

Dieses Modulhandbuch gilt für Studierende die im Zeitraum vom 01.10.2017 – 30.09.2024 immatrikuliert wurden.

Modulhandbuch

Studienbereich Technik

School of Engineering

Studiengang

Elektrotechnik

Electrical Engineering

Studienrichtung

Medizintechnik

Medical Engineering

Studienakademie

MANNHEIM

Curriculum (Pflicht und Wahlmodule)

Aufgrund der Vielzahl unterschiedlicher Zusammenstellungen von Modulen können die spezifischen Angebote hier nicht im Detail abgebildet werden. Nicht jedes Modul ist beliebig kombinierbar und wird möglicherweise auch nicht in jedem Studienjahr angeboten. Die Summe der ECTS aller Module inklusive der Bachelorarbeit umfasst 210 Credits.

Die genauen Prüfungsleistungen und deren Anteil an der Gesamtnote (sofern die Prüfungsleistung im Modulhandbuch nicht eindeutig definiert ist oder aus mehreren Teilen besteht), die Dauer der Prüfung(en), eventuelle Einreichungsfristen und die Sprache der Prüfung(en) werden zu Beginn der jeweiligen Theoriephase bekannt gegeben.

	FESTGELEGTER MODULBEREICH		
NUMMER	MODULBEZEICHNUNG	VERORTUNG	ECTS
T3ELG1001	Mathematik I	1. Studienjahr	5
T3ELG1002	Mathematik II	1. Studienjahr	5
T3ELG1003	Physik	1. Studienjahr	5
T3ELG1004	Grundlagen Elektrotechnik I	1. Studienjahr	5
T3ELG1005	Grundlagen Elektrotechnik II	1. Studienjahr	5
T3ELG1006	Digitaltechnik	1. Studienjahr	5
T3ELG1007	Elektronik und Messtechnik I	1. Studienjahr	5
T3ELG1008	Informatik I	1. Studienjahr	5
T3ELG1009	Informatik II	1. Studienjahr	5
T3ELG1010	Geschäftsprozesse	1. Studienjahr	5
T3ELG2001	Mathematik III	2. Studienjahr	5
T3ELG2002	Grundlagen Elektrotechnik III	2. Studienjahr	5
T3ELG2003	Systemtheorie	2. Studienjahr	5
T3ELG2004	Regelungstechnik	2. Studienjahr	5
T3ELG2005	Elektronik und Messtechnik II	2. Studienjahr	5
T3ELG2006	Mikrocomputertechnik	2. Studienjahr	5
T3_3100	Studienarbeit	3. Studienjahr	5
T3_3200	Studienarbeit II	3. Studienjahr	5
T3_1000	Praxisprojekt I	1. Studienjahr	20
T3_2000	Praxisprojekt II	2. Studienjahr	20
T3_3000	Praxisprojekt III	3. Studienjahr	8
T3ELA2001	Grundlagen Elektrotechnik IV - Automation	2. Studienjahr	5
T3ELM2001	Einführung in die Medizintechnik	2. Studienjahr	5
T3ELM2002	Aufbau des Gesundheitswesens	2. Studienjahr	5
T3ELM3001	Medizinische Gerätetechnik	3. Studienjahr	5
T3ELA3002	Regelungssysteme	3. Studienjahr	5
T3_3300	Bachelorarbeit	3. Studienjahr	12
T3_ZELA2701	Informatik III	2. Studienjahr	5

Stand vom 01.10.2025 Curriculum // Seite 2

	VARIABLER MODULBEREICH		
NUMMER	MODULBEZEICHNUNG	VERORTUNG	ECTS
T3ELM2722	Spezielle Grundlagen der Medizintechnik	2. Studienjahr	5
T3ELM3003	Medizinische Messtechnik	3. Studienjahr	5
T3ELM3004	Betriebswirtschaftliche Grundlagen der Medizintechnik	3. Studienjahr	5
T3ELE3505	Embedded Systems	3. Studienjahr	5
T3ELM3721	Bildgebende Verfahren	3. Studienjahr	5
T3ELM3723	Clinical Workflow	3. Studienjahr	5
T3ELM3724	Wahlpflichtfach Medizintechnik	3. Studienjahr	5
T3ELM3726	Informationssysteme in der Medizintechnik	3. Studienjahr	5
T3ELM3725	Angewandte medizinische Informationstechnologien	3. Studienjahr	5
T3_9007	Nachhaltige Energiesysteme	3. Studienjahr	5

Stand vom 01.10.2025 Curriculum // Seite 3

Mathematik I (T3ELG1001)

Mathematics I

FORMALE ANGABEN ZUM MODUL

MODULNUMMERVERORTUNG IM STUDIENVERLAUFMODULDAUER (SEMESTER)MODULVERANTWORTUNGSPRACHET3ELG10011. Studienjahr1Prof. Dr. Gerhard GötzDeutsch

EINGESETZTE LEHRFORMEN

LEHRFORMEN LEHRMETHODEN

Vorlesung Lehrvortrag, Diskussion, Gruppenarbeit

EINGESETZTE PRÜFUNGSFORMEN

PRÜFUNGSLEISTUNGPRÜFUNGSUMFANG (IN MINUTEN)BENOTUNGKlausur120ja

WORKLOAD UND ECTS-LEISTUNGSPUNKTE

WORKLOAD INSGESAMT (IN H)DAVON PRÄSENZZEIT (IN H)DAVON SELBSTSTUDIUM (IN H)ECTS-LEISTUNGSPUNKTE15072785

QUALIFIKATIONSZIELE UND KOMPETENZEN

FACHKOMPETENZ

Die Studierenden sind in der Lage, mit den in den Modulinhalten genannten mathematischen Theoremen und Modelle zielgerichtete Berechnungen anzustellen.

METHODENKOMPETENZ

Die Studierenden kennen mit Abschluss des Moduls die in den Modulinhalten aufgeführten wissenschaftlichen Methoden und sind in der Lage, unter Einsatz dieser Methoden relevante Lösungen zu erarbeiten und unter Berücksichtigung wissenschaftlicher Erkenntnisse den Fachstandards entsprechend zu interpretieren.

PERSONALE UND SOZIALE KOMPETENZ

_

ÜBERGREIFENDE HANDLUNGSKOMPETENZ

-

LERNEINHEITEN UND INHALTE

LEHR- UND LERNEINHEITENPRÄSENZZEITSELBSTSTUDIUMMathematik 17278

Lineare Algebra

- Mathematische Grundbegriffe
- Vektorrechnung
- Matrizen
- Komplexe Zahlen

Analysis I

- Funktionen mit einer Veränderlichen
- Standardfunktionen und deren Umkehrfunktionen

BESONDERHEITEN

Stand vom 01.10.2025 T3ELG1001 // Seite 4

LITERATUR

- Papula, Lothar: Mathematik für Ingenieure und Naturwissenschaftler, Bände 1 u. 2, Vieweg Verlag
- Papula, Lothar: Mathematische Formelsammlung für Ingenieure und Naturwissenschaftler, Vieweg Verlag
- Neumayer; Kaup: Mathematik für Ingenieure, Bände 1 bis 3, Shaker Verlag
- Leupold: Mathematik, ein Studienbuch für Ingenieure, Bände 1 bis 3, Hanser Verlag
- Preuss; Wenisch; Schmidt: Lehr- und Übungsbuch Mathematik, Bände 1 bis 3, Hanser Fachbuchverlag
- Fetzer; Fränkel: Mathematik, Lehrbuch für İngenieurwissenschaftliche Studiengänge, Bände 1 und 2, Springer-Verlag
- Engeln-Müllges, Gisela; Schäfer, Wolfgang; Trippler, Gisela: Kompaktkurs Ingenieurmathematik mit Wahrscheinlichkeitsrechnung und Statistik, Fachbuchverlag Leipzig - Rießinger, Thomas: Mathematik für Ingenieure, Springer Verlag - Stry, Yvonne; Schwenkert, Rainer: Mathematik kompakt für Ingenieure und Informatiker, Springer Verlag
- Bronstein; Semendjajew; Musiol; Mühlig: Taschenbuch der Mathematik, Harri Deutsch Verlag

Stand vom 01.10.2025 T3ELG1001 // Seite 5

Mathematik II (T3ELG1002)

Mathematics II

FORMALE ANGABEN ZUM MODUL

MODULNUMMERVERORTUNG IM STUDIENVERLAUFMODULDAUER (SEMESTER)MODULVERANTWORTUNGSPRACHET3ELG10021. Studienjahr1Prof. Dr. Gerhard GötzDeutsch

EINGESETZTE LEHRFORMEN

LEHRFORMENLEHRMETHODENVorlesungLehrvortrag, Diskussion

EINGESETZTE PRÜFUNGSFORMEN

PRÜFUNGSLEISTUNGPRÜFUNGSUMFANG (IN MINUTEN)BENOTUNGKlausur120ja

WORKLOAD UND ECTS-LEISTUNGSPUNKTE

WORKLOAD INSGESAMT (IN H)DAVON PRÄSENZZEIT (IN H)DAVON SELBSTSTUDIUM (IN H)ECTS-LEISTUNGSPUNKTE15072785

QUALIFIKATIONSZIELE UND KOMPETENZEN

FACHKOMPETENZ

Die Studierenden sind in der Lage, mit den in den Modulinhalten genannten mathematischen Theoremen und Modellen zielgerichtete Berechnungen anzustellen.

