartmann: Mathematik für Informatiker, Vieweg+Teubner
- Heise, Quattrocchi: Informations- und Codierungstheorie, Springer
- Schwarze: Grundlagen der Statistik 1. Beschreibende Verfahren, MWB Verlag
- Schwarze: Grundlagen der Statistik 2. Wahrscheinlichkeitsrechnung und induktive Statistik, MWB Verlag
- Teschl, Teschl: Mathematik für Informatiker: Band 2, Springer
- Dahmen, Reusken: Numerik für Ingenieure und Naturwissenschaftler, Springer
- Fetzer, Fränkel: Mathematik 2, Springer
- Hartmann: Mathematik für Informatiker, Springer
- Sonar: Angewandte Mathematik, Modellbildung und Informatik, Vieweg+Teubner
- Stoer, Bulirsch: Numerische Mathematik 1, Springer
- Stoer, Bulirsch: Numerische Mathematik 2, Springer
- Teschl, Teschl: Mathematik für Informatiker: Band 2. Analysis und Statistik, Springer

Stand vom 01.10.2025 T3INF2001 // Seite 17

Theoretische Informatik III (T3INF2002)

Theoretical Computer Science III

FORMALE ANGABEN ZUM MODUL

MODULNUMMERVERORTUNG IM STUDIENVERLAUFMODULDAUER (SEMESTER)MODULVERANTWORTUNGSPRACHET3INF20022. Studienjahr1Prof. Dr. Heinrich BraunDeutsch/Englisch

EINGESETZTE LEHRFORMEN

LEHRFORMENLEHRMETHODENVorlesung, ÜbungLehrvortrag, Diskussion

EINGESETZTE PRÜFUNGSFORMEN

PRÜFUNGSLEISTUNGPRÜFUNGSUMFANG (IN MINUTEN)BENOTUNGKlausurSiehe Pruefungsordnungja

WORKLOAD UND ECTS-LEISTUNGSPUNKTE

WORKLOAD INSGESAMT (IN H)

DAVON PRÄSENZZEIT (IN H)

DAVON SELBSTSTUDIUM (IN H)

ECTS-LEISTUNGSPUNKTE

180

72

108

6

QUALIFIKATIONSZIELE UND KOMPETENZEN

FACHKOMPETENZ

Die Studierenden verstehen die Grundlagen von Formale Sprachen und Automatentheorie. Sie können reguläre Sprachen einerseits durch einen regulären Ausdruck, eine Regex und eine Typ 3 Grammatik formal spezifizieren und andererseits durch einen endlichen Akzeptor entscheiden.

Kontextfreie Sprachen können Sie einerseits durch eine Typ 2 Grammatik spezifizieren. Andererseits verstehen sie die zugehörigen Kellerakzeptoren sowohl Top Down als auch Bottom up als Grundlage für den Übersetzerbau.

Sie kennen den Zusammenhang zwischen Typ 0 Sprachen und Turingmaschine als Grundlage der Berechenbarkeitstheorie.

METHODENKOMPETENZ

Die Studierenden können bei regulären Sprachen aus den verschiedenen Beschreibungsformen einen minimalen endlichen Akzeptor konstruieren. Bei kontextfreien Sprachen können Sie aus der Grammatik die Top Down und Bottom up Kellerakzeptoren (auch mit endlicher Vorausschau) für einfache Anwendungsfälle konstruieren. Sie verstehen die theoretischen Grundlagen der Übersetzerbauwerkzeuge Scanner und Parser für komplexe Anwendungsfälle.

Bei praxisnahen Anwendungen aus der Berechenbarkeitstheorie wie Halteproblem und Äquivalenzproblem können Sie erkennen, ob diese berechenbar bzw. entscheidbar sind.

PERSONALE UND SOZIALE KOMPETENZ

Die Studierenden haben mit Abschluss des Moduls die Kompetenz erworben, sich mit Fachvertretern und Laien über Fachfragen und Aufgabenstellungen im Bereich Formale Sprachen, erkennende Automaten sowie Methoden und Tools zu deren Umsetzung auf wissenschaftlichem Niveau auszutauschen.

ÜBERGREIFENDE HANDLUNGSKOMPETENZ

Die Studierenden können bei einer Anwendung die formale Sprache analysieren und insbesondere erkennen, zu welchem Chomsky-Typ diese gehört und welche formale Methoden (Generatoren und Übersetzerbauwerkzeuge) hierfür geeignet sind.

LERNEINHEITEN UND INHALTE

LEHR- UND LERNEINHEITEN	PRÄSENZZEIT	SELBSTSTUDIUM
Formale Sprachen und Automaten 1	48	72

Stand vom 01.10.2025 T3INF2002 // Seite 18

LERNEINHEITEN UND INHALTE LEHR- UND LERNEINHEITEN **PRÄSENZZEIT** SELBSTSTUDIUM -Grammatiken - Sprachklassen (Chomsky-Hierarchie) - Erkennende Automaten Reguläre Sprachen - Reguläre Grammatiken - Endliche Automaten - Nicht deterministische / deterministische endliche Automaten Kontextfreie Sprachen - Kontextfreie Grammatiken - Verfahren zur Analyse von kontextfreien Grammatiken (CYK) - Kellerautomaten: Top down und Bottom up inklusive k-Vorausschau - Anwendung an einfachen praxisnahen Beispielen - Zusammenhang Turingmaschine, formale Sprachen vom Chomsky Typ 0 und Entscheidbarkeit Formale Sprachen und Automaten 2 24 36 - Abgrenzung verschiedener Sprachklassen (Beweis durch Pumpinglemma) - Kontextsensitive Sprachen - Vertiefung Entscheidbarkeit und Berechenbarkeitstheorie - Turingmächtigkeit von Programmiersprachen (welcher Sprachumfang genügt, um alle berechenbaren Funktionen implementieren zu können) Einführung Compilerbau 24 36 - Phasen des Compilers - Lexikalische Analyse (Scanner) - Syntaktische Analyse (Parser): Top-down Verfahren, Bottom-up Verfahren - Syntaxgesteuerte Übersetzung: Z-Attributierung, IL-Attributierung, Kombination mit Syntaxanalyse-Verfahren - Semantische Analyse: Typüberprüfung

BESONDERHEITEN

VORAUSSETZUNGEN

LITERATUR

- Aho, Sethi, Ullmann: Compilers: Principles, Techniques, and Tools, Addison Wesley; US ed edition
- Helmut Herold: Linux-, Unix-Profitools awk, sed, lex, yacc und make , open source library
- J.E. Hopcroft, R. Motwani, J.D. Ullmann: Einführung in die Automatentheorie, Formale Sprachen und Komplexitätstheorie, Addison-Wesley Longman Verlag
- U. Hedtstück: Einführung in die theoretische Informatik, Oldenburg Wissenschaftsverlag
- J.R. Levine, T. Mason, D. Brown: lex & yacc, O'Reilly Media
- U. Hedtstück: Einführung in die theoretische Informatik, Oldenburg Wissenschaftsverlag
- J.E. Hopcroft, R. Motwani, J.D. Ullmann: Einführung in die Automatentheorie, Formale Sprachen und Komplexitätstheorie, Addison-Wesley Longman Verlag

Stand vom 01.10.2025 T3INF2002 // Seite 19

Software Engineering I (T3INF2003)

Software Engineering I

FORMALE ANGABEN ZUM MODUL

MODULNUMMER	VERORTUNG IM STUDIENVERLAUF	MODULDAUER (SEMESTER)	MODULVERANTWORTUNG	SPRACHE
T3INF2003	2. Studienjahr	2	Prof. Dr. Phil. Antonius Hoof	Deutsch/Englisch

EINGESETZTE LEHRFORMEN

LEHRFORMEN	LEHRMETHODEN
Vorlesung, Übung, Labor	Lehrvortrag, Diskussion, Gruppenarbeit

EINGESETZTE PRÜFUNGSFORMEN

PRÜFUNGSLEISTUNG	PRÜFUNGSUMFANG (IN MINUTEN)	BENOTUNG
Programmentwurf	Siehe Pruefungsordnung	ja

WORKLOAD UND ECTS-LEISTUNGSPUNKTE

WORKLOAD INSGESAMT (IN H)	DAVON PRÄSENZZEIT (IN H)	DAVON SELBSTSTUDIUM (IN H)	ECTS-LEISTUNGSPUNKTE
270	96	174	9

QUALIFIKATIONSZIELE UND KOMPETENZEN

FACHKOMPETENZ

Die Studierenden kennen die Grundlagen des Softwareerstellungsprozesses. Sie können eine vorgegebene Problemstellung analysieren und rechnergestützt Lösungen entwerfen, umsetzen, qualitätssichern und dokumentieren. Sie kennen die Methoden der jeweiligen Projektphasen und können sie anwenden. Sie können Lösungsvorschläge für ein gegebenes Problem konkurrierend bewerten und korrigierende Anpassungen vornehmen.

METHODENKOMPETENZ

Die Studierenden können sich mit Fachvertretern über Problemanalysen und Lösungsvorschläge, sowie über die Zusammenhänge der einzelnen Phasen austauschen. Sie können einfache Softwareprojekte autonom entwickeln oder bei komplexen Projekten effektiv in einem Team mitwirken. Sie können ihre Entwürfe und Lösungen präsentieren und begründen. In der Diskussion im Team können sie sich kritisch mit verschiedenen Sichtweisen auseinandersetzen und diese bewerten.

PERSONALE UND SOZIALE KOMPETENZ

ÜBERGREIFENDE HANDLUNGSKOMPETENZ

Die Studierenden können sich selbsständig in Werkzeuge einarbeiten. Sie verbinden den Softwareentwicklungsprozess mit Techniken des Projektmanagement und beachten während des Projekts Zeit- und Kostenfaktoren.

LERNEINHEITEN UND INHALTE

LEHR- UND LERNEINHEITEN	PRÄSENZZEIT	SELBSTSTUDIUM
Grundlagen des Software-Engineering	96	174

- Vorgehensmodelle
- Phasen des SW-Engineering und deren Zusammenhänge
- Lastenheft und Pflichtenheft, Anwendungsfälle
- Analyse- und Entwurfsmodelle (z.B. Modellierungstechniken von UML oder SADT)
- Softwarearchitektur, Schnittstellenentwurf
- Coderichtlinien und Codequalität: Reviewing und Testplanung, -durchführung und -bewertung
- Continuous Integration
- Versionsverwaltung
- Betrieb und Wartung
- Phasenspezifisch werden verschiedene Arten der Dokumentation behandelt
- Durchführung eines konkreten Softwareentwicklungsprojektes in Projektteams mittlerer Größe

(z.B. eine Web Service / Web App, eine stand-alone Anwendung oder eine Steuerung)

Stand vom 01.10.2025 T3INF2003 // Seite 20

LEHR- UND LERNEINHEITEN PRÄSENZZEIT SELBSTSTUDIUM

BESONDERHEITEN

Die einzelnen Inhalte der Lehrveranstaltung sollen anhand von einem Projekt vertieft werden. In den einzelnen Projektphasen soll auf den Einsatz von geeigneten Methoden, die Dokumentation sowie die Qualitätssicherung eingegangen werden. Geeignete Werkzeuge sollen zum Einsatz kommen. Bei den gruppenorientierten Laborübungen werden außerfachliche Qualifikationen geübt und (Teil) Ergebnisse präsentiert. Dieses Modul beinhaltet zusätzlich bis zu 24h begleitetes Selbststudium in Form von Übungsstunden, Laboren oder Projekten. Hierbei werden Übungsaufgaben und/oder vertiefende Aufgabenstellungen von den Studierenden bearbeitet.

VORAUSSETZUNGEN

LITERATUR

- Helmut Balzert: Lehrbuch der Softwaretechnik: Entwurf, Implementierung, Installation und Betrieb, Spektrum akademischer Verlag
- Helmut Balzert: Lehrbuch der Softwaretechnik: Softwaremanagement, Spektrum akademischer Verlag
- Ian Sommerville: Software Engineering, Pearson Studium
- Peter Liggesmeyer: Software Qualität: Testen, Analysieren und Verifizieren von Software, Spektrum Akademischer Verlag
- Chris Rupp: Requirements-Engineering und -Management: Aus der Praxis von klassisch bis agil, Carl Hanser Verlag GmbH & Co. KG

Stand vom 01.10.2025 T3INF2003 // Seite 21

Datenbanken (T3INF2004)

Database Systems

FORMALE ANGABEN ZUM MODUL

MODULNUMMERVERORTUNG IM STUDIENVERLAUFMODULDAUER (SEMESTER)MODULVERANTWORTUNGSPRACHET3INF20042. Studienjahr2Prof. Dr. Dirk ReichardtDeutsch/Englisch

EINGESETZTE LEHRFORMEN

 LEHRFORMEN
 LEHRMETHODEN

 Vorlesung, Übung
 Lehrvortrag, Diskussion, Gruppenarbeit

EINGESETZTE PRÜFUNGSFORMEN

PRÜFUNGSLEISTUNGPRÜFUNGSUMFANG (IN MINUTEN)BENOTUNGKlausurarbeit oder Kombinierte PrüfungSiehe Pruefungsordnungja

WORKLOAD UND ECTS-LEISTUNGSPUNKTE

WORKLOAD INSGESAMT (IN H)DAVON PRÄSENZZEIT (IN H)DAVON SELBSTSTUDIUM (IN H)ECTS-LEISTUNGSPUNKTE180721086

QUALIFIKATIONSZIELE UND KOMPETENZEN

FACHKOMPETENZ

Die Studierenden kennen die grundlegenden Theorien und Modelle von Datenbanksystemen. Sie können die Grundprinzipien von Datenbanksystemen systematisch darstellen und erläutern. Sie können diese zum Entwurf einer praktisch einsatzfähigen Datenbank nutzen und Datenbankentwürfe bewerten.

METHODENKOMPETENZ

Die Studierenden können die Stärken und Schwächen der Entwurfsmethoden für Datenbanken bewerten und diese bzgl. der Einsatzfähigkeit im beruflichen Umfeld einschätzen.

PERSONALE UND SOZIALE KOMPETENZ

Die Studierenden können ihre Entscheidungs- und Fachkompetenzen im Bereich der Datenbankentwicklung adäquat einschätzen und die Experten anderer Bereiche (insbes. des Anwendungsbereichs) in den Datenbankentwurf einbeziehen.

ÜBERGREIFENDE HANDLUNGSKOMPETENZ

Die Studierenden haben über die fundierte Fachkenntnis hinaus die Fähigkeit erworben, theoretische Konzepte der Datenbanken in praktische Anwendungen umzusetzen.