METHODENKOMPETENZ

Die Studierenden kennen mit Abschluss des Moduls die in den Modulinhalten aufgeführten wissenschaftlichen Methoden und sind in der Lage, unter Einsatz dieser Methoden relevante Informationen zu sammeln und unter Berücksichtigung wissenschaftlicher Erkenntnisse den Fachstandards entsprechend zu interpretieren.

PERSONALE UND SOZIALE KOMPETENZ

_

ÜBERGREIFENDE HANDLUNGSKOMPETENZ

-

LERNEINHEITEN UND INHALTE

LEHR- UND LERNEINHEITENPRÄSENZZEITSELBSTSTUDIUMMathematik 27278

Analysis I (Fortsetzung)

- Folgen und Reihen, Konvergenz, Grenzwerte
- Differenzialrechnung einer Variablen
- Integralrechnung einer Variablen
- Gewöhnliche Differenzialgleichungen
- Numerische Verfahren der Integralrechnung und zur Lösung von Differenzialgleichungen

BESONDERHEITEN

-

VORAUSSETZUNGEN

-

Stand vom 01.10.2025 T3ELG1002 // Seite 6

LITERATUR

- Papula, Lothar: Mathematik für Ingenieure und Naturwissenschaftler, Bände 1 u. 2, Vieweg Verlag
- Papula, Lothar: Mathematische Formelsammlung für Ingenieure und Naturwissenschaftler, Vieweg Verlag
- Neumayer; Kaup: Mathematik für Ingenieure, Bände 1 bis 3, Shaker Verlag
- Leupold: Mathematik, ein Studienbuch für Ingenieure, Bände 1 bis 3, Hanser Verlag
- Preuss; Wenisch; Schmidt: Lehr- und Übungsbuch Mathematik, Bände 1 bis 3, Hanser Fachbuchverlag
 Fetzer; Fränkel: Mathematik, Lehrbuch für ingenieurwissenschaftliche Studiengänge, Bände 1 und 2, Springer-Verlag
- Engeln-Müllges, Gisela; Schäfer, Wolfgang; Trippler, Gisela: Kompaktkurs Ingenieurmathematik mit Wahrscheinlichkeitsrechnung und Statistik, Fachbuchverlag Leipzig - Rießinger, Thomas: Mathematik für Ingenieure, Springer Verlag - Stry, Yvonne; Schwenkert, Rainer: Mathematik kompakt für Ingenieure und Informatiker, Springer Verlag
- Bronstein; Semendjajew; Musiol; Mühlig: Taschenbuch der Mathematik, Harri Deutsch Verlag

Stand vom 01.10.2025 T3ELG1002 // Seite 7

Physik (T3ELG1003)

Physics

FORMALE ANGABEN ZUM MODUL

MODULNUMMERVERORTUNG IM STUDIENVERLAUFMODULDAUER (SEMESTER)MODULVERANTWORTUNGSPRACHET3ELG10031. Studienjahr2Prof. Dr.-Ing. Thomas KiblerDeutsch

EINGESETZTE LEHRFORMEN

LEHRFORMENLEHRMETHODENVorlesungLehrvortrag, Diskussion

EINGESETZTE PRÜFUNGSFORMEN

PRÜFUNGSLEISTUNGPRÜFUNGSUMFANG (IN MINUTEN)BENOTUNGKlausur120ja

WORKLOAD UND ECTS-LEISTUNGSPUNKTE

WORKLOAD INSGESAMT (IN H)
DAVON PRÄSENZZEIT (IN H)
DAVON SELBSTSTUDIUM (IN H)
ECTS-LEISTUNGSPUNKTE
72
78
5

QUALIFIKATIONSZIELE UND KOMPETENZEN

FACHKOMPETENZ

Die Studierenden sind in der Lage, mit den in den Modulinhalten genannten mathematischen, physikalischen Theoremen und Modelle zielgerichtete Berechnungen anzustellen. Sie analysieren einfache Problemstellungen aus der Praxis treffsicher, nutzen die für die Lösung relevanten Informationen und führen die Berechnungen selbständig durch.

METHODENKOMPETENZ

Die Studierenden kennen mit Abschluss des Moduls die in den Modulinhalten aufgeführten wissenschaftlichen Methoden und sind in der Lage, unter Einsatz dieser Methoden relevante Informationen zu sammeln und unter Berücksichtigung wissenschaftlicher Erkenntnisse den Fachstandards entsprechend zu interpretieren.

PERSONALE UND SOZIALE KOMPETENZ

ÜBERGREIFENDE HANDLUNGSKOMPETENZ

Sie zeichnen sich aus durch fundiertes fachliches Wissen, Verständnis für übergreifende Zusammenhänge sowie die Fähigkeit, theoretisches Wissen in die Praxis zu übertragen.

LERNEINHEITEN UND INHALTE

LEHR- UND LERNEINHEITENPRÄSENZZEITSELBSTSTUDIUMPhysik7278

Technische Mechanik

- Kinematik, Dynamik, Impuls, Arbeit und Energie, Stoßprozesse, Drehbewegungen, Mechanik starrer Körper
- Einführung in die Mechanik deformierbarer Körper und die Mechanik der Flüssigkeiten und Gase

Schwingungen und Wellen

- Schwingungsfähige Systeme
- Grundlagen der Wellenausbreitung
- Akustik
- geometrische Optik
- Wellenoptik, Doppler-Effekt, Interferenz

Grundlagen der Thermodynamik

- Kinetische Theorie
- Hauptsätze der Wärmelehre

Stand vom 01.10.2025 T3ELG1003 // Seite 8

LEHR- UND LERNEINHEITEN PRÄSENZZEIT SELBSTSTUDIUM

BESONDERHEITEN

Die Veranstaltung kann durch Labors und begleitendes Lernen in Form von Übungsstunden mit bis zu 12 h vertieft werden.

VORAUSSETZUNGEN

LITERATUR

- Hering, Martin, Stohrer: Physik für Ingenieure, Springer.
- Stroppe: PHYSIK für Studierende der Natur- und Ingenieurwissenschaften, Carl Hanser Verlag GmbH & Co. KG. Tipler, P.A: Physik für Wissenschaftler und Ingenieure, Spektrum Akademischer Verlag.
- Halliday: Halliday Physik: Bachelor-Edition, Wiley-VCH Verlag GmbH & Co. KGaA.
 Gerthsen, C., Vogel, H.: Physik, Springer Verlag.
 Alonso, M., Finn, E.J: Physik, Oldenbourg Verlag.

Stand vom 01.10.2025 T3ELG1003 // Seite 9 Studienbereich Technik // School of Engineering
Elektrotechnik // Electrical Engineering
Medizintechnik // Medical Engineering
MANNHEIM

Grundlagen Elektrotechnik I (T3ELG1004)

Principles of Electrical Engineering I

FORMALE ANGABEN ZUM MODUL

MODULNUMMERVERORTUNG IM STUDIENVERLAUFMODULDAUER (SEMESTER)MODULVERANTWORTUNGSPRACHET3ELG10041. Studienjahr1Prof. Dr.-Ing. Gerald OberschmidtDeutsch

EINGESETZTE LEHRFORMEN

LEHRFORMENLEHRMETHODENVorlesung, ÜbungLehrvortrag, Diskussion

EINGESETZTE PRÜFUNGSFORMEN

PRÜFUNGSLEISTUNGPRÜFUNGSUMFANG (IN MINUTEN)BENOTUNGKlausur120ja

WORKLOAD UND ECTS-LEISTUNGSPUNKTE

WORKLOAD INSGESAMT (IN H)DAVON PRÄSENZZEIT (IN H)DAVON SELBSTSTUDIUM (IN H)ECTS-LEISTUNGSPUNKTE15072785

QUALIFIKATIONSZIELE UND KOMPETENZEN

FACHKOMPETENZ

Die Studierenden sind in der Lage, mit den in den Modulinhalten genannten mathematischen Theoremen und Modelle für Standardfälle der Praxis Berechnungen anzustellen. Sie analysieren einfache Problemstellungen aus der Praxis treffsicher, nutzen die für die Lösung relevanten Informationen und führen die Berechnung/ Analyse selbständig durch.

METHODENKOMPETENZ

Die Studierenden sind mit Abschluss des Moduls in der Lage, für weitgehend standardisierte Anwendungsfälle in der Praxis die angemessene Methode auszuwählen und anzuwenden. Sie kennen die Stärken und Schwächen der Methode in ihrem beruflichen Anwendungsfeld und können diese in konkreten Handlungssituationen gegeneinander abwägen.

PERSONALE UND SOZIALE KOMPETENZ

-

ÜBERGREIFENDE HANDLUNGSKOMPETENZ

-

LERNEINHEITEN UND INHALTE

LEHR- UND LERNEINHEITEN	PRÄSENZZEIT	SELBSTSTUDIUM
Grundlagen Elektrotechnik 1	72	78

Stand vom 01.10.2025 T3ELG1004 // Seite 10

LERNEINHEITEN UND INHALTE

LEHR- UND LERNEINHEITEN

Grundlagen der Elektrotechnik 1

 Grundlegende Begriffe und Definitionen MKSA-System elektrischer Strom elektrische Spannung elektrischer Widerstand/Leitwert Temperaturabhängigkeiten

- elektrischer Widerstand/Leitwert
 Temperaturabhängigkeiten
 Einfacher Gleichstromkreis
 reale Spannungsquelle
 reale Stromquelle
- Verzweigte Gleichstromkreise
- Zweigstromanalyse
- Knotenanalyse
- Maschenanalyse
- Kapazität, Kondensator, Induktivität, Spule
- Strom/Spannungs-DGLs an RLC-Gliedern
- Analyse einfacher RC/RL-Glieder
- Lade/Entladeverhalten, Zeitkonstante

BESONDERHEITEN

VORAUSSETZUNGEN

LITERATUR

- Führer, Arnold; Heidemann, Klaus; Nerreter, Wolfgang: Grundgebiete der Elektrotechnik. Band 1: Stationäre Vorgänge. München, Wien: Hanser Verlag
- Führer, Arnold; Heidemann, Klaus; Nerreter, Wolfgang: Grundgebiete der Elektrotechnik. Band 2: Zeitabhängige Vorgänge. München, Wien: Hanser Verlag
- Weißgerber, Wilfried: Elektrotechnik für Ingenieure. Band 1: Gleichstromtechnik und Elektromagnetisches Feld. Braunschweig, Wiesbaden: Vieweg+Teubner Verlag

PRÄSENZZEIT

SELBSTSTUDIUM

- Weißgerber, Wilfried: Elektrotechnik für Ingenieure. Band 2: Wechselstromtechnik, Ortskurven, Transformator, Mehrphasensysteme. Springer Vieweg
- Paul, Reinhold: Elektrotechnik. Band 1: Elektrische Erscheinungen und Felder. Berlin, Heidelberg, New York: Springer Verlag
- Paul, Reinhold: Elektrotechnik. Band 2: Netzwerke. Berlin, Heidelberg, New York: Springer Verlag
- Erwin Böhmer: Elemente der angewandten Elektronik, Vieweg+Teubner Verlag
- Ulrich Tietze, Christoph Schenk: Halbleiter-Schaltungstechnik, Springer

Stand vom 01.10.2025 T3ELG1004 // Seite 11

13

Grundlagen Elektrotechnik II (T3ELG1005)

Principles of Electrical Engineering II

FORMALE ANGABEN ZUM MODUL

MODULNUMMER	VERORTUNG IM STUDIENVERLAUF	MODULDAUER (SEMESTER)	MODULVERANTWORTUNG	SPRACHE
T3ELG1005	1. Studienjahr	1	Prof. DrIng. Gerald Oberschmidt	Deutsch

EINGESETZTE LEHRFORMEN

LEHRFORMEN	LEHRMETHODEN
Labor, Vorlesung, Übung	Laborarbeit, Lehrvortrag, Diskussion

EINGESETZTE PRÜFUNGSFORMEN

PRÜFUNGSLEISTUNG	PRÜFUNGSUMFANG (IN MINUTEN)	BENOTUNG
Klausur	120	ja
Laborarbeit	Siehe Pruefungsordnung	Bestanden/ Nicht-Bestanden

WORKLOAD UND ECTS-LEISTUNGSPUNKTE

WORKLOAD INSGESAMT (IN H)	DAVON PRÄSENZZEIT (IN H)	DAVON SELBSTSTUDIUM (IN H)	ECTS-LEISTUNGSPUNKTE
150	72	78	5

QUALIFIKATIONSZIELE UND KOMPETENZEN

FACHKOMPETENZ

Die Studierenden sind in der Lage, mit den in den Modulinhalten genannten mathematischen Theoremen und Modelle für Standardfälle der Praxis Berechnungen anzustellen. Sie analysieren einfache Problemstellungen aus der Praxis treffsicher, nutzen die für die Lösung relevanten Informationen und führen die Berechnung/ Analyse selbständig durch

METHODENKOMPETENZ

Die Studierenden sind mit Abschluss des Moduls in der Lage, für weitgehend standardisierte Anwendungsfälle in der Praxis die angemessene Methode auszuwählen und anzuwenden. Sie kennen die Stärken und Schwächen der Methode in ihrem beruflichen Anwendungsfeld und können diese in konkreten Handlungssituationen gegeneinander abwägen.

PERSONALE UND SOZIALE KOMPETENZ

-

ÜBERGREIFENDE HANDLUNGSKOMPETENZ

-

LERNEINHEITEN UND INHALTE

LEHR- UND LERNEINHEITEN	PRÄSENZZEIT	SELBSTSTUDIUM
Grundlagen Elektrotechnik 2	60	65
Grundlagen der Elektrotechnik 2 - Netzwerke bei stationärer harmonischer Erregung - Komplexe Wechselstromrechnung - einfache frequenzabhängige Schaltungen		

Labor Grundlagen Elektrotechnik 1 - Strom- und Spannungsmessungen

- Oszilloskop, Multimeter und andere Meßgeräte
- Einfache Gleich- und Wechselstromkreise
- Kennlinien elektrischer Bauelemente

Stand vom 01.10.2025 T3ELG1005 // Seite 12

BESONDERHEITEN

- ergänzt durch ein Grundlagenlabor

VORAUSSETZUNGEN

LITERATUR

- Führer, Arnold; Heidemann, Klaus; Nerreter, Wolfgang: Grundgebiete der Elektrotechnik. Band 1: Stationäre Vorgänge. München, Wien: Hanser Verlag
- Führer, Arnold; Heidemann, Klaus; Nerreter, Wolfgang: Grundgebiete der Elektrotechnik. Band 2: Zeitabhängige Vorgänge München, Wien: Hanser Verlag
- Weißgerber, Wilfried: Elektrotechnik für Ingenieure. Band 1: Gleichstromtechnik und Elektromagnetisches Feld. Braunschweig, Wiesbaden: Vieweg+Teubner Verlag
- Weißgerber, Wilfried: Elektrotechnik für Ingenieure. Band 2: Wechselstromtechnik, Ortskurven, Transformator, Mehrphasensysteme. Braunschweig, Wiesbaden: Springer Vieweg
- Paul, Reinhold: Elektrotechnik. Band 1: Elektrische Erscheinungen und Felder. Berlin, Heidelberg, New York: Springer Verlag
- Paul, Reinhold: Elektrotechnik. Band 2: Netzwerke. Berlin, Heidelberg, New York: Springer Verlag
- Erwin Böhmer: Elemente der angewandten Elektronik, Vieweg+Teubner
- Ulrich Tietze, Christoph Schenk: Halbleiter-Schaltungstechnik, Springer
- Manfred Albach: Grundlagen der Elektrotechnik 1, 2, 3, Pearson Clausert/ Wiesemann: Grundgebiete der Elektrotechnik 1, 2 Oldenbourg
- Gert Hagmann: Grundlagen der Elektrotechnik, Aula
- Koß, Reinhold, Hoppe: Lehr- und Übungsbuch Elektronik, Hanser

Stand vom 01.10.2025 T3ELG1005 // Seite 13

Studienbereich Technik // School of Engineering
Elektrotechnik // Electrical Engineering
Medizintechnik // Medical Engineering
MANNHEIM

Digitaltechnik (T3ELG1006)

Digital Technology

FORMALE ANGABEN ZUM MODUL

MODULNUMMERVERORTUNG IM STUDIENVERLAUFMODULDAUER (SEMESTER)MODULVERANTWORTUNGSPRACHET3ELG10061. Studienjahr2Prof. Dr. Ralf DorwarthDeutsch

EINGESETZTE LEHRFORMEN

LEHRFORMENLEHRMETHODENVorlesung, Übung, LaborLehrvortrag, Diskussion

EINGESETZTE PRÜFUNGSFORMEN

PRÜFUNGSLEISTUNGPRÜFUNGSUMFANG (IN MINUTEN)BENOTUNGKlausur120ja

WORKLOAD UND ECTS-LEISTUNGSPUNKTE

WORKLOAD INSGESAMT (IN H)DAVON PRÄSENZZEIT (IN H)DAVON SELBSTSTUDIUM (IN H)ECTS-LEISTUNGSPUNKTE15060905

QUALIFIKATIONSZIELE UND KOMPETENZEN

FACHKOMPETENZ

Die Studierenden sind in der Lage, mit den in den Modulinhalten genannten Theoremen und Modelle für Standardfälle der Praxis Berechnungen anzustellen. Sie analysieren einfache Problemstellungen aus der Praxis treffsicher, nutzen die für die Lösung relevanten Informationen und führen die Analyse selbständig durch.

METHODENKOMPETENZ

Die Studierenden sind mit Abschluss des Moduls in der Lage, für weitgehend standardisierte Anwendungsfälle in der Praxis die angemessene Methode auszuwählen und anzuwenden. Sie kennen die Stärken und Schwächen der Methode in ihrem beruflichen Anwendungsfeld und können diese in konkreten Handlungssituationen gegeneinander abwägen.

PERSONALE UND SOZIALE KOMPETENZ

Die Studierenden können sowohl eigenständig, also auch im Team zielorientiert und nachhaltig handeln.