LERNEINHEITEN UND INHALTE

LEHR- UND LERNEINHEITENPRÄSENZZEITSELBSTSTUDIUMGrundlagen der Datenbanken72108

- Grundkonzepte und Datenmodellierung (u.a Entity Relationship Modell)
- Relationales Datenmodell
- Normalformen
- Relationaler Datenbankentwurf
- Mehrbenutzerbetrieb und Transaktionskonzepte
- Architekturen von Datenbanksystemen
- Einführung in SQL (Praxisprojekt)

BESONDERHEITEN

Das Modul besteht i.d.R. aus theoretischem und praktischem Anteil.

Stand vom 01.10.2025 T3INF2004 // Seite 22

VORAUSSETZUNGEN

Algorithmen und Datenstrukturen, sowie Grundlagen der Logik

LITERATUR

- Ramez A. Elmasri, Shamkant B. Navathe: Grundlagen von Datenbanksystemen, Pearson Studium Alfons Kemper, André Eickler: Datenbanksysteme: Eine Einführung, Oldenbourg Verlag Nikolai Preiß: Entwurf und Verarbeitung relationaler Datenbanken, Oldenbourg Verlag Heide Fraeskorn-Woyke, Birgit Bertelsmeier, Petra Riemer, Elena Bauer: "Datenbanksysteme", Pearson Studium

Stand vom 01.10.2025 T3INF2004 // Seite 23 Studienbereich Technik // School of Engineering
Informatik // Computer Science
Angewandte Informatik // Applied Computer Science
BAD MERGENTHEIM

Technische Informatik II (T3INF2005)

Computer Engineering II

FORMALE ANGABEN ZUM MODUL

MODULNUMMER	VERORTUNG IM STUDIENVERLAUF	MODULDAUER (SEMESTER)	MODULVERANTWORTUNG	SPRACHE
T3INF2005	2. Studienjahr	2	DrIng. Alfred Strey	Deutsch/Englisch

EINGESETZTE LEHRFORMEN

LEHRFORMEN	LEHRMETHODEN
Vorlesung, Übung	Lehrvortrag, Diskussion

EINGESETZTE PRÜFUNGSFORMEN

PRÜFUNGSLEISTUNG	PRÜFUNGSUMFANG (IN MINUTEN)	BENOTUNG
Klausur	Siehe Pruefungsordnung	ja

WORKLOAD UND ECTS-LEISTUNGSPUNKTE

WORKLOAD INSGESAMT (IN H)	DAVON PRÄSENZZEIT (IN H)	DAVON SELBSTSTUDIUM (IN H)	ECTS-LEISTUNGSPUNKTE
240	96	144	8

QUALIFIKATIONSZIELE UND KOMPETENZEN

FACHKOMPETENZ

Die Studierenden gewinnen ein grundlegendes Verständnis von den Aufgaben, der Funktionsweise und der Architektur moderner Rechnersysteme. In einem Übungsteil wird ihnen die systemnahe Programmierung anhand eines Beispielprozessors vermittelt. Abgerundet wird dieses hardwarenahe Wissen durch die Unit "Betriebssysteme", welche die Arbeitsweise von Rechenanlagen aus Sicht der Systemsoftware beleuchtet. Die Studierenden sind somit in der Lage, das Zusammenwirken von Hard- und Software in einem Rechner im Detail zu verstehen.

METHODENKOMPETENZ

Die Studierenden kennen mit Abschluss des Moduls die wissenschaftlichen Methoden aus den Bereichen der Rechnerarchitektur und der Betriebssysteme. Sie sind in der Lage, unter Einsatz dieser Methoden die Hard- und Systemsoftware moderner Rechnersysteme zu interpretieren und zu bewerten. Ferner können sie einfache maschinennahe Programme entwerfen und analysieren.

PERSONALE UND SOZIALE KOMPETENZ

ÜBERGREIFENDE HANDLUNGSKOMPETENZ

Die Studierenden sind in der Lage, die Leistungsfähigkeit eines Rechnersystems für eine Anwendung aus der Praxis zu beurteilen. Ferner ist es Ihnen möglich, die rasche Weiterentwicklung auf dem Gebiet der Rechnerhardware mitzuverfolgen und zu verstehen, welche Vor- bzw. Nachteile die Enführung einer neuen IT-Technologie hat. Auch sind sie in der Lage zu verstehen, wie die neue Technologie arbeitet bzw. sie können sich das dazu notwendige neue Wissen jederzeit selbst erarbeiten.

LERNEINHEITEN UND INHALTE

LEHR- UND LERNEINHEITEN	PRÄSENZZEIT	SELBSTSTUDIUM
Rechnerarchitekturen 1	36	54

Stand vom 01.10.2025 T3INF2005 // Seite 24

LEHR- UND LERNEINHEITEN **PRÄSENZZEIT** SELBSTSTUDIUM

- Einführung
- Historie (mechanisch, analog, digital)
- Architektur nach von Neumann
- Systemkomponenten im Überblick
- Grobstruktur der Prozessorinterna
- Rechenwerk
- Addition: Halbaddierer, Volladdierer, Wortaddierer, Bedeutung des Carrybits, Carry Ripple und

Carry Look-Ahead Addierer

- Subtraktion: Transformation aus Addition, Bedeutung des Carrybits
- Multiplikation: Parallel- und Seriell-Multiplizierer
- Division: Konzept
- Arithmetische-logische Einheit (ALU)
- Datenpfad: ALU mit Rechenregister und Ergebnisflags (CCR, Statusbits)
- Steuerwerk: Aufbau, Komponenten und Funktionswiese
- Befehlsdekodierung und Mikroprogrammierung
- Struktur von Prozessorbefehlssätzen
- Klassifizierung und Anwendung von Prozessorregistern (Daten-, Adress- und Status-Register)
- Leistungsbewertung und Möglichkeiten der Leistungssteigerung (z.B. Pipelining)
- Businterface: Daten-, Adress- und Steuerleitungen
- Buskomponenten
- Buszyklen: Lese- und Schreib-Zugriff, Handshaking (insbesondere Waitstates)
- Busarbitrierung und Busmultiplexing
- Fundamentalarchitekturen
- Konzept Systemaufbau und Komponenten: CPU, Hauptspeicher, I/O: Diskussion Anbindung externer Geräte (Grafik, Tastatur, Festplatten, DVD, ...)
- Halbleiterspeicher
- Wahlfreie Speicher: Aufbau, Funktion, Adressdekodierung, interne Matrixorganisation
- RAM: statisch, dynamisch, aktuelle Entwicklungen
- ROM: Maske, Fuse, EPROM, EEPROM, FEPROM, aktuelle Entwicklungen
- Systemaufbau
- Aufteilung des Adressierungsraumes
- Entwerfen von Speicherschemata und der zugehörigen Adress-Dekodierlogik
- Vitale System-Komponenten: Stromversorgung, Rücksetzlogik, Systemtakt, Chipsatz
- Schaltkreise: Interrupt- und DMA-Controller, Zeitgeber- und Uhrenbausteine
- Schnittstellen: Parallel und seriell, Standards (RS232, USB, ...)

Betriebssysteme 36 54

- Einführung
- Historischer Überblick
- Betriebssystemkonzepte
- Prozesse und Threads
- Einführung in das Konzept der Prozesse
- Prozesskommunikation
- Übungen zur Prozesskommunikation: Klassische Probleme
- Scheduling von Prozessen
- Threads
- Speicherverwaltung
- Einfache Speicherverwaltung ohne Swapping und Paging
- Swapping
- Virtueller Speicher
- Segmentierter Speicher
- Dateisysteme
- Dateien und Verzeichnisse
- Implementierung von Dateisystemen
- Sicherheit von Dateisystemen
- Schutzmechanismen
- Neue Entwicklungen: Log-basierte Dateisysteme
- Ein- und Ausgabe: Grundlegende Eigenschaften der E/A- Festplatten
- Anwendung der Grundlagen auf reale Betriebssysteme: UNIX/Linux und Windows (NT, 2000,

XP, Windows7)

Stand vom 01.10.2025 T3INF2005 // Seite 25

LERNEINHEITEN UND INHALTE

LEHR- UND LERNEINHEITEN	PRÄSENZZEIT	SELBSTSTUDIUM
Systemnahe Programmierung 1	24	36

- Programmiermodell für die Maschinenprogrammierung: Befehlssatz, Registersatz und Adressierungsarten
- Umsetzung von Kontrollstrukturen, Auswertung von Ergebnisflags
- Unterprogrammaufruf mit Hilfe des Stacks
- Konventionen
- Konzept und Umsetzung von HW- und SW-Interrupts: Diskussion von HW- und

SW-Mechanismen und Automatismen, Interrupt-Vektortabelle, Spezialfall: Bootvorgang

- Diskussion User- und Supervisor-Modus von Prozessoren
- Praktische Übungen
- Einführung eines Beispielprozessors
- Aufbau des Übungsrechners
- Einarbeitung und Softwareentwicklungs- und Testumgebung für den Übungsrechner
- Selbständige Entwicklung von Maschinenprogrammen mit steigendem Schwierigkeits- und Strukturierungsgrad

BESONDERHEITEN

-

VORAUSSETZUNGEN

-

LITERATUR

_

- D. A. Patterson, J. L. Hennessy: Rechnerorganisation und Rechnerentwurf: Die Hardware/Software-Schnittstelle, Oldenbourg Wissenschaftsverlag
- H. Müller, L. Walz: Elektronik 5: Mikroprozessortechnik, Vogel Fachbuch
- A. S. Tanenbaum: Computerarchitektur, Strukturen Konzepte Grundlagen, Pearson Studium
- W. Oberschelp, G. Vossen: Rechneraufbau und Rechnerstrukturen, Oldenbourg Wissenschaftsverlag
- T. Flik: Mikroprozessortechnik und Rechnerstrukturen, Springer
- W. Schiffmann, R. Schmitz: Technische Informatik 2, Springer
- A. Fertig: Rechnerarchitektur, Books on Demand
- Tanenbaum A.S.: Moderne Betriebssysteme, Pearson Studium
- Mandl P.: Grundkurs Betriebssysteme, Springer Vieweg
- Glatz E.: Betriebssysteme: Grundlagen, Konzepte, Systemprogrammierung, dpunkt Verlag

Stallings W.: Operating Systems: Internals and Design Principles, Prentice Hall

Stand vom 01.10.2025 T3INF2005 // Seite 26

Studienbereich Technik // School of Engineering
Informatik // Computer Science
Angewandte Informatik // Applied Computer Science
BAD MERGENTHEIM

Kommunikations- und Netztechnik (T3INF2006)

Communication and Networks

FORMALE ANGABEN ZUM MODUL

MODULNUMMERVERORTUNG IM STUDIENVERLAUFMODULDAUER (SEMESTER)MODULVERANTWORTUNGSPRACHET3INF20062. Studienjahr1Prof. Friedemann StockmayerDeutsch/Englisch

EINGESETZTE LEHRFORMEN

LEHRFORMENLEHRMETHODENVorlesung, Vorlesung, Labor, Vorlesung, ÜbungLehrvortrag, Diskussion, Lehrvortrag, Diskussion, Gruppenarbeit

EINGESETZTE PRÜFUNGSFORMEN

PRÜFUNGSLEISTUNGPRÜFUNGSUMFANG (IN MINUTEN)BENOTUNGKlausurSiehe Pruefungsordnungja

WORKLOAD UND ECTS-LEISTUNGSPUNKTE

WORKLOAD INSGESAMT (IN H)DAVON PRÄSENZZEIT (IN H)DAVON SELBSTSTUDIUM (IN H)ECTS-LEISTUNGSPUNKTE225841415

QUALIFIKATIONSZIELE UND KOMPETENZEN

FACHKOMPETENZ

Das Modul vermittelt Grundlagenkenntnisse über Kommunikationsnetze. Mit Abschluss des Moduls verfügen die Studierenden über ein detailliertes Verständnis im Bereich der Kommunikations- und Netztechnik bzgl. Aufbau, Funktion, Zusammenwirken der einzelnen Komponenten, sowie über die bei der Kommunikation eingesetzten Technologien, Dienste und Protokolle.

METHODENKOMPETENZ

-

PERSONALE UND SOZIALE KOMPETENZ

-

ÜBERGREIFENDE HANDLUNGSKOMPETENZ

Das Modul führt mehrere Disziplinen zusammen: Grundlagen aus Rechnertechnik bzw. Rechnernetze, Digitaltechnik, Programmieren sowie der Ansatz für Software-Architekturen. Das Modul erschließt komplexe und übergreifende Zusammenhänge.

LERNEINHEITEN UND INHALTE

LEHR- UND LERNEINHEITENPRÄSENZZEITSELBSTSTUDIUMNetztechnik3639

- Aufgaben der Kommunikations- und Netztechnik
- Referenzmodelle und deren Schnittstellen
- Netzelemente
- Normen und Standards
- Festnetze LAN/MAN: Unterscheidung, Aufbau, Funktion, Aktuelle Entwicklungen
- Protokolle TCP/IP mit IPv4 und IPv6
- Netzkopplung und Sicherheitstechniken

Stand vom 01.10.2025 T3INF2006 // Seite 27

LERNEINHEITEN UND INHALTE LEHR- UND LERNEINHEITEN

Labor Netztechnik	12	63	
Das Labor Netztechnik ergänzt die Vorlesung durch praktische Übungen an Kommunikationsnetzen (z.B. Netzlabor). Aktuelle netzspezifische Themen werden im Rahmen des Selbststudiums erarbeitet. Optional: Erarbeitung grundlegender Begriffe aus "Signale und Syteme", Systemantwort mit Faltungssumme bzw. Integral, Transformationen (Fourier, Laplace), verknüpft mit Übungs- und Laboreinheiten.			

PRÄSENZZEIT

36

SELBSTSTUDIUM

39

- Grundlegende Begriffe und Einführung in Signale und Systeme (kontinuierlich)
- Systemantwort mittels Faltungsintegral/Faltungssumme
- Fourier-Reihe

Signale und Systeme 1

- Transformationen (Fourier, Laplace)

BESONDERHEITEN

- Die beiden Units Labor Netztechnik bzw. Signale und Systeme I werden alternativ angeboten

VORAUSSETZUNGEN

_

LITERATUR

- E. Pehl, Digitale und analoge Nachrichtenübertragung, Hüchting Telekommunikation
- J.-R. Ohm, H.D. Lüke, Signalübertragung, Springer
- D.Ch. von Grünigen, Digitale Signalverarbeitung, Hanser Fachbuch
- Kurose, Ross: Computernetzwerke: Der Top Down Ansatz, Pearson Studium IT
- Tanenbaum, A.S:Computer Networks, Prentice Hall A.Sikora: Technische Grundlagen der Rechnerkommunikation, Hanser Fachbuch

Weiterführende Literatur wird über eine aktuelle Literaturrecherche beschafft (Internet, Online-Kataloge, Fachzeitschriften, Bibliotheken).