ÜBERGREIFENDE HANDLUNGSKOMPETENZ

-

LERNEINHEITEN UND INHALTE

LEHR- UND LERNEINHEITEN	PRÄSENZZEIT	SELBSTSTUDIUM
Digitaltechnik	60	90

Stand vom 01.10.2025 T3ELG1006 // Seite 14

LEHR- UND LERNEINHEITEN PRÄSENZZEIT SELBSTSTUDIUM

- Grundbegriffe, Quantisierung
- Binäre Zahlensysteme
- Codes mit und ohne Fehlerkorrektur
- Logische Verknüpfungen, Schaltalgebra
- Rechenregeln
- Methoden des Entwurfs und der Vereinfachung
- Anwendungen (Decoder, Multiplexer, etc.)
- Speicherschaltungen, Schaltwerke
- Flip Flop und Register
- Entwurfstechniken für Schaltwerke
- Anwendung (Zähler, Teiler, etc.)
- Programmierbare Logik (nur PLD)
- Einführung in PAL, GAL
- Rechnergestützter Entwurf
- Schaltkreistechnik und -familien (TTL, CMOS)
- Pegel, Störspannungsabstand
- Übergangskennlinie
- Verlustleistung
- Zeitverhalten
- Hinweise zum Einsatz in der Schaltung
- Interfacetechniken, Bussysteme
- Bustreiberschaltungen
- Abschlüsse, Reflexionen

BESONDERHEITEN

Dieses Modul beinhaltet zusätzlich bis zu 12 h begleites Lernern in Form von Laborübungen bzw. Übungsblättern. Hierbei werden Übungsaufgaben zusammen mit dem Studierenden theoretisch und praktisch berarbeitet.

VORAUSSETZUNGEN

LITERATUR

- C. Siemers, A. Sikora: Taschenbuch Digitaltechnik Hanser Verlag
- K. Beuth: Elektronik 4. Digitaltechnik Vogel Verlag
- H.M. Lipp, J. Becker: Grundlagen der Digitaltechnik Oldenbourg Verlag
- Borgmeyer, Johannes: Grundlagen der Digitaltechnik Fachbuchverlag Leipzig

Stand vom 01.10.2025 T3ELG1006 // Seite 15

Studienbereich Technik // School of Engineering
Elektrotechnik // Electrical Engineering
Medizintechnik // Medical Engineering
MANNHEIM

Elektronik und Messtechnik I (T3ELG1007)

Electronics and Measurement Technology I

FORMALE ANGABEN ZUM MODUL

MODULNUMMERVERORTUNG IM STUDIENVERLAUFMODULDAUER (SEMESTER)MODULVERANTWORTUNGSPRACHET3ELG10071. Studienjahr1Prof. Dr. Frauke SteinhagenDeutsch

EINGESETZTE LEHRFORMEN

LEHRFORMENLEHRMETHODENVorlesung, Vorlesung, ÜbungLehrvortrag, Diskussion, Lehrvortrag, Diskussion, Fallstudien

EINGESETZTE PRÜFUNGSFORMEN

PRÜFUNGSLEISTUNGPRÜFUNGSUMFANG (IN MINUTEN)BENOTUNGKlausur120ja

WORKLOAD UND ECTS-LEISTUNGSPUNKTE

WORKLOAD INSGESAMT (IN H)DAVON PRÄSENZZEIT (IN H)DAVON SELBSTSTUDIUM (IN H)ECTS-LEISTUNGSPUNKTE15072785

QUALIFIKATIONSZIELE UND KOMPETENZEN

FACHKOMPETENZ

Die Studierenden sind in der Lage, mit den in den Modulinhalten genannten technisch-mathematischen Theoremen Berechnungen durchzuführen. Sie analysieren einfache Problemstellungen aus der Praxis treffsicher, nutzen die für die Lösung relevanten Informationen und führen die Berechnung und Analyse selbstständig durch.

METHODENKOMPETENZ

Die Studierenden sind mit Abschluss des Moduls in der Lage, für weitgehend standardisierte Anwendungsfälle in der Praxis die angemessene Methode auszuwählen und anzuwenden. Sie kennen die Stärken und Schwächen der Methode in ihrem beruflichen Anwendungsfeld und können diese in konkreten Handlungssituationen gegeneinander abwägen.

PERSONALE UND SOZIALE KOMPETENZ

Die Studierenden können sowohl eigenständig als auch im Team zielorientiert und nachhaltig handeln.

ÜBERGREIFENDE HANDLUNGSKOMPETENZ

LERNEINHEITEN UND INHALTE

LEHR- UND LERNEINHEITEN	PRÄSENZZEIT	SELBSTSTUDIUM
Elektronik 1	48	52

Stand vom 01.10.2025 T3ELG1007 // Seite 16

LEHR- UND LERNEINHEITEN PRÄSENZZEIT SELBSTSTUDIUM

Physikalische Grundlagen der Halbleiter

- pn-Übergang (phänomenologische Beschreibung)
- Einführung in die integrierte Technik und Halbleiterprozesse
- Thermischer Widerstand und Kühlung

Diode

- Eigenschaften
- Anwendungen, Beispielschaltungen
- Thyristor und Triac
- Z-Diode und Referenzelemente
- Eigenschaften von Z-Dioden
- Aufbau und Eigenschaften von Referenzelementen
- Anwendungen, Beispielschaltungen

Bipolarer Transistor

- Eigenschaften
- Anwendung als Kleinsignalverstärker
- Anwendung als Schalter

Idealer Operationsverstärker

- Eigenschaften
- Grundschaltungen

Messtechnik 1 24 26

Grundlagen und Begriffe

- Einheiten und Standards
- Kenngrößen elektrischer Signale
- Messfehler und Messunsicherheit
- Darstellung von Messergebnissen

Überblick über Signalquellen und Geräte der elektrischen Messtechnik

- Gleichspannungs- und Gleichstromquellen
- Funktionsgeneratoren
- Messgeräte

Messverfahren

- Messen von Gleichstrom und Gleichspannung
- Messen von Widerständen
- Messen von Wechselgrößen
- Messbereichserweiterungen
- Gleichstrommessbrücken

BESONDERHEITEN

VORAUSSETZUNGEN

LITERATUR

- G. Mechelke: Einführung in die Analog- und Digitaltechnik, STAM Verlag
- E. Hering, K. Bressler, J. Gutekunst: Elektronik für Ingenieure, VDI Verlag
- E. Böhmer: Elemente der angewandten Elektronik, Vieweg Verlag
- Stefan Goßner: Grundlagen der Elektronik, Shaker Verlag
- U. Tietze, C. Schenk: Halbleiter-Schaltungstechnik, Springer Verlag
- G. Koß, W. Reinhold: Lehr- und Übungsbuch Elektronik, Fachbuchverlag Leipzig
- R. Kories, H. Schmidt-Walter: Taschenbuch der Elektrotechnik Grundlagen und Elektronik, Verlag Harri Deutsch
- H. Lindner, H. Brauer, C. Lehmann: Taschenbuch der Elektrotechnik und Elektronik, Fachbuchverlag Leipzi
- Wolfgang Schmusch: Elektronische Messtechnik, Vogel-Verlag
- Jörg Hoffmann: Taschenbuch der Messtechnik, Fachbuchverlag Leipzig im Carl Hanser Verlag

Stand vom 01.10.2025 T3ELG1007 // Seite 17

Informatik I (T3ELG1008)

Computer Science I

FORMALE ANGABEN ZUM MODUL

MODULNUMMERVERORTUNG IM STUDIENVERLAUFMODULDAUER (SEMESTER)MODULVERANTWORTUNGSPRACHET3ELG10081. Studienjahr1Prof. Dr. Christian KuhnDeutsch/Englisch

EINGESETZTE LEHRFORMEN

LEHRFORMENLEHRMETHODENLabor, Vorlesung, ÜbungLaborarbeit, Lehrvortrag, Diskussion, Gruppenarbeit

EINGESETZTE PRÜFUNGSFORMEN

PRÜFUNGSLEISTUNGPRÜFUNGSUMFANG (IN MINUTEN)BENOTUNGKombinierte Prüfung - Programmentwurf 60 % und Klausur 40 %120ja

WORKLOAD UND ECTS-LEISTUNGSPUNKTE

WORKLOAD INSGESAMT (IN H)DAVON PRÄSENZZEIT (IN H)DAVON SELBSTSTUDIUM (IN H)ECTS-LEISTUNGSPUNKTE15060905

QUALIFIKATIONSZIELE UND KOMPETENZEN

FACHKOMPETENZ

Die Studierenden können nach Abschluss des Moduls

- Konzepte von Software und Softwareentwicklung verstehen
- Algorithmen und Datenstrukturen verstehen und strukturieren
- Erste kleine Anwendungen in einer Hochsprache schreiben
- Werkzeuge der Softwareentwicklung auf Problemstellungen anwenden

METHODENKOMPETENZ

Die Studierenden erwerben die Kompetenz:

- systematische Vorgehensweise auf dem Weg vom Problem zum Programm zu kennen und erfahren
- einfache Problemstellungen zu analysieren und Programm-Strukturen umzusetzen
- schrittweise Verfeinerung eines Algorithmus gemäß Problemlösung umzusetzen

PERSONALE UND SOZIALE KOMPETENZ

Die Studierenden erfahren,

- in Teams und Kleingruppen Umsetzungen von Programmen zu diskutieren und durchzuführen
- eigene Umsetzungsideen zu präsentieren und erläutern

ÜBERGREIFENDE HANDLUNGSKOMPETENZ

Die Studierenden besitzen die Kompetenz,

- einfache Aufgabenstellungen aus verschiedenen Anwendungsbereichen zu analysieren, zu diskutieren und zu modellieren
- daraus einen Algorithmus zu entwickeln
- sich an fachlichen Gesprächen und Diskussionen des Fachgebiets zu beteiligen

LERNEINHEITEN UND INHALTE

LEHR- UND LERNEINHEITEN	PRÄSENZZEIT	SELBSTSTUDIUM
Grundlagen der Informatik 1	36	44