Stand vom 01.10.2025 T3INF2006 // Seite 28

Software Engineering II (T3INF3001)

Software Engineering II

FORMALE ANGABEN ZUM MODUL

MODULNUMMER	VERORTUNG IM STUDIENVERLAUF	MODULDAUER (SEMESTER)	MODULVERANTWORTUNG	SPRACHE
T3INF3001	3. Studienjahr	1	Prof. DrIng. Andreas Judt	Deutsch/Englisch

EINGESETZTE LEHRFORMEN

LEHRFORMEN	LEHRMETHODEN
Vorlesung, Übung	Lehrvortrag, Diskussion

EINGESETZTE PRÜFUNGSFORMEN

PRÜFUNGSLEISTUNG	PRÜFUNGSUMFANG (IN MINUTEN)	BENOTUNG
Programmentwurf	Siehe Pruefungsordnung	ja

WORKLOAD UND ECTS-LEISTUNGSPUNKTE

WORKLOAD INSGESAMT (IN H)	DAVON PRÄSENZZEIT (IN H)	DAVON SELBSTSTUDIUM (IN H)	ECTS-LEISTUNGSPUNKTE
150	48	102	5

QUALIFIKATIONSZIELE UND KOMPETENZEN

FACHKOMPETENZ

Die Studierenden sind in der Lage, komplexe Problemstellungen aus der Praxis zu analysieren und aufzuarbeiten. Sie gewinnen die für die Lösung relevanten Informationen, können eine geeignete Softwarearchitektur mit relevanten Techniken entwickeln und nach aktuellen Verfahren zertifizieren.

METHODENKOMPETENZ

Die Studierenden sind mit Abschluss des Moduls in der Lage, für komplexe Praxisanwendungen eine angemessene Methode auszuwählen und anzuwenden. Sie können die Möglichkeiten, Praktikabilität und Grenzen der eingesetzten Methode einschätzen und sind in der Lage, Handlungsalternativen aufzuzeigen und technisch sowie wirtschaftlich zu bewerten.

PERSONALE UND SOZIALE KOMPETENZ

Die Studierenden sind sich ihrer Rolle und Verantwortung im Unternehmen bewusst. Sie können technische, theoretische und wirtschaftliche Fragestellungen gegeneinander abwiegen und lösungsorientiert umsetzen.

ÜBERGREIFENDE HANDLUNGSKOMPETENZ

Die Studierenden haben gelernt, sich schnell in neuen Situationen zurechtzufinden und sich in neue Aufgaben und Teams zu integrieren. Die Studierenden überzeugen als selbstständig denkende und verantwortlich handelnde Persönlichkeiten mit kritischer Urteilsfähigkeit. Sie zeichnen sich aus durch fundiertes fachliches Wissen, Verständnis für übergreifende Zusammenhänge sowie die Fähigkeit, theoretisches Wissen in die Praxis zu übertragen. Sie lösen Probleme im beruflichen Umfeld methodensicher und zielgerichtet und handeln dabei teamorientiert.

LERNEINHEITEN UND INHALTE

LEHR- UND LERNEINHEITEN	PRÄSENZZEIT	SELBSTSTUDIUM
Advanced Software Engineering	48	102

- Unified Process mit Phasen- und Prozesskomponenten
- Anwendungsfälle
- Entwurfsmuster
- Refactoring
- Design-Heuristiken und -Regeln
- Methoden der Softwarequalitätssicherung
- Requirements Engineering
- Usability/SW-Ergonomie
- SW Management (z.B. ITIL)
- Aktuelle Themen und Trends des Software Engineerings

Stand vom 01.10.2025 T3INF3001 // Seite 29

	FR									

LEHR- UND LERNEINHEITEN PRÄSENZZEIT SELBSTSTUDIUM

BESONDERHEITEN

VORAUSSETZUNGEN

LITERATUR

- Fowler, M.: Refactoring: Improving the Design of Existing Code, Addison-Wesley
- Gamma, E./Helm, R./Johnson, R./Vlissides, J.: Design Patterns, Addison-Wesley
 ITIL Service Lifecycle Publication Suite: German Translation, TSO Verlag
- Jacobson, I./Christerson, M./Jonsson, P./Övergaard, G.: Object-oriented software engineering a use case driven approach, Addison-Wesley
- Nielsen: Usability Engineering (Interactive Technologies), Morgan Kaufmann
- Pohl/Rupp: Basiswissen Requirements Engineering: Aus- und Weiterbildung nach IREB-Standard zum Certified Professional for Requirements Engineering Foundation Level, dpunkt.verlag GmbH
- Richter/Flückiger: Usability Engineering kompakt: Benutzbare Produkte gezielt entwickeln (IT kompakt), Springer Vieweg

Stand vom 01.10.2025 T3INF3001 // Seite 30

SPRACHE

IT-Sicherheit (T3INF3002)

IT-Security

MODULVERANTWORTUNG

FORMALE ANGABEN ZUM MODUL

VERORTUNG IM STUDIENVERLAUF

MODULNUMMER

T3INF3002	3. Studienjahr	1	Prof. Friedemann Stockmayer	Deutsch/Englisch	
EINGESETZTE LEHR	FORMEN				
LEHRFORMEN			LEHRMETHODEN		
Vorlesung, Übung,	, Labor		Lehrvortrag, Diskussion		

MODULDAUER (SEMESTER)

EINGESETZTE PRÜFUNGSFORMEN

PRÜFUNGSLEISTUNGPRÜFUNGSUMFANG (IN MINUTEN)BENOTUNGKlausurSiehe Pruefungsordnungja

WORKLOAD UND ECTS-LEISTUNGSPUNKTE

WORKLOAD INSGESAMT (IN H)	DAVON PRÄSENZZEIT (IN H)	DAVON SELBSTSTUDIUM (IN H)	ECTS-LEISTUNGSPUNKTE
150	48	102	5

QUALIFIKATIONSZIELE UND KOMPETENZEN

FACHKOMPETENZ

Die Studierenden sind mit Abschluss des Moduls sensibilisiert bzgl. Sicherheit in wesentlichen Bereichen der IT. Sie sind in der Lage, nach einer Bedrohungsanalyse einzelne Schwachstellen zu erkennen und entsprechende Maßnahmen zu ergreifen, um eine angemessene IT-Sicherheit im Rahmen eines Sicherheitskonzeptes zu gewährleisten. Sie

kennen die Stärken und Schwächen der möglichen Maßnahmen in ihrem beruflichen Anwendungsfeld und können diese in konkreten Handlungssituationen gegeneinander abwägen.

Das erworbene Fachwissen kann in Diskussionen zum Thema IT-Architekturen (Konzeption, Implementierung, Portierung) eingebracht werden und in der Entwicklung von Lösungsansätzen und Spezifikation von IT-Systemen angewendet werden.

METHODENKOMPETENZ

PERSONALE UND SOZIALE KOMPETENZ

Die Studierenden haben die Kompetenz erworben, bei der Bewertung von Informationstechnologien auch gesellschaftliche und ethische Aspekte zu berücksichtigen. Dies gilt speziell für das Abwägen von Interessen der Sicherheit bei IT-Systemen gegenüber dem informationellen Selbstbestimmungsrecht der von der Datenverarbeitung betroffenen Personen.

ÜBERGREIFENDE HANDLUNGSKOMPETENZ

Das Modul führt die Studierenden zu einem bewussten und vorsichtigen Umgang mit Daten jeglicher Art. Entscheidungen werden stets vor dem Hintergrund der IT-Sicherheit getroffen.

Einüben wissenschaftlicher Arbeitsweise, Recherchieren und Bewerten aktueller Fachliteratur.

LERNEINHEITEN UND INHALTE

ELINEINIETEN OND INTIACTE		
LEHR- UND LERNEINHEITEN	PRÄSENZZEIT	SELBSTSTUDIUM
IT-Sicherheit	48	102

Stand vom 01.10.2025 T3INF3002 // Seite 31

LEHR- UND LERNEINHEITEN PRÄSENZZEIT SELBSTSTUDIUM

- Grundlegende Begriffe und Sicherheitsprobleme
- Bedrohungsanalyse und Sicherheitskonzepte
- Basismechanismen (Verschlüsselung, Hash-Funktionen, Authentication Codes,

Signaturalgorithmen, Public-Key Verfahren etc.) und deren kryptografische Grundlagen

- Sicherheitsmodelle
- Netzwerksicherheit und Sicherheitsprotokolle (z.B. X.509, OAuth)
- Sicherheit Web-basierter Anwendungen und Dienste (z.B. XSS, SQL-Injection, Rest, Soap)
- Datenschutz
- Embedded Security
- Aktuelle Themen

BESONDERHEITEN

VORAUSSETZUNGEN

-

LITERATUR

- Jonathan Katz, Y. Lindell, Introduction to Modern Cryptography, Chapmann & Hall CRC Press, Cryptography and Network Security

- M. Bishop: Computer Security, Addison-Wesley-Longman
- C. Eckert: IT-Sicherheit, Oldenbourg
- W. Stallings, L. Brown: Computer Security: Principles and Practice, Pearson * Education
- C. Pfleeger, S. Lawrence Pfleeger, Security in Computing
- Laurens Van Houtven, Crypto 101, www.crypto101.io
- Ivan Ristic, Bulletproof SSL nd TLS, Feisty Druck

Stand vom 01.10.2025 T3INF3002 // Seite 32

Studienarbeit (T3 3101)

Student Research Projekt

FORMALE ANGABEN ZUM MODUL

MODULNUMMERVERORTUNG IM STUDIENVERLAUFMODULDAUER (SEMESTER)MODULVERANTWORTUNGSPRACHET3_31013. Studienjahr2Prof. Dr.-Ing. Joachim FrechDeutsch

EINGESETZTE LEHRFORMEN

 LEHRFORMEN
 LEHRMETHODEN

 Individualbetreuung
 Projekt

EINGESETZTE PRÜFUNGSFORMEN

PRÜFUNGSLEISTUNGPRÜFUNGSUMFANG (IN MINUTEN)BENOTUNGStudienarbeitSiehe Pruefungsordnungja

WORKLOAD UND ECTS-LEISTUNGSPUNKTE

WORKLOAD INSGESAMT (IN H)DAVON PRÄSENZZEIT (IN H)DAVON SELBSTSTUDIUM (IN H)ECTS-LEISTUNGSPUNKTE3001228810

QUALIFIKATIONSZIELE UND KOMPETENZEN

FACHKOMPETENZ

Die Studierenden können sich unter begrenzter Anleitung in ein komplexes, aber eng umgrenztes Gebiet vertiefend einarbeiten und den allgemeinen Stand des Wissens erwerben.

Sie können selbstständig Lösungen entwickeln und Alternativen bewerten. Dazu nutzen sie bestehendes Fachwissen und bauen es selbständig im Thema der Studienarbeit aus.

Die Studierenden kennen und verstehen die Notwendigkeit des wissenschaftlichen Recherchierens und Arbeitens. Sie sind in der Lage eine wissenschaftliche Arbeit effizient zu steuern und wissenschaftlich korrekt und verständlich zu dokumentieren.

METHODENKOMPETENZ

Die Studierenden haben die Kompetenz erworben, relevante Informationen mit wissenschaftlichen Methoden zu sammeln und unter der Berücksichtigung wissenschaftlicher Erkenntnisse zu interpretieren.

PERSONALE UND SOZIALE KOMPETENZ

Die Studierenden können ausdauernd und beharrlich auch größere Aufgaben selbstständig ausführen. Sie können sich selbst managen und Aufgaben zum vorgesehenen Termin erfüllen.

Sie können stichhaltig und sachangemessen argumentieren, Ergebnisse plausibel darstellen und auch komplexe Sachverhalte nachvollziehbar begründen.

ÜBERGREIFENDE HANDLUNGSKOMPETENZ

LERNEINHEITEN UND INHALTE

LEHR- UND LERNEINHEITEN	PRÄSENZZEIT	SELBSTSTUDIUM
Studienarbeit	12	288

Stand vom 01.10.2025 T3_3101 // Seite 33

BESONDERHEITEN

Es wird auf die "Leitlinien für die Bearbeitung und Dokumentation der Module Praxisprojekt I bis III, Studienarbeit und Bachelorarbeit" der Fachkommission Technik der Dualen Hochschule Baden-Württemberg hingewiesen.

Die "Große Studienarbeit" kann nach Vorgaben der Studien- und Prüfungsordnung als vorgesehenes Modul verwendet werden. Ergänzend kann die "Große Studienarbeit" auch nach Freigabe durch die Studiengangsleitung statt der Module "Studienarbeit II" und "Studienarbeit II" verwendet werden.

VORAUSSETZUNGEN

_

LITERATUR

Kornmeier, M., Wissenschaftlich schreiben leicht gemacht für Bachelor, Master und Dissertation, Bern

Stand vom 01.10.2025 T3_3101 // Seite 34

Praxisprojekt I (T3_1000)

Work Integrated Project I

FORMALE ANGABEN ZUM MODUL

 MODULNUMMER
 VERORTUNG IM STUDIENVERLAUF
 MODULDAUER (SEMESTER)
 MODULVERANTWORTUNG
 SPRACHE

 T3_1000
 1. Studienjahr
 2
 Prof. Dr.-lng. Joachim Frech
 Deutsch

EINGESETZTE LEHRFORMEN

LEHRFORMENLEHRMETHODENPraktikum, SeminarLehrvortrag, Diskussion, Projekt

EINGESETZTE PRÜFUNGSFORMEN

PRÖFUNGSLEISTUNGPRÖFUNGSUMFANG (IN MINUTEN)BENOTUNGProjektarbeitSiehe PruefungsordnungBestanden/ Nicht-BestandenAblauf- und ReflexionsberichtSiehe PruefungsordnungBestanden/ Nicht-Bestanden

WORKLOAD UND ECTS-LEISTUNGSPUNKTE

WORKLOAD INSGESAMT (IN H)DAVON PRÄSENZZEIT (IN H)DAVON SELBSTSTUDIUM (IN H)ECTS-LEISTUNGSPUNKTE600459620

QUALIFIKATIONSZIELE UND KOMPETENZEN

FACHKOMPETENZ

Die Absolventinnen und Absolventen erfassen industrielle Problemstellungen in ihrem Kontext und in angemessener Komplexität. Sie analysieren kritisch, welche Einflussfaktoren

zur Lösung des Problems beachtet werden müssen und beurteilen, inwiefern einzelne theoretische Modelle einen Beitrag zur Lösung des Problems leisten können.