Stand vom 01.10.2025 T3ELG1008 // Seite 18

LEHR- UND LERNEINHEITEN PRÄSENZZEIT SELBSTSTUDIUM

Grundlagen der Informatik

- Begrifflichkeiten, Ziele
- Einführung in Rechnersysteme
- Software/Hardware, Betriebssystem, Netzwerk

Grundlagen Softwareentwicklung

- Grundprinzipien von Sprachen (Compiler/Interpreter), Beispiele
- Datentypen, Einfache Datenstrukturen
- Entwurfsmethodik, Spezifikation
- Sprachkonstrukte/Befehlssatz
- Ein- und Ausgabe (Konsole)
- Programmkonstruktion Strukturierte Programmierung
- Einfache Algorithmen
- Staple, Queue, Sortier- und Suchalgorithmen
- Bibliotheken, Schnittstellen

Werkzeuge der Softwareentwicklung

- Einfache Modellierung (Flussdiagramme, Struktogramme)
- Entwicklungsumgebung (SDK/IDE)
- Test, Debugging

Einführung und Verwendung einer klassischen Hochsprache (bevorzugt C und/oder C++, alternativ C#, Java, ...) in einfachen Beispielen. Einführung einer typischen Entwicklungsumgebung

Labor Softwareentwicklung 1 24 46

Selbständige, angeleitete Verwendung einer Softwareentwicklungsumgebung und Verwendung von typischen Werkzeugen der Softwarenetwicklung

Bearbeitung von einfachen, vorgegebenen Problemstellungen und eigenständige Lösung mit Modellen, Algorithmen und Programm-Implementierung, einfache Beispiele (10-50 Codezeilen).

Verwendung einer Hochsprache (bevorzugt C und/oder C++, alternativ C#, Java, ...)

BESONDERHEITEN

Hoher Praxisanteil durch begleitete Laborübungen

VORAUSSETZUNGEN

- Mathematische Grundlagen (Abiturkenntnisse)
- Basiskenntnisse Rechnersysteme (PC, Internet)

Keine Programmierkenntnisse notwendig.

LITERATUR

- Kernighan, B, Ritchie, D.: Programmierwen in C, Hanser Verlag München
- Stroustrup, B.: Einführung in die Programmierung mit C++, Pearson Studium, München
- -Levi, P., Rembold, U.: Einführung in die Informatik für Naturwissenschaftler und Ingenieure, Hanser Verlag, München
- Broy, M.: Informatik eine grundlegende Einführung, Springer Verlag
- Wirth, N.: Algorithmen und Datenstrukturen, Teubner Verlag, Stuttgart
- Herold, H., Lurz, B., Wohlrab, J.: Grundlagen der Informatik, Pearson Studium, München
- Kueveler, G., Schwoch, D.: Informatik für Ingenieure und Naturwissenschaftler 1: Grundlagen, Programmieren mit C/C++, Vieweg+Teubner

Stand vom 01.10.2025 T3ELG1008 // Seite 19

Informatik II (T3ELG1009)

Computer Science II

FORMALE ANGABEN ZUM MODUL

MODULNUMMERVERORTUNG IM STUDIENVERLAUFMODULDAUER (SEMESTER)MODULVERANTWORTUNGSPRACHET3ELG10091. Studienjahr1Prof. Dr. Christian KuhnDeutsch/Englisch

EINGESETZTE LEHRFORMEN

LEHRFORMENLEHRMETHODENLabor, Vorlesung, ÜbungLaborarbeit, Lehrvortrag, Diskussion, Gruppenarbeit

EINGESETZTE PRÜFUNGSFORMEN

PRÜFUNGSLEISTUNG
Programmentwurf oder Kombinierte Prüfung (Programmentwurf 60 % und Klausur 40 %)
PRÜFUNGSUMFANG (IN MINUTEN)
BENOTUNG
120
120
120

WORKLOAD UND ECTS-LEISTUNGSPUNKTE

WORKLOAD INSGESAMT (IN H)	DAVON PRÄSENZZEIT (IN H)	DAVON SELBSTSTUDIUM (IN H)	ECTS-LEISTUNGSPUNKTE
150	48	102	5

QUALIFIKATIONSZIELE UND KOMPETENZEN

FACHKOMPETENZ

Die Studierenden können nach Abschluss des Moduls

- Erweitertet Konzepte von Software und Softwareentwicklung verstehen
- Komplexerer Algorithmen und Datenstrukturen verstehen und strukturieren sowie in voneinander unabhängige Module zu zerlegen
- Komplexere Anwendungen in einer Hochsprache schreiben
- abstrakte Datentypen und Operationen zu einem Algorithmus ausarbeiten und definieren sowie hierachisch zu entwerfen
- Weitere Werkzeuge der Softwareentwicklung auf Problemstellungen anwenden

METHODENKOMPETENZ

Die Studierenden erwerben die Kompetenz:

- systematische Vorgehensweise auf dem Weg vom Problem zum Programm zu kennen und selbst durchzuführen und ihr Wissen auf komplexere Aufgaben anzuwenden.
- komplexere Problemstellungen zu analysieren und Programm-Strukturen umzusetzen

PERSONALE UND SOZIALE KOMPETENZ

Die Studierenden erfahren,

- in Teams und Kleingruppen Umsetzungen von Programmen zu diskutieren, inhaltlich zu erläutern und durchzuführen
- eigene Umsetzungsideen zu präsentieren und mit anderen Ansätzen zu vergleichen

ÜBERGREIFENDE HANDLUNGSKOMPETENZ

Die Studierenden besitzen die Kompetenz,

- komplexere Aufgabenstellungen aus verschiedenen Anwendungsbereichen zu analysieren, zu diskutieren und zu modellieren
- daraus ein modulare Programmstruktur zu entwickeln
- sich an fachlichen Gesprächen und Diskussionen des Fachgebiets zu beteiligen

LERNEINHEITEN UND INHALTE

LEHR- UND LERNEINHEITEN	PRÄSENZZEIT	SELBSTSTUDIUM
Grundlagen der Informatik 2	24	38

Stand vom 01.10.2025 T3ELG1009 // Seite 20

LEHR- UND LERNEINHEITEN PRÄSENZZEIT SELBSTSTUDIUM

Erweiterung Softwareentwicklung

- Komplexe Datenstrukturen (Bäume, Graphen), Abstrakte Datentypen
- Modularisierung
- Kompexere Algorithmen, Rekursion
- Automaten-Theorie
- Konzepte der Objektorientierung

Werkzeuge der Softwareentwicklung

- Erweiterte Modellierung (z.B. UML)
- Erweitertes Debugging

Auswahl an Zusatzinhalten (optional):

- Graphische Benutzeroberflächen Bibliotheken
- Grundkonzepte Web-Entwicklung (HTML, Skriptsprachen)
- Datenbanken, SQL, Zugriff von Programmen
- IT-Sicherheit

Verwendung einer klassischen Hochsprache (bevorzugt C und/oder C++, alternativ C#, Java, ...) in komplexeren Beispielen.

Verwendung einer typischen Entwicklungsumgebung.

Labor Softwareentwicklung 2 24 64

Selbständige, angeleitete Verwendung einer Softwareentwicklungsumgebung und Verwendung von typischen Werkzeugen der Softwarenentwicklung

Bearbeitung von einfachen, vorgegebenen Problemstellungen und eigenständige Lösung mit Modellen, Algorithmen und Programm-Implementierung, komplexere Beispiele (50-500 Codezeilen)

--> auch als selbständige Gruppen/Teamarbeit (hoher Anteil Selbststudium) und Vorstellung der Lösung (inkl. Implementierung) im Präsenzlabor

Verwendung einer Hochsprache (bevorzugt C und/oder C++, alternativ C#, Java, ...)

BESONDERHEITEN

Hoher Praxisanteil durch begleitete Laborübungen

VORAUSSETZUNGEN

Modul Informatik I

LITERATUR

- Kernighan, B, Ritchie, D.: Programmierwen in C, Hanser Verlag München
- Stroustrup, B.: Einführung in die Programmierung mit C++, Pearson Studium, München
- -Levi, P., Rembold, U.: Einführung in die Informatik für Naturwissenschaftler und Ingenieure, Hanser Verlag, München
- Broy, M.: Informatik eine grundlegende Einführung, Springer Verlag
- Wirth, N.: Algorithmen und Datenstrukturen, Teubner Verlag, Stuttgart
- Herold, H., Lurz, B., Wohlrab, J.: Grundlagen der Informatik, Pearson Studium, München
- Alfred V. Aho, Jeffrey D. Ullmann: Informatik Datenstrukturen und Konzepte der Abstraktion, International Thomson Publishing, Bonn
- Kueveler, G., Schwoch, D.: nformatik für Ingenieure und Naturwissenschaftler 1: Grundlagen, Programmieren mit C/C++, Vieweg+Teubner

Stand vom 01.10.2025 T3ELG1009 // Seite 21

Studienbereich Technik // School of Engineering
Elektrotechnik // Electrical Engineering
Medizintechnik // Medical Engineering
MANNHEIM

Geschäftsprozesse (T3ELG1010)

Business Processes

FORMALE ANGABEN ZUM MODUL

MODULNUMMERVERORTUNG IM STUDIENVERLAUFMODULDAUER (SEMESTER)MODULVERANTWORTUNGSPRACHET3ELG10101. Studienjahr1Prof. Dr. Frauke SteinhagenDeutsch

EINGESETZTE LEHRFORMEN

LEHRFORMEN LEHRMETHODEN

Vorlesung, Übung Lehrvortrag, Diskussion, Fallstudien

EINGESETZTE PRÜFUNGSFORMEN

PRÜFUNGSLEISTUNGPRÜFUNGSUMFANG (IN MINUTEN)BENOTUNGKlausurarbeit oder Kombinierte Prüfung90ja

WORKLOAD UND ECTS-LEISTUNGSPUNKTE

WORKLOAD INSGESAMT (IN H)
DAVON PRÄSENZZEIT (IN H)
DAVON SELBSTSTUDIUM (IN H)
ECTS-LEISTUNGSPUNKTE
150
48
102
5

QUALIFIKATIONSZIELE UND KOMPETENZEN

FACHKOMPETENZ

Nach erfolgreichem Abschluss dieses Modul verfügen die Studierenden über die für Ingenieure notwendigen Grundkenntnisse der Betriebswirtschaftlehre und können diese Problemstellungen in technischen Bereichen anwenden. Sie sind in der Lage, Geschäftsprozesse im Unternehmen zu erkennen. Sie können Vor- und Nachteile unterschiedlicher Organisationsformen erörtern.