Die Studierenden kennen die zentralen manuellen und maschinellen Grundfertigkeiten des jeweiligen Studiengangs, sie

können diese an praktischen Aufgaben anwenden und haben deren Bedeutung für die Prozesse im Unternehmen kennen gelernt.

Sie kennen die wichtigsten technischen und organisatorischen Prozesse in Teilbereichen ihres Ausbildungsunternehmens und können deren Funktion darlegen.

Die Studierenden können grundsätzlich fachliche Problemstellungen des jeweiligen Studiengangs beschreiben und fachbezogene Zusammenhänge erläutern.

METHODENKOMPETENZ

Absolventinnen und Absolventen kennen übliche Vorgehensweisen der industriellen Praxis und können diese selbstständig umsetzen. Dabei bauen sie auf ihr theoretisches Wissen sowie ihre Berufserfahrung auf.

PERSONALE UND SOZIALE KOMPETENZ

Die Relevanz von Personalen und Sozialen Kompetenz ist den Studierenden für den reibungslosen Ablauf von industriellen Prozessen bewusst und sie können eigene Stärken und Schwächen benennen. Den Studierenden gelingt es, aus Erfahrungen zu lernen, sie übernehmen Verantwortung für die übertragene Aufgaben, mit denen sie sich auch persönlich identifizieren. Die Studierenden übernehmen Verantwortung im Team, integrieren und tragen durch ihr Verhalten zur gemeinsamen Zielerreichung bei.

ÜBERGREIFENDE HANDLUNGSKOMPETENZ

Die Studierenden zeigen Handlungskompetenz, indem sie

ihr theoretisches Fachwissen nutzen, um in berufspraktischen Situationen angemessen, authentisch und erfolgreich zu agieren.

Dazu gehören auch das eigenständige kritische Beobachten, das systematische Suchen alternativer Lösungsansätze sowie eine erste Einschätzung der Anwendbarkeit von Theorien für Praxis.

LERNEINHEITEN UND INHALTE

LEHR- UND LERNEINHEITEN	PRÄSENZZEIT	SELBSTSTUDIUM
Projektarbeit 1	0	560

Stand vom 01.10.2025 T3_1000 // Seite 35

LERNEINHEITEN UND INHALTE

LEHR- UND LERNEINHEITEN	PRÄSENZZEIT	SELBSTSTUDIUM
Es wird auf die jeweiligen Praxispläne der Studiengänge der Fakultät Technik verwiesen		
Wissenschaftliches Arbeiten 1	4	36

Das Seminar "Wissenschaftliches Arbeiten I" findet während der Theoriephase statt. Eine Durchführung im gesamten Umfang in einem Semester oder die Aufteilung auf zwei Semester ist möglich. Für einige Grundlagen kann das WBT "Wissenschaftliches Arbeiten" der DHBW genutzt werden.

- Leitlinien des wissenschaftlichen Arbeitens
- Themenwahl und Themenfindung bei der T1000 Arbeit
- Typische Inhalte und Anforderungen an eine T1000 Arbeit
- Aufbau und Gliederung einer T1000 Arbeit
- Literatursuche, -beschaffung und -auswahl
- Nutzung des Bibliotheksangebots der DHBW
- Form einer wissenschaftlichen Arbeit (z.B. Zitierweise, Literaturverzeichnis)
- Hinweise zu DV-Tools (z.B. Literaturverwaltung und Generierung von Verzeichnissen in der Textverarbeitung)

BESONDERHEITEN

Es wird auf die "Leitlinien für die Bearbeitung und Dokumentation der Module Praxisprojekt I bis III, Studienarbeit und Bachelorarbeit" der Fachkommission Technik der Dualen Hochschule Baden-Württemberg hingewiesen.

Der Absatz "1.2 Abweichungen" aus Anlage 1 zur Studien- und Prüfungsordnung für die Bachelorstudiengänge im Studienbereich Technik der Dualen Hochschule Baden-Württemberg

(DHBW) bei den Prüfungsleistungen dieses Moduls keine Anwendung.

VORAUSSETZUNGEN

LITERATUR

- Web-based Training "Wissenschaftliches Arbeiten"
- Kornmeier, M., Wissenschaftlich schreiben leicht gemacht für Bachelor, Master und Dissertation, Bern

Stand vom 01.10.2025 T3_1000 // Seite 36

Praxisprojekt II (T3_2000)

Work Integrated Project II

FORMALE ANGABEN ZUM MODUL

MODULNUMMER	VERORTUNG IM STUDIENVERLAUF	MODULDAUER (SEMESTER)	MODULVERANTWORTUNG	SPRACHE
T3_2000	2. Studienjahr	2	Prof. DrIng. Joachim Frech	Deutsch

EINGESETZTE LEHRFORMEN

LEHRFORMEN	LEHRMETHODEN
Praktikum, Vorlesung	Lehrvortrag, Diskussion, Gruppenarbeit, Projekt

FINGESETZTE PRÜFUNGSFORMEN

PRÜFUNGSLEISTUNG	PRÜFUNGSUMFANG (IN MINUTEN)	BENOTUNG
Projektarbeit	Siehe Pruefungsordnung	ja
Ablauf- und Reflexionsbericht	Siehe Pruefungsordnung	Bestanden/ Nicht-Bestanden
Mündliche Prüfung	30	ja

WORKLOAD UND ECTS-LEISTUNGSPUNKTE

WORKLOAD INSGESAMT (IN H)	DAVON PRÄSENZZEIT (IN H)	DAVON SELBSTSTUDIUM (IN H)	ECTS-LEISTUNGSPUNKTE
600	5	595	20

QUALIFIKATIONSZIELE UND KOMPETENZEN

FACHKOMPETENZ

Die Studierenden erfassen industrielle Problemstellungen in einem angemessenen Kontext und in angemessener Komplexität. Sie analysieren kritisch, welche Einflussfaktoren zur Lösung des Problems beachtet werden müssen und können beurteilen, inwiefern theoretische Modelle einen Beitrag zur Lösung des Problems

METHODENKOMPETENZ

Die Studierenden kennen die im betrieblichen Umfeld üblichen Methoden, Techniken und Fertigkeiten und können bei der Auswahl deren Stärken und Schwächen einschätzen, so dass sie die Methoden sachangemessen und situationsgerecht auswählen. Die ihnen übertragenen Aufgaben setzen die Studierenden durch durchdachte Konzepte, fundierte Planung und gutes Projektmanagement erfolgreich um. Dabei bauen sie auf ihr theoretisches Wissen sowie ihre wachsende Berufserfahrung auf.

PERSONALE UND SOZIALE KOMPETENZ

Den Studierenden ist die Relevanz von Personalen und Sozialen Kompetenz für den reibungslosen Ablauf von industriellen Prozessen sowie ihrer eigenen Karriere bewusst; sie können eigene Stärken und Schwächen benennen. Den Studierenden gelingt es, aus Erfahrungen zu lernen, sie übernehmen selbstständig Verantwortung für die übertragene Aufgaben, mit denen sie sich auch persönlich identifizieren. Die Studierenden übernehmen Verantwortung im Team, integrieren andere und tragen durch ihr überlegtes Verhalten zur gemeinsamen Zielerreichung bei.

ÜBERGREIFENDE HANDLUNGSKOMPETENZ

Die Studierenden zeigen wachsende Handlungskompetenz, indem sie ihr theoretisches Fachwissen und ihr wachsendes Erfahrungswissen nutzen, um in sozialen berufspraktischen Situationen angemessen und erfolgreich zu agieren.

Dazu gehören auch das eigenständige kritische Beobachten, das systematische Suchen alternativer Denk- und Lösungsansätze sowie das Hinterfragen von bisherigen Vorgehensweisen. Die Studierenden zeichnen sich durch Eigenverantwortung und Tatkraft aus, sie sind auch im Kontext einer globalisierten Arbeitswelt handlungsfähig.

LERNEINHEITEN UND INHALTE		
LEHR- UND LERNEINHEITEN	PRÄSENZZEIT	SELBSTSTUDIUM
Projektarbeit 2	0	560

Es wird auf die jeweiligen Praxispläne der Studiengänge der Fakultät Technik verwiesen.

Stand vom 01.10.2025 T3_2000 // Seite 37

LEHR- UND LERNEINHEITEN	PRÄSENZZEIT	SELBSTSTUDIUM
Wissenschaftliches Arbeiten 2	4	26

Das Seminar "Wissenschaftliches Arbeiten II" findet während der Theoriephase statt. Eine Durchführung im gesamten Umfang in einem Semester oder die Aufteilung auf zwei Semester ist möglich. Für einige Grundlagen kann das WBT "Wissenschaftliches Arbeiten" der DHBW genutzt werden.

- Leitlinien des wissenschaftlichen Arbeitens
- Themenwahl und Themenfindung bei der T2000 Arbeit
- Typische Inhalte und Anforderungen an eine T2000 Arbeit
- Aufbau und Gliederung einer T2000 Arbeit
- Vorbereitung der Mündlichen T2000 Prüfung

Mündliche Prüfung	1	9	
-------------------	---	---	--

BESONDERHEITEN

Entsprechend der jeweils geltenden Studien- und Prüfungsordnung für die Bachelorstudiengänge im Studienbereich Technik der Dualen Hochschule Baden-Württemberg (DHBW) sind die mündliche Prüfung und die Projektarbeit separat zu bestehen. Die Modulnote wird aus diesen beiden Prüfungsleistungen mit der Gewichtung 50:50 berechnet.

Es wird auf die "Leitlinien für die Bearbeitung und Dokumentation der Module Praxisprojekt I bis III, Studienarbeit und Bachelorarbeit" der Fachkommission Technik der Dualen Hochschule Baden-Württemberg hingewiesen.

VORAUSSET	ZUNGEN			
-				
LITERATUR				

_

Stand vom 01.10.2025 T3_2000 // Seite 38

Praxisprojekt III (T3_3000)

Work Integrated Project III

FORMALE ANGABEN ZUM MODUL

MODULNUMMER	VERORTUNG IM STUDIENVERLAUF	MODULDAUER (SEMESTER)	MODULVERANTWORTUNG	SPRACHE
T3_3000	3. Studienjahr	1	Prof. DrIng. Joachim Frech	Deutsch

EINGESETZTE LEHRFORMEN

LEHRFORMEN	LEHRMETHODEN
Praktikum, Seminar	Lehrvortrag, Diskussion, Projekt

EINGESETZTE PRÜFUNGSFORMEN

PRÜFUNGSLEISTUNG	PRÜFUNGSUMFANG (IN MINUTEN)	BENOTUNG
Hausarbeit	Siehe Pruefungsordnung	Bestanden/ Nicht-Bestanden
Ablauf- und Reflexionsbericht	Siehe Pruefungsordnung	Bestanden/ Nicht-Bestanden

WORKLOAD UND ECTS-LEISTUNGSPUNKTE

WORKLOAD INSGESAMT (IN H)	DAVON PRÄSENZZEIT (IN H)	DAVON SELBSTSTUDIUM (IN H)	ECTS-LEISTUNGSPUNKTE
240	4	236	8

QUALIFIKATIONSZIELE UND KOMPETENZEN

FACHKOMPETENZ

Die Studierenden erfassen industrielle Problemstellungen in einem breiten Kontext und in moderater Komplexität. Sie haben ein gutes Verständnis von organisatorischen und inhaltlichen Zusammenhängen sowie von Organisationsstrukturen, Produkten, Verfahren, Maßnahmen, Prozessen, Anforderungen und gesetzlichen Grundlagen. Sie analysieren kritisch, welche Einflussfaktoren zur Lösung des Problems beachtet werden müssen und können beurteilen, inwiefern theoretische Modelle einen Beitrag zur Lösung des Problems leisten können.

METHODENKOMPETENZ

Die Studierenden kennen die im betrieblichen Umfeld üblichen Methoden, Techniken und Fertigkeiten und können bei der Auswahl deren Stärken und Schwächen einschätzen, so dass sie die Methoden sachangemessen, situationsgerecht und umsichtig auswählen. Die ihnen übertragenen Aufgaben setzen die Studierenden durch durchdachte Konzepte, fundierte Planung und gutes Projektmanagement auch bei sich häufig ändernden Anforderungen systematisch und erfolgreich um. Dabei bauen sie auf ihr theoretisches Wissen sowie ihre wachsende Berufserfahrung auf.

PERSONALE UND SOZIALE KOMPETENZ

Die Studierenden weisen auch im Hinblick auf ihre persönlichen personalen und sozialen Kompetenzen einen hohen Grad an Reflexivität auf, was als Grundlage für die selbstständige persönliche Weiterentwicklun genutzt wird.

Den Studierenden gelingt es, aus Erfahrungen zu lernen, sie übernehmen selbstständig Verantwortung für die übertragene Aufgaben, mit denen sie sich auch persönlich identifizieren.

Die Studierenden übernehmen Verantwortung für sich und andere. Sie sind konflikt und kritikfähig.

ÜBERGREIFENDE HANDLUNGSKOMPETENZ

Die Studierenden zeigen umfassende Handlungskompetenz, indem sie ihr theoretisches Fachwissen und ihr wachsendes Erfahrungswissen nutzen, um in berufspraktischen Situationen angemessen und erfolgreich zu agieren.

Dazu gehören auch das eigenständige kritische Beobachten, das systematische Suchen alternativer Denk- und Lösungsansätze sowie das Hinterfragen von bisherigen Vorgehensweisen. Die Studierenden zeichnen sich durch Eigenverantwortung und Tatkraft aus, sie sind auch im Kontext einer globalisierten Arbeitswelt handlungsfähig. Sie weisen eine reflektierte Haltung zu gesellschaftlichen, soziale und ökologischen Implikationen des eigenen Handelns auf.