METHODENKOMPETENZ

Die Studierenden kennen mit Abschluss des Moduls die in den Modulinhalten aufgeführten wissenschaftlichen Methoden und sind in der Lage, unter Einsatz dieser Methoden relevante Informationen zu sammeln und unter Berücksichtigung wissenschaftlicher Erkenntnisse den Fachstandards entsprechend zu interpretieren.

PERSONALE UND SOZIALE KOMPETENZ

-

ÜBERGREIFENDE HANDLUNGSKOMPETENZ

-

LERNEINHEITEN UND INHALTE

LEHR- UND LERNEINHEITENPRÄSENZZEITSELBSTSTUDIUMGeschäftsprozesse48102

- Betriebswirtschaftliche Grundlagen Unterscheidung VWL und BWL Wirtschaften im Wandel
- Rechtsformen von Unternehmen
- Wirtschaftskreislauf
- Überblick von Teilfunktionen im Unternehmen
- Grundzüge der Produktions- und Kostentheorie
- Grundlagen der VoVolkswirtschaftslehre: Grundbegriffe
- Mikroökonomie: Funktion der Preise, Marktformen
- Makroökonomie: Grundbegriffe
- Unternehmensfunktionen Kosten-Leistungsrechnung
- Finanzierung; Investition
- Rechnungswesen; Controlling
- Marketing
- Bilanzierung und Bilanzpolitik

Stand vom 01.10.2025 T3ELG1010 // Seite 22

BESONDERHEITEN

Die Studierenden können in dem Modul an die umfangreiche Phase des Selbsstudiums gewöhnt werden, indem Sie entsprechene Referate selbsständig vorbereiten und erarbeiten.

Die Prüfungsdauer bezieht sich auf die Klausur.

VORAUSSETZUNGEN

LITERATUR

- -Wöhe, Günther: Einführung in die allgemeine Betriebswirtschaftslehre, Verlag Vahlen
- Wiendahl, Hans-Peter: Betriebsorganisation für Ingenieure, Carl Hanser
- Haberstock, Lothar: Kostenrechnung, Erich Schmidt Verlag
- Coenenberg, Adolf G.: Jahresabschlussanalyse, Schäffer-Poeschel Perridon, L.; Schneider, M.: Finanzwirtschaft der Unternehmung, Verlag Vahlen

Stand vom 01.10.2025 T3ELG1010 // Seite 23

Mathematik III (T3ELG2001)

Mathematics III

FORMALE ANGABEN ZUM MODUL

MODULNUMMER	VERORTUNG IM STUDIENVERLAUF	MODULDAUER (SEMESTER)	MODULVERANTWORTUNG	SPRACHE
T3ELG2001	2. Studienjahr	2	Prof. Dr. Gerhard Götz	Deutsch

EINGESETZTE LEHRFORMEN

LEHRFORMEN	LEHRMETHODEN
Vorlesung Vorlesung Übung	Lehrvortrag Diskussion Gruppenarheit

EINGESETZTE PRÜFUNGSFORMEN

PRÜFUNGSLEISTUNG	PRÜFUNGSUMFANG (IN MINUTEN)	BENOTUNG
Klausur	120	ja
Unbenotete Prüfungsleistung	Siehe Pruefungsordnung	Bestanden/ Nicht-Bestanden

WORKLOAD UND ECTS-LEISTUNGSPUNKTE

WORKLOAD INSGESAMT (IN H)	DAVON PRÄSENZZEIT (IN H)	DAVON SELBSTSTUDIUM (IN H)	ECTS-LEISTUNGSPUNKTE
150	72	78	5

QUALIFIKATIONSZIELE UND KOMPETENZEN

FACHKOMPETENZ

Die Studierenden sind in der Lage, mit den in den Modulinhalten genannten mathematischen Theoremen und Modellen zielgerichtete Berechnungen anzustellen.

METHODENKOMPETENZ

Die Studierenden kennen mit Abschluss des Moduls die in den Modulinhalten aufgeführten wissenschaftlichen Methoden und sind in der Lage, unter Einsatz dieser Methoden relevante Informationen zu sammeln und unter Berücksichtigung wissenschaftlicher Erkenntnisse den Fachstandards entsprechend zu interpretieren.

PERSONALE UND SOZIALE KOMPETENZ

ÜBERGREIFENDE HANDLUNGSKOMPETENZ

-

LERNEINHEITEN UND INHALTE

LEHR- UND LERNEINHEITEN	PRÄSENZZEIT	SELBSTSTUDIUM
Mathematik 3	48	52

Analysis II

- Funktionen mit mehreren unabhängigen Variablen
- Skalarfelder, Vektorfelder
- Differentialrechnung bei Funktionen mehrerer unabhängiger Variabler
- Integralrechnung bei Funktionen mehrerer unabhängiger Variable
- Vektoranalysis Wahrscheinlichkeitsrechnung und Statistik
- Kombinatorik (Überblick, Beispiele)
- Grundbegriffe der Wahrscheinlichkeitsrechnung, Zufallsprozesse
- Zufallsvariable, Dichte- und Verteilungsfunktionen, Erwartungswerte
- Einführung in die beschreibende Statistik
- Schätzverfahren, Konfidenzintervalle
- statistische Prüfverfahren/Tests

Stand vom 01.10.2025 T3ELG2001 // Seite 24

LERNEINHEITEN UND INHALTE

LEHR- UND LERNEINHEITEN	PRÄSENZZEIT	SELBSTSTUDIUM
Mathematische Anwendungen	24	26

Mathematische Anwendungen (mit Hilfe mathematischer Software)

- Berechnungen und Umformungen durchführen
- Grafische Darstellung von Daten in unterschiedlichen Diagrammen
- Gleichungen und lineare Gleichungssysteme lösen
- Probleme mit Vektoren und Matrizen lösen
- Funktionen differenzieren (symbolisch, numerisch)
- Integrale lösen (symbolisch, numerisch)
- Gewöhnliche Differentialgleichungen lösen (symbolisch, numerisch)
- Approximation mit der Fehlerquadrat-Methode (z.B. mit algebraischen Polynomen)
- Interpolation (z.B. linear, mit algebraischen Polynomen, mit kubischen Splines)
- Messdaten einlesen und statistisch auswerten, statistische Tests durchführen
- Lösen von Aufgaben mit Inhalten aus Studienfächern des Grundstudiums (z.B

Regelungstechnik, Signale und Systeme, Messtechnik, Elektronik)

RESONDERHEITEN

Dieses Modul beinhaltet zusätzlich bis zu 24h begleitetes Lernen in Form von Übungsstunden oder Laboren. Hierbei werden Übungsaufgaben und/oder vertiefende Aufgabenstellungen zusammen mit den Studierenden erarbeitet.

VORAUSSETZUNGEN

LITERATUR

- Bronstein; Semendjajew; Musiol; Mühlig: Taschenbuch der Mathematik, Verlag Harri Deutsch
- Fleischhauer: Excel in Naturwissenschaft und Technik, Verlag Addison-Wesley
- Westermann, Thomas: Mathematik für Ingenieure mit MAPLE, Bände 1 und 2, Springer Verlag
- Westermann, Thomas: Mathematische Probleme lösen mit MAPLE Ein Kurzeinstieg, Springer Verlag Benker, Hans: Ingenieurmathematik kompakt
- Problemlösungen mit MATLAB, Springer Verlag
- Ziya Sanat: Mathematik fur Ingenieure Grundlagen, Anwendungen in Maple und C++, Vieweg + Teubner Verlag
- Schott: Ingenieurmathematik mit MATLAB, Hanser Fachbuchverlag
- Papula, Lothar: Mathematik für Ingenieure und Naturwissenschaftler, Bände 1 bis 3, Vieweg Verlag
- Papula, Lothar: Mathematische Formelsammlung für Ingenieure und Naturwissenschaftler, Vieweg Verlag
- Neumayer; Kaup: Mathematik für Ingenieure, Bände 1 bis 3, Shaker Verlag
- Leupold: Mathematik, ein Studienbuch für Ingenieure, Bände 1 bis 3, Hanser Fachbuchverlag
- Preuss; Wenisch; Schmidt: Lehr- und Übungsbuch Mathematik, Bände 1 bis 3, Hanser Fachbuchverlag
- Fetzer; Fränkel: Mathematik, Lehrbuch für ingenieurwissenschaftliche Studiengänge, Bände 1 und 2, Springer-Verlag
- Engeln-Müllges, Gisela; Schäfer, Wolfgang; Trippler, Gisela: Kompaktkurs Ingenieurmathematik mit Wahrscheinlichkeitsrechnung und Statistik, Hanser Fachbuchverlag
- Rießinger, Thomas: Mathematik für Ingenieure, Springer Verlag
- Stry, Yvonne / Schwenkert, Rainer: Mathematik kompakt für Ingenieure und Informatiker, Springer Verlag
- Gramlich; Werner: Numerische Mathematik mit MATLAB, dpunkt Verlag
- Bourier, Günther: Wahrscheinlichkeitsrechnung und schließende Statistik Praxisorientierte Einführung, Gabler Verlag
- Bourier, Günther: Statistik-Übungen, Gabler Verlag
- Bronstein; Semendjajew; Musiol; Mühlig: Taschenbuch der Mathematik, Verlag Harri Deutsch