LERNEINHEITEN UND INHALTE

LEHR- UND LERNEINHEITEN	PRÄSENZZEIT	SELBSTSTUDIUM
Projektarbeit 3	0	220

Es wird auf die jeweiligen Praxispläne der Studiengänge der Fakultät Technik verwiesen

Stand vom 01.10.2025 T3_3000 // Seite 39

LEHR- UND LERNEINHEITENPRÄSENZZEITSELBSTSTUDIUMWissenschaftliches Arbeiten 3416

Das Seminar "Wissenschaftliches Arbeiten III" findet während der Theoriephase statt. Eine Durchführung im gesamten Umfang in einem Semester oder die Aufteilung auf zwei Semester ist möglich. Für einige Grundlagen kann das WBT "Wissenschaftliches Arbeiten" der DHBW genutzt werden.

- Was ist Wissenschaft?
- Theorie und Theoriebildung
- Überblick über Forschungsmethoden (Interviews, etc.)
- Gütekriterien der Wissenschaft
- Wissenschaftliche Erkenntnisse sinnvoll nutzen (Bezugssystem, Stand der Forschung/Technik)
- Aufbau und Gliederung einer Bachelorarbeit
- Projektplanung im Rahmen der Bachelorarbeit
- Zusammenarbeit mit Betreuern und Beteiligten

BESONDERHEITEN

Es wird auf die "Leitlinien für die Bearbeitung und Dokumentation der Module Praxisprojekt I bis III, Studienarbeit und Bachelorarbeit" der Fachkommission Technik der Dualen Hochschule Baden-Württemberg hingewiesen.

VORAUSSETZUNGEN

LITERATUR

- Web-based Training "Wissenschaftliches Arbeiten"
- Kornmeier, M., Wissenschaftlich schreiben leicht gemacht für Bachelor, Master und Dissertation,, Bern
- Minto, B., The Pyramid Principle: Logic in Writing, Thinking and Problem Solving, London
- Zelazny, G., Say It With Charts: The Executives's Guide to Visual Communication, Mcgraw-Hill Professional.

Kornmeier, M., Wissenschaftlich schreiben leicht gemacht für Bachelor, Master und Dissertation, Bern

Stand vom 01.10.2025 T3_3000 // Seite 40

Studienbereich Technik // School of Engineering
Informatik // Computer Science
Angewandte Informatik // Applied Computer Science
BAD MERGENTHEIM

Web Engineering (T3INF4101)

Web Engineering

FORMALE ANGABEN ZUM MODUL

MODULNUMMERVERORTUNG IM STUDIENVERLAUFMODULDAUER (SEMESTER)MODULVERANTWORTUNGSPRACHET3INF41011. Studienjahr1Prof. Dr. Rolf AssfalgDeutsch/Englisch

EINGESETZTE LEHRFORMEN

 LEHRFORMEN
 LEHRMETHODEN

 Labor, Vorlesung, Übung
 Laborarbeit, Lehrvortrag, Diskussion

EINGESETZTE PRÜFUNGSFORMEN

PRÜFUNGSLEISTUNGPRÜFUNGSUMFANG (IN MINUTEN)BENOTUNGKlausurarbeit oder Kombinierte PrüfungSiehe Pruefungsordnungja

WORKLOAD UND ECTS-LEISTUNGSPUNKTE

WORKLOAD INSGESAMT (IN H)
DAVON PRÄSENZZEIT (IN H)
DAVON SELBSTSTUDIUM (IN H)
ECTS-LEISTUNGSPUNKTE
42
3

QUALIFIKATIONSZIELE UND KOMPETENZEN

FACHKOMPETENZ

Die Studierenden setzen die erarbeiteten Theorien und Modelle in Bezug zu ihren Erfahrungen aus der beruflichen Praxis und können deren Grenzen und praktische Anwendbarkeit einschätzen.

METHODENKOMPETENZ

Die Studierenden sind mit Abschluss des Moduls in der Lage, für weitgehend standardisierte Anwendungsfälle in der Praxis die angemessene Methode auszuwählen und anzuwenden. Sie kennen die Stärken und Schwächen der Methode in ihrem beruflichen Anwendungsfeld und können diese in konkreten Handlungssituationen gegeneinander abwägen.

PERSONALE UND SOZIALE KOMPETENZ

Die Studierenden können sowohl eigenständig, also auch im Team zielorientiert und nachhaltig handeln

ÜBERGREIFENDE HANDLUNGSKOMPETENZ

I FRNFINHFITEN UND INHALTE

LEHR- UND LERNEINHEITENPRÄSENZZEITSELBSTSTUDIUMWeb-Engineering 13639

- Einführung in HTML und CSS in der aktuellen Version.
- Grundlagen der Internetprotokolle und ihre zugehörigen Technologien.
- Betrachtung einer Client-Programmiersprache und/oder einer oder mehrerer serverseitig eingesetzten Programmiersprache.
- Optional: Dokumentauszeichnungssprache XML
- Optional: Spezielle Dokumenttypen zur Darstellung von 2D oder 3D-Grafik.
- Optional: Grundlagen der Mediengestaltung, soweit nicht bereits in anderen Modulen abgedeckt.

Stand vom 01.10.2025 T3INF4101 // Seite 41

LEHR- UND LERNEINHEITEN	PRÄSENZZEIT	SELBSTSTUDIUM
Labor Webengineering 1	12	3

- Praktische Übungen zu HTML-Grundlagen - Praktische Übungen zu den/der im Rahmen der Vorlesung eingeführten Programmiersprache/EN

BESONDERHEITEN

Die Prüfungsdauer bezieht sich auf die Klausur.

VORAUSSETZUNGEN

-

LITERATUR

- www.w3c.org
- wiki.selfhtml.org

www.w3c.org de.selfhtml.org

Stand vom 01.10.2025 T3INF4101 // Seite 42

Anwendungsprojekt Informatik (T3INF4103)

Computer Science Project

FORMALE ANGABEN ZUM MODUL

MODULNUMMERVERORTUNG IM STUDIENVERLAUFMODULDAUER (SEMESTER)MODULVERANTWORTUNGSPRACHET3INF41031. Studienjahr1Prof. Dr. Dirk ReichardtDeutsch/Englisch

EINGESETZTE LEHRFORMEN

LEHRFORMENLEHRMETHODENVorlesung, Übung, LaborProjekt

EINGESETZTE PRÜFUNGSFORMEN

PRÜFUNGSLEISTUNGPRÜFUNGSUMFANG (IN MINUTEN)BENOTUNGKombinierte Prüfung - Klausurarbeit < 50 %</td>Siehe Pruefungsordnungja

WORKLOAD UND ECTS-LEISTUNGSPUNKTE

WORKLOAD INSGESAMT (IN H)DAVON PRÄSENZZEIT (IN H)DAVON SELBSTSTUDIUM (IN H)ECTS-LEISTUNGSPUNKTE15072785

QUALIFIKATIONSZIELE UND KOMPETENZEN

FACHKOMPETENZ

Die Studierenden sind mit Abschluss des Moduls in der Lage, die Grundlagen der Informatik in einfachen Anwendungsfällen geeignet zur Problemlösung einzusetzen.

METHODENKOMPETENZ

Die Studierenden sind mit Abschluss des Moduls in der Lage, ein Anwendungsprojekt mit geeigneten, methodisch fundierten Vorgehensweisen des Projektmanagements zum erfolgreichen Abschluss zu bringen.

PERSONALE UND SOZIALE KOMPETENZ

Die reflektierte, praktische Durchführung eines Anwendungsprojekts fördert die Selbständigkeit und Eigenverantwortlichkeit der Studierenden, sowie das Selbst- und Zeitmanagement.

ÜBERGREIFENDE HANDLUNGSKOMPETENZ

Durch die reflektierte, praktische Durchführung eines Anwendungsprojekts in kleinen Gruppen erwerben die Studierenden Kenntnis über fachübergreifende Zusammenhänge und Prozesse. Sie haben gelernt, sich schnell in neue Aufgaben, Teams und (Arbeits-)Kulturen zu integrieren.

LERNEINHEITEN UND INHALTE

LEHR- UND LERNEINHEITEN	PRÄSENZZEIT	SELBSTSTUDIUM
Anwendungsprojekt Informatik	72	78

Stand vom 01.10.2025 T3INF4103 // Seite 43

LEHR- UND LERNEINHEITEN PRÄSENZZEIT SELBSTSTUDIUM

Management von Informatik-Projekten

- Rahmenbedingungen
- Projekt- und Ziel-Definitionen
- Auftrag und Ziele
- Projektmanagement mit IT Unterstützung (z.B. MS Project)
- Meetings, Teams und Konflikte
- Projekt Steuerung und Kontrolle
- Weitere Projektmanagement Methoden

Lehre am Projektbeispiel

- Durchführen eines Informatikprojektes
- Praktische Vertiefung/Übung zu Grundlagenvorlesungen
- (i.e. Programmieren, Webengineering, Digitaltechnik, Algorithmen und Datenstrukturen)
- Fachübergreifende Anwendung und Vertiefung von Grundlagen der Informatik am Beispielprojekt
- Einsatz von Methoden des Projektmanagements (ggf. Vertiefung eines Grundlagenmoduls Projektmanagement)

BESONDERHEITEN

Projektmanagementkompetenz und Vertiefung von Grundlagenkenntnissen der Informatik werden fachübergreifend vermittelt.

VORAUSSETZUNGEN

Grundlagenmodule der Informatik, insbesondere Programmieren. Algorithmen und Datenstrukturen kann ggf. parallel unterrichtet werden.

LITERATUR

- H. W. Wieczorrek, P. Mertens: Management von IT Projekten, Springer
- G. K. Kapur: Project Management for Information, Technology, Business and Certification, Prentice Hall

siehe Literatur gemäß Grundlagenmodulen Programmieren, Webengineering, Digitaltechnik, Algorithmen und Datenstrukturen

Stand vom 01.10.2025 T3INF4103 // Seite 44

Studienbereich Technik // School of Engineering
Informatik // Computer Science
Angewandte Informatik // Applied Computer Science
BAD MERGENTHEIM

Softwarequalität und Verteilte Systeme (T3INF4305)

Quality of Software and Distributed Systems

FORMALE ANGABEN ZUM MODUL

MODULNUMMERVERORTUNG IM STUDIENVERLAUFMODULDAUER (SEMESTER)MODULVERANTWORTUNGSPRACHET3INF43053. Studienjahr1Prof. Dr. Johannes FreudenmannDeutsch/Englisch

EINGESETZTE LEHRFORMEN

LEHRFORMENLEHRMETHODENVorlesung, Vorlesung, ÜbungLehrvortrag, Diskussion, Lehrvortrag, Diskussion, Gruppenarbeit

EINGESETZTE PRÜFUNGSFORMEN

PRÜFUNGSLEISTUNGPRÜFUNGSUMFANG (IN MINUTEN)BENOTUNGKombinierte Prüfung - Kombinierte PrüfungSiehe Pruefungsordnungja

WORKLOAD UND ECTS-LEISTUNGSPUNKTE

WORKLOAD INSGESAMT (IN H)DAVON PRÄSENZZEIT (IN H)DAVON SELBSTSTUDIUM (IN H)ECTS-LEISTUNGSPUNKTE15072785

QUALIFIKATIONSZIELE UND KOMPETENZEN

FACHKOMPETENZ

Die Studierenden sind in der Lage, komplexe Problemstellungen aus der Praxis so zu analysieren und aufzuarbeiten, dass sie zu diesen entsprechende Programmsysteme erstellen können. Sie gewinnen die für die Lösung relevanten Informationen, führen den Softwareentwurf selbständig durch und geben kritische Hinweise zur Qualität ihrer Ergebnisse.

METHODENKOMPETENZ

Die Studierenden sind mit Abschluss des Moduls in der Lage, für komplexe Softwaresysteme eine angemessene Methode zur Qualitätsbeurteilung und -sicherung auszuwählen und anzuwenden. Sie können die Möglichkeiten, Praktikabilität und Grenzen der eingesetzten Methode einschätzen und sind in der Lage, Handlungsalternativen aufzuzeigen.

PERSONALE UND SOZIALE KOMPETENZ

ÜBERGREIFENDE HANDLUNGSKOMPETENZ

ODEROREM ENDE IN MODEOMOSKOMI ETEM

LERNEINHEITEN UND INHALTE

LEHR- UND LERNEINHEITENPRÄSENZZEITSELBSTSTUDIUMSoftwarequalität3639

- Qualitätsbegriffe
 - QS nach TQM, Qualitätsmanagement unter dynamischer Marktentwicklung,
 Definitionen, Standards
 - QualitätsAudit
 - Qualitätssteigerung mit messbaren Faktoren
 - Methoden der QS, Produktlebenszyklus
 - mit dem QTK-Kreis, LeanProduction,

Stand vom 01.10,2025 T3INF4305 // Seite 45

LEHR- UND LERNEINHEITENPRÄSENZZEITSELBSTSTUDIUMVerteilte Systeme3639

- Einführung in die verteilten Systeme
- Anforderungen und Modelle
- Hard- und Softwarekonzepte
- Multiprozessor, Multicomputer
- Betriebssystemunterstützung, Prozess-Management
- Verteilte Dateisysteme, verteilter Speicher
- Kommunikation in verteilten Systemen
- Synchronisation, Zeit und Nebenläufigkeit, Transaktionen
- Konsistenz und Replikation
- Middlewarearchitekturen
- Standard (Internet) Anwendungen
- Verteilte Programmierung z.B. mit RPC/RMI

BESONDERHEITEN

_

VORAUSSETZUNGEN

Software Engineering I

LITERATUR

- Coulouris, J.Dollimore, T.Kindberg, Distributed Systems: Concepts and Design, Pearson
- A.S. Tanenbaum, Distributed Systems: Principles and Paradigms, Prentice Hall
- S. Heinzel, Middleware in Java: Leitfaden zum Entwurf verteilter Anwendungen, Vieweg+Teubner
- Günther Bengel, Grundkurs Verteilte Systeme, Springer Verlag
- Peter Liggesmeyer: Software-Qualität:Testen, Analysieren und Verifizieren von Software, Spektrum akademischer Verlag R.Schmidt, T. Pfeifer: Qualitätsmanagement: Strategien, Methoden und Techniken, Hanser Fachbuch R. Kneuper: Verbesserung

Stand vom 01.10.2025 T3INF4305 // Seite 46

Datenbanken II (T3INF4304)

Databases II

FORMALE ANGABEN ZUM MODUL

MODULNUMMER	VERORTUNG IM STUDIENVERLAUF	MODULDAUER (SEMESTER)	MODULVERANTWORTUNG	SPRACHE
T3INF4304	3. Studienjahr	1	Prof . Dr. Carmen Winter	Deutsch/Englisch

EINGESETZTE LEHRFORMEN

LEHRFORMEN	LEHRMETHODEN
Labor, Vorlesung, Übung	Laborarbeit, Lehrvortrag, Diskussion, Lehrvortrag, Diskussion,
	Gruppenarbeit

EINGESETZTE PRÜFUNGSFORMEN

PRÜFUNGSLEISTUNG	PRÜFUNGSUMFANG (IN MINUTEN)	BENOTUNG	
Klausur	Siehe Pruefungsordnung	ja	

WORKLOAD UND ECTS-LEISTUNGSPUNKTE

WORKLOAD INSGESAMT (IN H)	DAVON PRÄSENZZEIT (IN H)	DAVON SELBSTSTUDIUM (IN H)	ECTS-LEISTUNGSPUNKTE
150	72	78	5

QUALIFIKATIONSZIELE UND KOMPETENZEN

FACHKOMPETENZ

Die Studierenden können Konzepte von aktuellen Datenbankarchitekturen und Datenbankechnologien beurteilen. Die Studierenden kennen den Sinn und Zweck von Data Warehouse (DWH) Konzepten und können komplexe DWH Architekturen beurteilen. Studierende verfügen über Kenntnisse über den Aufbau und den Betrieb eines DWH und über die Prinzipien der DHW-Datenmodellierung und -speicherung.

METHODENKOMPETENZ

Die Studierenden können die Stärken und Schwächen der aktuellen Datenbanktechnologien und Datenbankarchitekturen sowie Data Warehouse Konzepte bzgl. der Einsatzfähigkeit im beruflichen Umfeld einschätzen.

PERSONALE UND SOZIALE KOMPETENZ

Die Studierenden können mit ihren Entscheidungs- und Fachkompetenzen im Bereich der Datenbanktechnologien und -Datenbankarchitekturen, sowie Data Warehouse aktuelle Konzepte adäquat einschätzen und die Experten anderer Bereiche (insbes. des Anwendungsbereichs) einbeziehen.

ÜBERGREIFENDE HANDLUNGSKOMPETENZ

Die Studierenden haben über die fundierte Fachkenntnis hinaus die Fähigkeit erworben, theoretische Konzepte der aktuellen Datenbankarchitelturen und Datenbanktechnologien sowie Data Warehouse Konzepte in praktische Anwendungen umzusetzen.

LERNEINHEITEN UND INHALTE

LEHR- UND LERNEINHEITEN	PRÄSENZZEIT	SELBSTSTUDIUM
DB-Implementierungen	36	39

- Speicher- und Zugriffsstrukturen
- Transaktionen, Concurrency Control und Recovery
- Basisalgorithmen für Datenbankoperationen
- Anfrageoptimierung

Stand vom 01.10.2025 T3INF4304 // Seite 47

LERNEINHEITEN UND INHALTE		
LEHR- UND LERNEINHEITEN	PRÄSENZZEIT	SELBSTSTUDIUM
Data Warehouse	36	39
- Einführung in DWH und Business Intelligence - DWH-Architektur - Multidimensionales Datenmodell - Physische Umsetzung - Daten-Integrationsprozess - DB-Technologie für DWH		
Aktuelle Datenbankarchitekturen und -technologien	36	39
- Aktuelle Datenbankarchitekturen - Aktuelle Datenbanktechnologien		
Labor Aktuelle Datenbanktechnologien	36	39
Aktuelle Datenbank-Technologien sollen implementiert und mit diesen Übungen selbstständig und unter Anleitung durchgeführt werden (inklusive der Darstellung allgemeiner Konzepte wie z.B. MapReduce und konkreter Anwendungsbeispiele anhand verschiedener Datenbanksystem		

wie z.B. Redis, CouchDB, Hadoop, Apache Kafka, etc.).

BESONDERHEITEN

In diesem Modul sind zwei der vier beschiebenen Units auszuwählen.

VORAUSSETZUNGEN

Datenbanken I

LITERATUR

- Bauer/Günzel: Data-Warehouse-Systeme: Architektur, Entwicklung, Anwendung
- Giovinazzo, William A.: Data Warehouse Design, Prentice-Hall
- Gluchowski & Chamoni (Hrsg.): Analytische informationssysteme: Business Intelligence-Technologien und -Anwendungen, Springer Gabler
- Han, Jiawei und Kamper, Micheline: Data Mining: Concepts and Techniques Morgan, Kaufmann Publishers
- Vaisman/Zimányi: Data Warehouse Systems: Design and Implementation
- Wiley, John: The Data Warehouse Toolkit
- Connolly/Begg: Database Systems: A Practical Approach to Design, Implementation, and Management
- Elmasri, Ramez und Navathe, Shamkant B.: Fundamentals of Database
- Heuer, Andreas und Saake, Gunter: Datenbanken Konzepte und Sprachen, mitp-Verlag
- Heuer, Andreas, Saake, Gunter und Sattler, Kai-Uwe: Datenbanken Implementierungstechniken, mitp Verlag
- Silberschatz/Korth/Sudarshan: Database System Concepts
- Edlich, S., Friedland, A., Hampe, J., Brauer, B. & Brückner, M. NoSQL Einstieg in die Welt Nichtrelationaler WEB 2.0 Datenbanken. München: Carl Hanser Verlag
- Meier & Kaufmann: SQL- & NoSQL-Datenbanken; Springer Vieweg
- Meyl: NoSQL Datenbanken: Eine Modellierung von Daten in Graphdatenbanken, AV Akademikerverlag
- Redmond & Wilson: Seven Databases in Seven Weeks: A Guide to Modern Databases and the NoSQL Movement; Pragmatic Programmers
- White: Hadoop: The Definitve Guide; O'Reilly
- Meier & Kaufmann: SQL- & NoSQL-Datenbanken; Springer Vieweg,
- Meyl: NoSQL Datenbanken: Eine Modellierung von Daten in Graphdatenbanken, AV Akademikerverlag
- Redmond & Wilson: Seven Databases in Seven Weeks; A Guide to Modern Databases and the NoSQL Movement; Pragmatic Programmers
- White: Hadoop: The Definitve Guide; O'Reilly

Stand vom 01.10.2025 T3INF4304 // Seite 48

Grundlagen der Hard- und Software (T3INF4111)

Fundamentals of Hardware and Software

FORMALE ANGABEN ZUM MODUL

MODULNUMMERVERORTUNG IM STUDIENVERLAUFMODULDAUER (SEMESTER)MODULVERANTWORTUNGSPRACHET3INF41111. Studienjahr1Prof. Dr.-lng. Andreas JudtDeutsch/Englisch

EINGESETZTE LEHRFORMEN

 LEHRFORMEN
 LEHRMETHODEN

 Vorlesung, Labor, Vorlesung, Übung
 Laborarbeit, Lehrvortrag, Diskussion

EINGESETZTE PRÜFUNGSFORMEN

PRÜFUNGSLEISTUNGPRÜFUNGSUMFANG (IN MINUTEN)BENOTUNGKlausurSiehe Pruefungsordnungja

WORKLOAD UND ECTS-LEISTUNGSPUNKTE

WORKLOAD INSGESAMT (IN H)DAVON PRÄSENZZEIT (IN H)DAVON SELBSTSTUDIUM (IN H)ECTS-LEISTUNGSPUNKTE15084665

QUALIFIKATIONSZIELE UND KOMPETENZEN

FACHKOMPETENZ

Die Studierenden können nach Abschluss des Moduls

- die Struktur und Dienste der Hausrechnerumgebung aufzählen und beschreiben
- die Unterschiede der gängigen Betriebssysteme erläutern
- Betriebssysteme kofigurieren
- anwendungsbezogene Methoden und Berechnungsverfahren der Elektrotechnik nutzen und auf Problemstellungen anwenden

METHODENKOMPETENZ

Die Studierenden können nach Abschluss des Moduls

- die Konfiguration von Betriebssystemen Fachleuten und Anwendern gegenüber fachadäquat kommunizieren
- sich mit Kollegen über Aufbau und Inbetriebnahme von Betriebssystemen austauschen
- elektrotechnische Probleme modularisieren und in Form von Funktionsblöcken beschreiben
- im Team arbeiten und Verantwortung übernehmen

PERSONALE UND SOZIALE KOMPETENZ

ÜBERGREIFENDE HANDLUNGSKOMPETENZ

Die Studierenden können nach Abschluss des Moduls

- sich in weitere Themen der Elektrotechnik selbstständig einarbeiten und diese vertiefen
- das Wissen bezüglich Hard- und Software auf ihre Tätigkeiten im Beruf anwenden
- bei der Lösung von Aufgaben unter Nutzung weiterer Kompetenzen, wie z.B. Zeitmanagement, Kooperationsbereitschaft mithelfen

LERNEINHEITEN UND INHALTE

LEHR- UND LERNEINHEITEN	PRÄSENZZEIT	SELBSTSTUDIUM
Elektronik	48	38

- Grundlagen zur Struktur der Materie
- Atom-, Festkörper- und Halbleiterphysik
- Physikalische und technische Eigenschaften von Halbleiterwerkstoffen
- Halbleiterdioden
- Transistoren
- Operationsverstärker

Stand vom 01.10.2025 T3INF4111 // Seite 49

LEHR- UND LERNEINHEITEN	PRÄSENZZEIT	SELBSTSTUDIUM
Praktische Datenverarbeitung	36	28
 Arbeiten mit mehreren Betriebssystemen Arbeiten mit Netzwerkdiensten, besonders mit dem Netzwerk der lokalen DH Grundlagen von LINUX Vertiefung und Anwendungen von LINUX 		
Elektrotechnik	48	38

- Elektrische Größen und ihre Einheiten
- Das elektrische Feld
- Gleichstromkreis, Zweipole
- Lineare Netzwerke und Berechungsmethoden
- Periodische und zeitabhängige Größen
- Das magnetische Feld
- Sprung- und Impulsantworten passiver Bauelemente
- Wechselstromkreis

BESONDERHEITEN

VORAUSSETZUNGEN

LITERATUR

- Grundgebiete der Elektrotechnik 1, A. Führer, K. Heidemann, W. Nerreter, Hanser
- Grundgebiete der Elektrotechnik 2, A. Führer, K. Heidemann, W. Nerreter, Hanser
- Theoretische Elektrotechnik, A. Reibiger, W. Mathis, K. Küpfmüller, Springer Vieweg
- H. Herold: UNIX-Grundlagen, Addison-Wesley M. Kofler: LINUX, Addison-Wesley
- Physik für Ingenieure, M. Stohrer, R. Martin, E. Hering, Springer
- Physik, P. A. Tipler, G. Mosca, Springer Spektrum
 Elektronik für Ingenieure, E. Hering, K. Bressler, J. Gutekunst, Springer

T3INF4111 // Seite 50 Stand vom 01.10.2025

Web-Technologien (T3INF4315)

Web Technologies

FORMALE ANGABEN ZUM MODUL

MODULNUMMERVERORTUNG IM STUDIENVERLAUFMODULDAUER (SEMESTER)MODULVERANTWORTUNGSPRACHET3INF43153. Studienjahr1Prof. Dr.-Ing. Andreas JudtDeutsch/Englisch

EINGESETZTE LEHRFORMEN

LEHRFORMENLEHRMETHODENVorlesung, ÜbungLehrvortrag, Diskussion

EINGESETZTE PRÜFUNGSFORMEN

PRÜFUNGSLEISTUNGPRÜFUNGSUMFANG (IN MINUTEN)BENOTUNGProgrammentwurf oder Kombinierte PrüfungSiehe Pruefungsordnungja

WORKLOAD UND ECTS-LEISTUNGSPUNKTE

WORKLOAD INSGESAMT (IN H)DAVON PRÄSENZZEIT (IN H)DAVON SELBSTSTUDIUM (IN H)ECTS-LEISTUNGSPUNKTE15072785

QUALIFIKATIONSZIELE UND KOMPETENZEN

FACHKOMPETENZ

Die Studierenden können nach Abschluss des Moduls Aufgaben mit mindestens einer Skriptsprache für die serverseitige Programmierung lösen, unterschiedliche Web Technologien beurteilen und kritisch vergleichen und geeignete Web Technologien für unterschiedliche Anwendungen bewerten.

METHODENKOMPETENZ

Die Studierenden können nach Abschluss des Moduls im Team aus dem breiten Spektrum moderner Web-Technologie geeignete Lösungsansätze konzipieren und umsetzen, das Potential der Web-Services einschätzen und Fachleuten und Anwendern kommunizieren, den Aufwand zur Erstellung eines Web-Anwendung abzuschätzen und begründen, im Team arbeiten und Verantwortung übernehmen.

PERSONALE UND SOZIALE KOMPETENZ

ÜBERGREIFENDE HANDLUNGSKOMPETENZ

Die Studierenden können nach Abschluss des Moduls, komplexe Web-Anwendungen implementieren, sich in neue Web Technologien einarbeiten und diese vertiefen, bei der Lösung von Aufgaben unter Nutzung weiterer Kompetenzen, wie z.B. Zeitmanagement, Kooperationsbereitschaft, Lern- und Arbeitstechniken in Teams qualifiziert einbringen.

I FRNFINHFITEN UND INHALTE

LEHR- UND LERNEINHEITEN	PRÄSENZZEIT	SELBSTSTUDIUM
Web-Engineering 2	36	39

- Vertiefung oder Erlernen einer serverseitigen Programmiersprache und/oder die Vertiefung oder Erlernen clientseitiger Programmierung als Ergänzung und Fortführung von Unit Web-Engineering $\bf 1$
- Spezielle Verwendungskontexte client- oder serverseitigen Programme unter Einbezug üblicher Frameworks/Bibliotheken der verwendeten Programmiersprache.
- Optional: Spezielle Ausführungsplattformen für Webanwendungen
- Optional: Einführung in die Architekturmuster und Konzepte moderner Webanwendungen

Stand vom 01.10.2025 T3INF4315 // Seite 51

LEHR- UND LERNEINHEITENPRÄSENZZEITSELBSTSTUDIUMWeb-Services3639

Grundlegende Konzepte von Webservices und Service-orientierter Architektur (SOA) werden erläutert und beispielhaft erstellt. Definierte Dienste und Protokolle werden vorgestellt: - SOAP, Message-Protokoll - WSDL, Interface Beschreibung - UDDI, Verzeichnis - WSIL, Dezentrale Verzeichnisse - BPEL4WS.

BESONDERHEITEN

Die Prüfungsdauer richtet sich nach der Studien- und Prüfungsordnung.