Stand vom 01.10.2025 T3ELG2001 // Seite 25

Grundlagen Elektrotechnik III (T3ELG2002)

Principles of Electrical Engineering III

FORMALE ANGABEN ZUM MODUL

MODULNUMMERVERORTUNG IM STUDIENVERLAUFMODULDAUER (SEMESTER)MODULVERANTWORTUNGSPRACHET3ELG20022. Studienjahr1Prof. Dr.-Ing. Ralf StiehlerDeutsch

EINGESETZTE LEHRFORMEN

LEHRFORMEN LEHRMETHODEN

Labor, Vorlesung, Übung Laborarbeit, Lehrvortrag, Diskussion

EINGESETZTE PRÜFUNGSFORMEN

PRÜFUNGSLEISTUNGPRÜFUNGSUMFANG (IN MINUTEN)BENOTUNGKlausur120jaLaborarbeitSiehe PruefungsordnungBestanden/ Nicht-Bestanden

WORKLOAD UND ECTS-LEISTUNGSPUNKTE

WORKLOAD INSGESAMT (IN H)DAVON PRÄSENZZEIT (IN H)DAVON SELBSTSTUDIUM (IN H)ECTS-LEISTUNGSPUNKTE15072785

QUALIFIKATIONSZIELE UND KOMPETENZEN

FACHKOMPETENZ

Die Studierenden sind mit Abschluss des Moduls in der Lage, komplexe mathematische Probleme zu lösen.

Sie identifizieren den Einfluss unterschiedlicher Faktoren, setzen diese in Zusammenhang und erzielen die Lösung durch die Neukombination unterschiedlicher Lösungswege

METHODENKOMPETENZ

Die Absolventen verfügen über das in den Modulinhalten aufgeführte Spektrum an Methoden und Techniken zur Bearbeitung komplexer, wissenschaftlicher Probleme in ihrem Studienfach, aus denen sie angemessene Methoden auswählen und anwenden, um neue Lösungen zu erarbeiten.

PERSONALE UND SOZIALE KOMPETENZ

ÜBERGREIFENDE HANDLUNGSKOMPETENZ

-

LERNEINHEITEN UND INHALTE

LEHR- UND LERNEINHEITENPRÄSENZZEITSELBSTSTUDIUMGrundlagen Elektrotechnik 34852

- Mathematische Grundlagen
- Grundlagen der Elektrostatik
- Lösungsmethoden feldtheoretischer Probleme, z.B. Coloumb-Integrale, Spiegelungsverfahren, Laplacegleichung, numerische Lösungen etc.
- Grundlagen der Magnetostatik
- Stationäres Strömungsfeld
- Zeitlich langsam veränderliche Felder
- Induktionsgesetz und Durchflutungsgesetz, elektromotrische Kraft
- Äquivalenz von elektrischer Energie, mechanischer Energie und Wärmeenergie
- beliebig veränderliche Felder
- Maxwellgleichungen

Stand vom 01.10.2025 T3ELG2002 // Seite 26

LERNEINHEITEN UND INHALTE

LEHR- UND LERNEINHEITEN	PRÄSENZZEIT	SELBSTSTUDIUM
Labor Grundlagen Elektrotechnik 2	24	26

- Wechsel- und Drehstromkreise
- Feldmessungen, Schwingkreise
- Dioden- und Transistorschaltungen, Brückenschaltungen
- Induktivität und Transformator
- Operationsverstärker Schaltvorgänge

BESONDERHEITEN

Dieses Modul enthält zusätzlich bis zu 12h begleitetes Lernen in Form von Übungsstunden. Hierbei werden laborpraktische Aufgabenstellungen oder theoretische Übungen zusammen mit den Studierenden bearbeitet.

VORAUSSETZUNGEN

-

LITERATUR

- Manfred Albach: Grundlagen der Elektrotechnik 1, 2, 3, Pearson
- Clausert/ Wiesemann : Grundgebiete der Elektrotechnik 1, 2 Oldenbourg
- Gert Hagmann: Grundlagen der Elektrotechnik, Aula
- Koß, Reinhold, Hoppe: Lehr- und Übungsbuch Elektronik, Hanser
- Marlene Marinescu: Elektrische und magnetische Felder, Springer
- Pascal Leuchtmann: Einführung in die elektromagnetische Feldtheorie. Pearson Studium
- Lonngren, Savov: Fundamentals of electromagnetics with MATLAB, SciTech Publishing
- Küpfmüller, Mathis, Reibiger : Theoretische Elektrotechnik, Springer
- Heino Henke: Elektromagnetische Felder: Theorie und Anwendungen, Springer
- Manfred Albach: Grundlagen der Elektrotechnik 1, 2, 3, Pearson
- Clausert/ Wiesemann : Grundgebiete der Elektrotechnik 1, 2 Oldenbourg
- Gert Hagmann: Grundlagen der Elektrotechnik, Aula
- Koß, Reinhold, Hoppe: Lehr- und Übungsbuch Elektronik, Hanser

Stand vom 01.10.2025 T3ELG2002 // Seite 27

Systemtheorie (T3ELG2003)

Systems Theory

FORMALE ANGABEN ZUM MODUL

MODULNUMMERVERORTUNG IM STUDIENVERLAUFMODULDAUER (SEMESTER)MODULVERANTWORTUNGSPRACHET3ELG20032. Studienjahr1Prof. Dr. Frauke SteinhagenDeutsch

EINGESETZTE LEHRFORMEN

LEHRFORMENLEHRMETHODENVorlesung, ÜbungLehrvortrag, Diskussion

EINGESETZTE PRÜFUNGSFORMEN

PRÜFUNGSLEISTUNGPRÜFUNGSUMFANG (IN MINUTEN)BENOTUNGKlausur120ja

WORKLOAD UND ECTS-LEISTUNGSPUNKTE

WORKLOAD INSGESAMT (IN H)DAVON PRÄSENZZEIT (IN H)DAVON SELBSTSTUDIUM (IN H)ECTS-LEISTUNGSPUNKTE150481025

QUALIFIKATIONSZIELE UND KOMPETENZEN

FACHKOMPETENZ

Die Studierenden können nach Abschluss des Moduls

- die mathematischen Methoden der Systemtheorie für die unterschiedlichen Anwendungsfälle der Systembeschreibung auswählen und einsetzen
- die Begriffe Zeit-Frequenz-Bildbereich unterscheiden und entscheiden, wann sie in welchem Bereich am Besten ihre systemtheoretischen Überlegungen durchführen
- die wichtigsten Funktionaltransformationen der Systemtheorie verstehen und an Beispielen in der Elektrotechnik anwenden
- das Übertragungsverhalten von Systemen im Bildbereich verstehen und regelgerecht anwenden

METHODENKOMPETENZ

Die Studierenden können nach Abschluss des Moduls

- ihr abstraktes Denken in der Systemtheorie wesentlich erweitern und dessen Bedeutung für das Lösen nicht anschaulicher Probleme erkennen
- die Möglichkeiten und Grenzen von mathematischen systemtheoretischen Berechnungen sowie von Simulationen erfassen und in ihrer Bedeutung bewerten
- Lösungsstrategien entwickeln, um allgemeine komplexe Systeme zu abstrahieren, zu modularisieren und zu analysieren

PERSONALE UND SOZIALE KOMPETENZ

ÜBERGREIFENDE HANDLUNGSKOMPETENZ

Die Studierenden können nach Abschluss des Moduls

- die Verfahren der Systemtheorie in einer Vielzahl von Problemen der Elektrotechnik anwenden und daher in weiten Bereichen Zusammenhänge veranschaulichen und das dortige Systemverhalten gestalten
- in einfachen Aufgabenbereichen der Systemsimulation und Systemtheorie unter Bezug auf spezielle Anwendungen in der Elektrotechnik arbeiten und relevante Methoden sowie konventionelle Techniken auswählen und anwenden
- unter Anleitung innerhalb vorgegebener Schwerpunkte der Systemtheorie handeln
- ihre Fähigkeiten und Kenntnisse in der Simulation, der Analyse und Beschreibung von Systemen auf komplexe Beispiele der Elektrotechnik anwenden und vertiefen

LERNEINHEITEN UND INHALTE

LEHR- UND LERNEINHEITEN	PRÄSENZZEIT	SELBSTSTUDIUM
Signale und Systeme	48	102

Stand vom 01.10.2025 T3ELG2003 // Seite 28

LEHR- UND LERNEINHEITEN PRÄSENZZEIT SELBSTSTUDIUM

- Grundlegende Begriffe und Definitionen zu "Signalen" und "Systemen"
- Systemantwort auf ein beliebiges Eingangssignal
- Zeitkontinuierliche Signale und ihre Funktionaltransformationen
- Fourier-Reihe, Fourier-Transformation, Grundlagen der Spektralanalyse
- Laplace-Transformation
- Zeitdiskrete Signale
- z-Transformation
- Abtasttheorem
- Systembeschreibung im Funktionalbereich
- Übertragungsfunktion linearer, zeitinvarianter Systeme
- Differenzialgleichungen und Laplace-Transformation
- Differenzengleichungen und z-Transformation
- Einführung in zeitdiskrete, rekursive und nicht-rekursive Systeme

BESONDERHEITEN

Es werden auf der Basis der Mathematik-Grundvorlesungen die einschlägigen Funktionaltransformationen behandelt. Simulationsbeispiele basierend auf einer Simulationssoftware (z.B. MATLAB, SIMULINK) sollen die theoretischen Inhalte praktisch darstellen. Dieses Modul beinhaltet zusätzlich bis zu 24h begleitetes Lernen in Form von Übungsstunden. Hierbei werden Übungsaufgaben zusammen mit den Studierenden erarbeitet.