VORAUSSETZUNGEN

Datenbanken I (T2INF2004), Software Engineering I (T2INF2003), Webengineering und, Systemnahe Programmierung (T2INF4216), Software Engineering II (T2INF3001)

LITERATUR

- Melzer, Eberhard, von Thiele; Service-orientierte Architekturen mit Web Services; Spektrum Akademischer Verlag.
- www.w3c.org
- de.selfhtml.org
- s. spezifisches Themengebiet, Literatur wird in Form passender Manuskripte oder Tutorials ausgegeben

Stand vom 01.10.2025 T3INF4315 // Seite 52

Programmieren II (T3INF4272)

Programming II

FORMALE ANGABEN ZUM MODUL

MODULNUMMERVERORTUNG IM STUDIENVERLAUFMODULDAUER (SEMESTER)MODULVERANTWORTUNGSPRACHET3INF42722. Studienjahr1Prof. Dr.-Ing. Olaf HerdenDeutsch/Englisch

EINGESETZTE LEHRFORMEN

LEHRFORMENLEHRMETHODENVorlesung, Übung, Vorlesung, Übung, LaborLehrvortrag, Diskussion, Lehrvortrag, Diskussion, Gruppenarbeit

EINGESETZTE PRÜFUNGSFORMEN

PRÜFUNGSLEISTUNGPRÜFUNGSUMFANG (IN MINUTEN)BENOTUNGKlausurarbeit oder Kombinierte PrüfungSiehe Pruefungsordnungja

WORKLOAD UND ECTS-LEISTUNGSPUNKTE

WORKLOAD INSGESAMT (IN H)
DAVON PRÄSENZZEIT (IN H)
DAVON SELBSTSTUDIUM (IN H)
ECTS-LEISTUNGSPUNKTE
78
5

QUALIFIKATIONSZIELE UND KOMPETENZEN

FACHKOMPETENZ

Die Studierenden können in C#, C++ oder Go Software entwickeln. Insbesondere lernen sie die wesentlichen Unterschiede zu Java. Im Modul Programmierung erlernte Sachkompetenzen werden vertieft. Weiterhin können die Studierenden parallele Programme entwerfen und implementieren.

METHODENKOMPETENZ

Durch das Erlernen einer weiteren Programmiersprache und des Konzepts der Parallen Programmierung wird der Blick der Studierenden auf das Themengebiet Softwareentwicklung erweitert, wodurch eine erheblich bessere Kommunikationsfähigkeit mit Fachleuten möglich ist.

PERSONALE UND SOZIALE KOMPETENZ

-

ÜBERGREIFENDE HANDLUNGSKOMPETENZ

Durch umfangreiche Laboraufgaben haben die Studierenden mittels Literatur und Handbüchern gelernt sich umfangreiches Detailwissen selbstständig anzueigenen.

LERNEINHEITEN UND INHALTE

Objektorientierung in C#Mono-Framework

LEHR- UND LERNEINHEITEN	PRÄSENZZEIT	SELBSTSTUDIUM
C# und .NET	48	52
NET-Architektur - IDE Visual Studio .NET - Grundlagen von C#		

C/C++ 48 52

- Grundlagen C
- Grundlagen C++
- Objektorientierte Konzepte in C++

Stand vom 01.10.2025 T3INF4272 // Seite 53

LEHR- UND LERNEINHEITEN	PRÄSENZZEIT	SELBSTSTUDIUM
Paralleles Programmieren	24	26

- Grundlagen und Modelle
- Parallele Programmiertechniken
- Parallele Algorithmen
- Entwurf paralleler Programme
- Praxis Parallelprogrammierung (z.B. in Java oder C#)

Go 48 52

- Grundlagen
- First-Class-Functions und Closures
- Objektorientierte Programmierung, Interfaces
- Nebenläufigkeit
- Testen

BESONDERHEITEN

Die Prüfungsdauer richtet sich nach der Studien- und Prüfungsordnung.

VORAUSSETZUNGEN

-

LITERATUR

- Alan Donovan, Brian Kernighan: "The Go Programming Language", Pearson Education
- Mat Ryer: "Go Programming Blueprints", Packt Publishing Ltd.
- Albahari, Joseph und Ben Albahari: "C# 6.0 in a Nutshell: The Definitive Reference", O'Reilly Media
- Kühnel, Andreas: "C# 6 mit Visual Studio 2015: Das umfassende Handbuch", Rheinwerk Computing
- Mackey, Alex: "Introducing .Net 4.5", Apress
- Theis, Thomas: "Einstieg in Visual C# 2017", Rheinwerk Computing
- Goetz, Brian: "Java Concurrency in Practice", Addison-Wesley Professional,
- Grama, Ananth, Anshul Gupta, George Karypis und Vipin Kumar: "Introduction to Parallellel Computing", Pearson,
- Roestenburg, Raymond, Rob Bakker und Rob Williams: "Akka in Action", Manning Verlag,
- Kernighan, Brian und Dennis Ritchie: "The C Programming Language", Prentice Hall International,
- Lischner, Ray: "C++ in a Nutshell", O`Reilly Media,
- Prinz, Peter und Tony Crawford: "C in a Nutshell: The Definitive Guide", O'Reilly Media,
- Stroustrup, Bjarne: "The C++ Programming Language", Addison-Wesley,
- Stroustrup, Bjarne: "Programming: Principles and Practice Using C++", Addison-Wesley,

Stand vom 01.10.2025 T3INF4272 // Seite 54

Computergraphik und Bildverarbeitung (T3INF4303)

Computer Graphic and Image Processing

FORMALE ANGABEN ZUM MODUL

MODULNUMMERVERORTUNG IM STUDIENVERLAUFMODULDAUER (SEMESTER)MODULVERANTWORTUNGSPRACHET3INF43033. Studienjahr1Prof. Dr. Marcus StrandDeutsch/Englisch

EINGESETZTE LEHRFORMEN

LEHRFORMENLEHRMETHODENVorlesung, ÜbungLehrvortrag, Diskussion

EINGESETZTE PRÜFUNGSFORMEN

PRÜFUNGSLEISTUNGPRÜFUNGSUMFANG (IN MINUTEN)BENOTUNGKlausur oder Kombinierte PrüfungSiehe Pruefungsordnungja

WORKLOAD UND ECTS-LEISTUNGSPUNKTE

WORKLOAD INSGESAMT (IN H)
DAVON PRÄSENZZEIT (IN H)
DAVON SELBSTSTUDIUM (IN H)
ECTS-LEISTUNGSPUNKTE
78
5

QUALIFIKATIONSZIELE UND KOMPETENZEN

FACHKOMPETENZ

Die Studierenden lernen die Grundlagen der graphischen Datenverarbeitung kennen. Hierbei insbesondere Darstellungsverfahren und Manipulation von graphischen Objekten und die Interaktion mit graphischen Systemen. Es werden mathematische und technische Grundlagen zur Aufnahme, Transformation und Auswertung digitaler Bilder vermittelt und erarbeitet. Verschiedene Eingabemechanismen und Manipulationsmethoden an der Mensch - Maschine Schnittstelle als Grundlage des graphischen Dialogs sind den Studierenden bekannt. Sie kennen außerdem diverse Standards und Systeme in der graphischen Datenverarbeitung und der digitalen Bildverarbeitung und können sie bewerten.

METHODENKOMPETENZ

_

PERSONALE UND SOZIALE KOMPETENZ

Die Studierenden können die Arbeitsweise marktüblicher Software auf diesem Fachgebiet verstehen und sie sind in der Lage eine Bewertung dieser Systeme durchzuführen.

ÜBERGREIFENDE HANDLUNGSKOMPETENZ

Durch die in diesem Modul erworbenen Fähigkeiten können die Absolventen die grundlegende Arbeitesweise vieler auf digitaler Grafik und Bildverarbeitung basierender Systeme verstehen, so z.B. CAD, Computerspiele, Bildanalyse etc.

LERNEINHEITEN UND INHALTE

LEHR- UND LERNEINHEITENPRÄSENZZEITSELBSTSTUDIUMComputergraphik3639

- Einführung in die interaktive 3D-Computergrafik
- Kurven- und Flächendarstellung (Polynom-, Bezier-, B-Spline- und Nurbs-Darstellung)
- Koordinatensysteme und Transformationen in 2D und 3D
- Visualisierungsverfahren

Stand vom 01.10.2025 T3INF4303 // Seite 55

LEHR- UND LERNEINHEITENPRÄSENZZEITSELBSTSTUDIUMDigitale Bildverarbeitung3639

- Einführung in die Methoden der Bildverarbeitung
- Bildaufnahme (Digitalisierung, Abtastung, Rasterung)
- Speicherung von Bilddaten (Datenkompressionsverfahren)
- Bildaufbereitung (Histogramm Glättung, Kontrastverstärkung)
- Operationen im Ortsbereich (lokale Operatoren, Faltungsfilter)
- Operationen im Frequenzbereich
- Segmentierung (Schwellwertverfahren, Kantendetektoren)
- Bildanalyse (Morphologische Verfahren, Merkmalsextraktion, Kanten- und Flächenbestimmung)
- Klassifizierung (Neuronale Netze)

Die Lehrinhalte sind durch einen praktischen Übungsteil im PC-Labor zu vertiefen.

BESONDERHEITEN

VORAUSSETZUNGEN

-

LITERATUR

- Burger, W./ Burge, M.: Digitale Bildverarbeitung" X.media.press, Springer Vieweg
- Gonzalez, Woods, Eddins: Digital Image Processing using Mathlab (Übungsbuch), Prentice-Hall
- Gonzalez, Woods: Digital Image Processing, Prentice Hall Int.
- Jähne: Digitale Bildverarbeitung. Springer Berlin
- Tönnis, K.: Grundlagen der Bildverarbeitung, Pearson Studium
- F.S. Hill/S.M. Kelley: Computer Graphics using OpenGL, Pearson Prentice Hall

Stand vom 01.10.2025 T3INF4303 // Seite 56

Vertiefung IT-Security (T3INF4343)

Advanced IT-Security

FORMALE ANGABEN ZUM MODUL

MODULNUMMERVERORTUNG IM STUDIENVERLAUFMODULDAUER (SEMESTER)MODULVERANTWORTUNGSPRACHET3INF43433. Studienjahr1Deutsch/Englisch

EINGESETZTE LEHRFORMEN

 LEHRFORMEN
 LEHRMETHODEN

 Vorlesung, Übung, Labor
 Lehrvortrag, Diskussion, Gruppenarbeit

EINGESETZTE PRÜFUNGSFORMEN

PRÜFUNGSLEISTUNGPRÜFUNGSUMFANG (IN MINUTEN)BENOTUNGReferat oder Kombinierte PrüfungSiehe Pruefungsordnungja

WORKLOAD UND ECTS-LEISTUNGSPUNKTE

WORKLOAD INSGESAMT (IN H)DAVON PRÄSENZZEIT (IN H)DAVON SELBSTSTUDIUM (IN H)ECTS-LEISTUNGSPUNKTE15072785

QUALIFIKATIONSZIELE UND KOMPETENZEN

FACHKOMPETENZ

Die Studierenden besitzen ein tiefes und aktuelles Fachwissen in ausgewählten Aspekten der IT-Security. Dieses kann ihnen als Grundlage dafür dienen, sich nach Abschluss des Studiums zu Experten auf diesem Gebiet weiterzuentwickeln.

METHODENKOMPETENZ

Die Studierenden können Risiken und Handlungsbedarfe hinsichtlich IT-Security einschätzen, geeignete Sicherheitsmaßnahmen entwerfen bzw. auswählen und

Sie erkennen und berücksichtigen Sicherheitsaspekte bei Entwurf, Implementierung und Betrieb von IT-Systemen.

PERSONALE UND SOZIALE KOMPETENZ

Den Studierenden ist bewusst, dass IT-Security ein sehr dynamisches Gebiet ist, in dem Wissen schnell veraltet und permanentes Lernen unabdingbar ist.

ÜBERGREIFENDE HANDLUNGSKOMPETENZ

Die Absolventen sind in der Lage, komplexe und aktuelle Aspekte der IT-Security bei ihrer beruflichen Tätigkeit zu berücksichtigen. Sie verstehen die ethischen und sozialen Herausforderungen der IT-Security und sind diesbezüglich zu verantwortungsvollem Handeln befähigt.

LERNEINHEITEN UND INHALTE

LEHR- UND LERNEINHEITEN	PRÄSENZZEIT	SELBSTSTUDIUM
Ausgewählte Themen der IT-Security	72	78

Stand vom 01.10.2025 T3INF4343 // Seite 57

LEHR- UND LERNEINHEITEN **PRÄSENZZEIT SELBSTSTUDIUM**

Behandelt werden ausgewählte aktuelle Themen aus dem Bereich der IT-Security,

- Aktuelle Angriffsarten und Schutzmaßnahmen
- Moderne kryptographische Verfahren und ihre Anwendungen
- Hardwaresicherheit
- Sicherheit von Webanwendungen
- Entwicklung sicherer Software
- Analyse und Design von Sicherheitsprotokollen Sicherheit mobiler Geräte
- Sicherheit von Embedded Systems/Internet of Things
- Zensur, Überwachung und Anonymität im Internet
- Blockchain und ihre Anwendungen
- Formale Sicherheits- und Angriffsmodelle
- IT-Security-Management
- IT-Forensik
- Ethische und soziale Aspekte der IT-Security

BESONDERHEITEN

Die Prüfungsdauer richtet sich nach der Studien- und Prüfungsordnung.

VORAUSSETZUNGEN

Programmierung, Betriebssysteme, Kommunikations- und Netztechnik, Mathematische Grundlagen, Grundkenntnisse der IT-Sicherheit und Kryptographie

LITERATUR

- Claudia Eckert: IT-Sicherheit: Konzepte Verfahren Protokolle, Oldenbourg
- Christof Paar, Jan Pelzl: Kryptographie verständlich, Springer
- William Stallings: Network Security Essentials, Pearson

Stand vom 01.10.2025 T3INF4343 // Seite 58

Architekturen (T3INF4322)

Architectures

FORMALE ANGABEN ZUM MODUL

MODULNUMMERVERORTUNG IM STUDIENVERLAUFMODULDAUER (SEMESTER)MODULVERANTWORTUNGSPRACHET3INF43223. Studienjahr1Prof. Dr. Doris Nitsche-RuhlandDeutsch/Englisch

EINGESETZTE LEHRFORMEN

LEHRFORMENLEHRMETHODENVorlesung, ÜbungLehrvortrag, Diskussion

EINGESETZTE PRÜFUNGSFORMEN

PRÜFUNGSLEISTUNGPRÜFUNGSUMFANG (IN MINUTEN)BENOTUNGKlausurSiehe Pruefungsordnungja

WORKLOAD UND ECTS-LEISTUNGSPUNKTE

WORKLOAD INSGESAMT (IN H)DAVON PRÄSENZZEIT (IN H)DAVON SELBSTSTUDIUM (IN H)ECTS-LEISTUNGSPUNKTE15072785

QUALIFIKATIONSZIELE UND KOMPETENZEN

FACHKOMPETENZ

Architekturprinzipien der Hard- und Software von IT-Systemen kennen und beurteilen können

- Bedeutung der Aspekte Robustheit, Sicherheit, Hochverfügbarkeit, Wartbarkeit
- -RAS, Reliability, Availability, Serviceability kennen
- Identifikation von Anforderungen für individuelle Anwendungsentwicklung Architekturen von state-of-the-art Businessapplikationen identifizieren
- Modulare Anwendungsentwicklung und Design Patterns verwenden

METHODENKOMPETENZ

- Integrität für das Produkt - Leidenschaft, die beste Lösung zu finden

PERSONALE UND SOZIALE KOMPETENZ

-

ÜBERGREIFENDE HANDLUNGSKOMPETENZ

- Prinzipien der Softwaremodellierung zur Entwicklung von Architekturen einsetzen können

LERNEINHEITEN UND INHALTE

LEHR- UND LERNEINHEITEN Architekturen von Rechnersystemen	PRÄSENZZEIT 36	SELBSTSTUDIUM 39
- Großrechnerarchitekturen - Parallele Systeme (SMP, Cluster-Systeme) - Speichersysteme für Großrechneranlagen - Storage Area Network (SAN) und Network Attached Storage (NAS) - Betriebssysteme (Konzepte) für Großrechneranlagen - Operating von Großrechnera		
Architekturen von Businesssystemen	36	39

⁻ Einführung in Anwendungsarchitekturen - - Mobile Aspekte von Business-Anwendungen - WebServices - Business Patterns (B2B, B2C, B2E, ...) - CRM / SCM - Marktplätze - Portale - Enterprise Application Integration - PKI Infras

Stand vom 01.10.2025 T3INF4322 // Seite 59

BESONDERHEITEN		
-		
VORAUSSETZUNGEN		

LITERATUR

LITEIO

Stand vom 01.10.2025 T3INF4322 // Seite 60

Künstliche Intelligenz und Maschinelles Lernen (T3INF4334)

Artificial Intelligence and Machine Learning

FORMALE ANGABEN ZUM MODUL

MODULNUMMERVERORTUNG IM STUDIENVERLAUFMODULDAUER (SEMESTER)MODULVERANTWORTUNGSPRACHET3INF43343. Studienjahr2Prof. Dr. Dirk ReichardtDeutsch/Englisch

EINGESETZTE LEHRFORMEN

LEHRFORMENLEHRMETHODENVorlesung, Übung, LaborLehrvortrag, Diskussion, Lehrvortrag, Diskussion, Gruppenarbeit

EINGESETZTE PRÜFUNGSFORMEN

PRÜFUNGSLEISTUNGPRÜFUNGSUMFANG (IN MINUTEN)BENOTUNGKlausurarbeit oder Kombinierte PrüfungSiehe Pruefungsordnungja

WORKLOAD UND ECTS-LEISTUNGSPUNKTE

WORKLOAD INSGESAMT (IN H)DAVON PRÄSENZZEIT (IN H)DAVON SELBSTSTUDIUM (IN H)ECTS-LEISTUNGSPUNKTE15072785

QUALIFIKATIONSZIELE UND KOMPETENZEN

FACHKOMPETENZ

Die Studierenden kennen die Einsatzgebiete und typischen Szenarien der künstlichen Intelligenz. Sie sind in der Lage zu erkennen, in welchen Anwendungen Methoden der künstlichen Intelligenz vorteilhaft sind. Die Studienrenden können grundlegende Methoden der künstlichen Intelligenz am praktischen Beispiel einsetzen.

Die Studierenden verfügen je nach Unitwahl über vertiefte Fachkenntnisse zu Evolutionary Computing, Maschinellem Lernen, Agentensystemen oder Emotional Computing.

METHODENKOMPETENZ

Die Studierenden können Problemstellungen der realen Welt erfassen und mit Fachexperten das benötigte Wissen zur Implementierung einer intelligenten Anwendung extrahieren.

Die Studierenden habem methodische Kenntnisse erworben um intelligente Softwaresysteme zu entwickeln (abh. von Wahlunit).

PERSONALE UND SOZIALE KOMPETENZ

Die Auswirkungen der Aspekte interaktiver intelligenter und autonomer Systeme auf die Gesellschaft und das soziale Miteinander können die Studierenden reflektierend analysieren und sich damit auseinandersetzen.

Sie können mit Fachvertretern und Laien über fachliche Fragen und Probleme des Themenfelds KI diskutieren.

ÜBERGREIFENDE HANDLUNGSKOMPETENZ

LERNEINHEITEN UND INHALTE

LEHR- UND LERNEINHEITEN	PRÄSENZZEIT	SELBSTSTUDIUM
Grundlagen der Künstlichen Intelligenz	36	39

Stand vom 01.10.2025 T3INF4334 // Seite 61

LERNEINHEITEN UND INHALTE LEHR- UND LERNEINHEITEN **PRÄSENZZEIT SELBSTSTUDIUM** - Grundlagen und Definition von Wissen und Modellbildung - Einsatz von Logik und automatischer Beweisführung - Einsatz von Heuristiken (u.a. heuristische Suche) - Repräsentation unscharfer Probleme (z.B. Probabilistische Netze, Evidenztheorie / Dempster -Shafer / Fuzzy Systeme) - Analogie und Ähnlichkeit - Grundlagen des Maschinelles Lernens - Anwendungsgebiete Künstlicher Intelligenz (z.B. Design digitaler Schaltungen, Big Data, Autonome Systeme, Intelligente Interaktion) - Praktische Anwendungen von Methoden der künstlichen Intelligenz Labor Künstliche Intelligenz 36 39 Labor begleitend zur Unit Grundlagen der Künstlichen Intelligenz zur Vertiefung der gelehrten Methoden. Einzelne angrenzende Methoden können ergänzt und am Projektbeispiel vertieft Grundlagen Maschineller Lernverfahren 36 39 - Einführung in das Maschinelle Lernen - Symbolische Lernverfahren - Grundlagen Neuronaler Netze - Probabilistische Lernmodelle - Erweiterte Konzepte und Deep Learning - Entwurf und Implementierung ausgewählter Techniken für eine Anwendung Agentenbasierte Systeme 36 39 - Grundlagen von Agenten und Agentensystemen - Aufbau von Agenten und Agentensystemen - Kommunikation in Agentensystemen - Co-operatives Problemlösen - Grundlagen der Spieltheorie - Agenten im Software Engineering - Agentenframeworks - Ontologien - Mobile Agenten **Evolutionary Computing** 36 39 - Historie und Einsatzgebiete von Evolutionären Algorithmen - Grundprinzipien (Mutation, Rekombination, Mating-Pool-Auswahlverfahren, Fitness-Funktion, Generationenmodelle) - Anwendung genetischer Algorithmen auf einfache Praxis-Probleme Emotion in Interaktiven Systemen 36 39 - Einführung und Motivation - Psychologische Grundlagen der Emotion - Emotionserkennung (Audio/Video/Physiolog. Sensorik etc.) - Emotionsdarstellung (Avatare etc.) - Grundlegende Emotionsmodelle - Einsatz von Emotionalen Agenten in interaktiven Systemen - Projekt zu Emotionen in Anwendungssystemen BESONDERHEITEN Die Studiengangsleitung legt abhängig von aktuellen Gegebenheiten die Wahlunit fest. Die Prüfungsdauer richtet sich nach der Studien- und Prüfungsordnung.

VORAUSSETZUNGEN

Stand vom 01.10.2025 T3INF4334 // Seite 62

LITERATUR

- Beierle, C./Kern-Isberner, G.: Methoden Wissensbasierter Systeme Grundlagen Algorithmen Anwendungen, Vieweg Verlag
- Ertel: Grundkurs Künstliche Intelligenz: Eine praxisorientierte Einführung, Springer Vieweg, aktuelle Auflage
- Kruse, et.al.: Computational Intelligence: Eine methodische Einführung in Künstliche Neuronale Netze, Evolutionäre Algorithmen, Fuzzy-Systeme und Bayes-Netze, Vieweg+Teubner Verlag
- Russel, S. J./Norvig, P: Künstliche Intelligenz Ein moderner Ansatz, Pearson Studium
- Christoph Beierle, Gabriele Kern-Isberner: Methoden Wissensbasierter Systeme Grundlagen Algorithmen Anwendungen, Vieweg Verlag, aktuelle Auflage
- Stuart J. Russel, Peter Norvig: Künstliche Intelligenz Ein moderner Ansatz, Pearson Studium, , aktuelle Auflage
- Ertel: Grundkurs Künstliche Intelligenz: Eine praxisorientierte Einführung, Springer Vieweg, aktuelle Auflage
- Kruse, et.al.: Computational Intelligence: Eine methodische Einführung in Künstliche Neuronale Netze, Evolutionäre Algorithmen, Fuzzy-Systeme und Bayes-Netze, Vieweg+Teubner Verlag, aktuelle Auflage
- Friedemann Schulz von Thun, "Miteinander Reden 1 Störungen und Klärungen", Rowohlt Verlag.
- S.L.Breazeal, "Designing Sociable Robots", MIT Press.
- Watzlawick, Beavin, Jackson, "Menschliche Kommunikation", Verlag Hans Huber, aktuellste Auflage.
- Rosalind Picard, "Affective Computing", aktuellste Auflage
- Byron Reeves, Clifford Nass, "The Media Equation", CSLI Publications, aktuellste Auflage.
- J. Russel, Peter Norvig, "Künstliche Intelligenz Ein moderner Ansatz", Pearson Studium, aktuelle Auflage
- M.Wouldridge, "An Introduction to Multi Agent Systems", John Wiley and Sons, aktuelle Auflage
- Gerhard Weiss (Ed.), "Multiagent Systems A Modern Approach to Distributed Artificial Intelligence", The MIT Press, aktuelle Auflage
- Yoav Shoham, Kevin Layton-Brown, "Multiagent Systems: Algorithmic, Game-Theoretic, and Logical Foundations", Cambridge University Press, aktuelle Auflage
- Toshinori Munakata, "Fundamentals of the new Artificial Intelligence", Springer Verlag, aktuelle Auflage
- A.E.Eiben, J.E.Smith, "Introduction to Evolutionary Computing", Springer Verlag, aktuelle Auflage
- Toshinori Munakata, "Fundamentals of the new Artificial Intelligence", Springer Verlag, aktuelle Auflage
- Christoph Beierle, Gabriele Kern-Isberner, "Methoden Wissensbasierter Systeme Grundlagen Algorithmen Anwendungen", Vieweg Verlag, aktuelle Auflage
- Ethem Alpaydin, "Maschinelles Lernen", Oldenbourg, aktuelle Auflage

Stand vom 01.10.2025 T3INF4334 // Seite 63

Bachelorarbeit (T3 3300)

Bachelor Thesis

EO BM	$\Lambda I = \Lambda$	NCARI	INI 711M	MODIII

 MODULNUMMER
 VERORTUNG IM STUDIENVERLAUF
 MODULDAUER (SEMESTER)
 MODULVERANTWORTUNG
 SPRACHE

 T3_3300
 3. Studienjahr
 1
 Prof. Dr.-lng. Joachim Frech

EINGESETZTE LEHRFORMEN

LEHRFORMEN LEHRMETHODEN
Individualbetreuung Projekt

EINGESETZTE PRÜFUNGSFORMEN

PRÜFUNGSLEISTUNGPRÜFUNGSUMFANG (IN MINUTEN)BENOTUNGBachelor-ArbeitSiehe Pruefungsordnungja

WORKLOAD UND ECTS-LEISTUNGSPUNKTE

WORKLOAD INSGESAMT (IN H)
DAVON PRÄSENZZEIT (IN H)
DAVON SELBSTSTUDIUM (IN H)
ECTS-LEISTUNGSPUNKTE
360
554
12

QUALIFIKATIONSZIELE UND KOMPETENZEN

FACHKOMPETENZ

METHODENKOMPETENZ

PERSONALE UND SOZIALE KOMPETENZ

ÜBERGREIFENDE HANDLUNGSKOMPETENZ

Die Studierenden erfassen industrielle Problemstellungen in einem breiten Kontext und in realistischer Komplexität. Sie haben ein gutes Verständnis von organisatorischen und inhaltlichen Zusammenhängen sowie von Organisationsstrukturen, Produkten, Verfahren, Maßnahmen, Prozessen, Anforderungen und gesetzlichen Grundlagen. Sie analysieren kritisch, welche Einflussfaktoren zur Lösung des Problems beachtet werden müssen und können beurteilen, inwiefern theoretische Modelle einen Beitrag zur Lösung des Problems leisten können. Die Studierenden können sich selbstständig, nur mit geringer Anleitung in theoretische Grundlagen eines Themengebiets vertiefend einarbeiten und den allgemeinen Stand des Wissens erwerben. Sie können auf der Grundlage von Theorie und Praxis selbstständig Lösungen entwickeln und Alternativen bewerten. Sie sind in der Lage eine wissenschaftliche Arbeit als Teil eines Praxisprojektes effizient zu steuern und wissenschaftlich korrekt und verständlich zu dokumentieren.

Die Studierenden zeichnen sich durch Eigenverantwortung und Tatkraft aus, sie sind auch im Kontext einer globalisierten Arbeitswelt handlungsfähig. Sie weisen eine reflektierte Haltung zu gesellschaftlichen, soziale und ökologischen Implikationen des eigenen Handelns auf.

LERNEINHEITEN UND INHALTE

LEHR- UND LERNEINHEITEN	PRÄSENZZEIT	SELBSTSTUDIUM
Bachelorarbeit	6	354

BESONDERHEITEN

Es wird auf die "Leitlinien für die Bearbeitung und Dokumentation der Module Praxisprojekt I bis III, Studienarbeit und Bachelorarbeit" der Fachkommission Technik der DHBW hingewiesen.

Stand vom 01.10.2025 T3_3300 // Seite 64

VORAUSSETZUNGEN

LITERATUR

Kornmeier, M., Wissenschaftlich schreiben leicht gemacht für Bachelor, Master und Dissertation, Bern

Stand vom 01.10.2025 T3_3300 // Seite 65