VORAUSSETZUNGEN

LITERATUR

- Werner, M.: Signale und Systeme. Vieweg-Teubner Verlag Wiesbaden
- Girod, B; Rabenstein, R; Stenger, A.: Einführung in die Systemtheorie. Vieweg-Teubner Verlag Wiesbaden
- Kiencke, U.; Jäkel, H.: Signale und Systeme. Oldenbourg Verlag München, Wien
- Unbehauen, R.: Systemtheorie 1. Oldenbourg Verlag München, Wien
- Oppenheim, A. V.; Schafer, R. W., Padgett, W. T.; Yoder, M. A.: Discrete-Time Signal Processing. Prentice Hall Upper Saddle River, New Jersey

Stand vom 01.10.2025 T3ELG2003 // Seite 29

Regelungstechnik (T3ELG2004)

Control Technology

FORMALE ANGABEN ZUM MODUL

MODULNUMMERVERORTUNG IM STUDIENVERLAUFMODULDAUER (SEMESTER)MODULVERANTWORTUNGSPRACHET3ELG20042. Studienjahr1Prof. Dr.-Ing. Thomas KiblerDeutsch

EINGESETZTE LEHRFORMEN

LEHRFORMENLEHRMETHODENVorlesung, ÜbungLehrvortrag, Diskussion

EINGESETZTE PRÜFUNGSFORMEN

PRÜFUNGSLEISTUNGPRÜFUNGSUMFANG (IN MINUTEN)BENOTUNGKlausur120ja

WORKLOAD UND ECTS-LEISTUNGSPUNKTE

WORKLOAD INSGESAMT (IN H)DAVON PRÄSENZZEIT (IN H)DAVON SELBSTSTUDIUM (IN H)ECTS-LEISTUNGSPUNKTE150481025

QUALIFIKATIONSZIELE UND KOMPETENZEN

FACHKOMPETENZ

Die Studierenden sind in der Lage, mit den in den Modulinhalten genannten technisch-mathematischen Theoremen Berechnungen durchzuführen. Sie analysieren einfache Problemstellungen aus der Praxis treffsicher, nutzen die für die Lösung relevanten Informationen und führen die Berechnung und Analyse selbstständig durch.

METHODENKOMPETENZ

Die Studierenden sind mit Abschluss des Moduls in der Lage, für weitgehend standardisierte Anwendungsfälle in der Praxis die angemessene Methode auszuwählen und anzuwenden. Sie kennen die Stärken und Schwächen der Methode in ihrem beruflichen Anwendungsfeld und können diese in konkreten Handlungssituationen gegeneinander abwägen.

PERSONALE UND SOZIALE KOMPETENZ

Die Studierenden können sowohl eigenständig als auch im Team zielorientiert und nachhaltig handeln.

ÜBERGREIFENDE HANDLUNGSKOMPETENZ

-

LERNEINHEITEN UND INHALTE

LEHR- UND LERNEINHEITENPRÄSENZZEITSELBSTSTUDIUMRegelungstechnik 148102

- Einführung
- Beschreibung dynamischer Systeme
- Lineare Übertragungsglieder
- Regelkreis und Systemeigenschaften
- Führungsregelung und Störgrößenregelung
- Klassische Regler
- Frequenzkennlinienverfahren
- Wurzelortsverfahren bzw. Kompensationsverfahren
- Simulation des Regelkreises

BESONDERHEITEN

Die Übungen können mit Hife von Simulationen und Laboren im Umfang von bis zu 24 UE ergänzt werden.

Stand vom 01.10.2025 T3ELG2004 // Seite 30

LITERATUR

- H. Unbehauen: Regelungstechnik 1, Vieweg-Verlag
 H.-W. Philippsen: Einstieg in die Regelungstechnik, Hanser Fachbuchverlag
 H. Lutz, W. Wendt, Taschenbuch der Regelungstechnik, Harri Deutsch Verlag
 O. Föllinger: Regelungstechnik, Hüthig Verlag
 J. Lunze: Regelungstechnik 1, 5. Aufl., Springer-Verlag, Berlin
 Gerd Schulz: Regelungstechnik 1, Oldenbourg-Verlag
 Heinz Mann, Horst Schiffelgen, Rainer Froriep: Einführung in die Regelungstechnik, Hanser Verlag

Stand vom 01.10.2025 T3ELG2004 // Seite 31

Elektronik und Messtechnik II (T3ELG2005)

Electronics and Measurement Technology II

FORMALE ANGABEN ZUM MODUL

MODULNUMMERVERORTUNG IM STUDIENVERLAUFMODULDAUER (SEMESTER)MODULVERANTWORTUNGSPRACHET3ELG20052. Studienjahr2Prof. Dr. Frauke SteinhagenDeutsch

EINGESETZTE LEHRFORMEN

LEHRFORMENLEHRMETHODENVorlesungLehrvortrag, Diskussion

EINGESETZTE PRÜFUNGSFORMEN

PRÜFUNGSLEISTUNGPRÜFUNGSUMFANG (IN MINUTEN)BENOTUNGKlausur120ja

WORKLOAD UND ECTS-LEISTUNGSPUNKTE

WORKLOAD INSGESAMT (IN H)DAVON PRÄSENZZEIT (IN H)DAVON SELBSTSTUDIUM (IN H)ECTS-LEISTUNGSPUNKTE15072785

QUALIFIKATIONSZIELE UND KOMPETENZEN

FACHKOMPETENZ

Die Studierenden sind in der Lage, mit den in den Modulinhalten genannten technisch-mathematischen Theoremen Berechnungen durchzuführen. Sie analysieren einfache Problemstellungen aus der Praxis treffsicher, nutzen die für die Lösung relevanten Informationen und führen die Berechnung und Analyse selbstständig durch.

METHODENKOMPETENZ

Die Studierenden sind mit Abschluss des Moduls in der Lage, für weitgehend standardisierte Anwendungsfälle in der Praxis die angemessene Methode auszuwählen und anzuwenden. Sie kennen die Stärken und Schwächen der Methode in ihrem beruflichen Anwendungsfeld und können diese in konkreten Handlungssituationen gegeneinander abwägen.

PERSONALE UND SOZIALE KOMPETENZ

Die Studierenden können sowohl eigenständig als auch im Team zielorientiert und nachhaltig handeln.

ÜBERGREIFENDE HANDLUNGSKOMPETENZ

-

LERNEINHEITEN UND INHALTE

LEHR- UND LERNEINHEITENPRÄSENZZEITSELBSTSTUDIUMMesstechnik 22418

Messgeräte

- Analoge Geräte
- Analog/Digital-Wandler
- Digital/Analog-Wandler
- Zähler, Frequenzmessung
- Oszilloskope

Wechselspannungsmessbrücken

- Abgleichmessbrücken
- Ausschlagmessbrücken

Frequenzabhängige Spannungsmessungen

- Breitbandige Messung, Bandbreite
- Grundbegriffe des Rauschens
- Frequenzselektive Messung im Zeitbereich
- Spektrumanalyser

Stand vom 01.10.2025 T3ELG2005 // Seite 32

LERNEINHEITEN UND INHALTE

LEHR- UND LERNEINHEITEN	PRÄSENZZEIT	SELBSTSTUDIUM
Elektronik 2	24	30

Feldeffekttransistor

- Eigenschaften
- Anwendung als Kleinsignalverstärker
- Anwendung als Schalter und als steuerbarer Widerstand
- IGBT

Operationsverstärker (OP)

- Prinzipieller Aufbau
- Eigenschaften des realen OP

Elektronik 3 24 30

Operationsverstärkerschaltungen

- Gegenkopplung, Übertragungsfunktion
- Frequenzgang der Verstärkung, Frequenzkompensation
- Anwendungen des OP, Signalwandler (A/D, D/A),

Beispielschaltungen

Schaltungen mit optoelektronischen Bauelementen

- Sichtbare und unsichtbare elektromagnetische Wellen, Lichtquanten
- Lichtquellen, optische Anzeigen
- Detektoren, Energieerzeugung
- Optokoppler

BESONDERHEITEN

Die Veranstaltung kann durch Labor oder angeleitetes Lernen in Form von Übungsstunden, z.B. Schaltungssimulation oder Referate mit bis zu 12 h vertieft werden.

VORAUSSETZUNGEN

LITERATUR

- G. Mechelke: Einführung in die Analog- und Digitaltechnik, STAM Verlag
- E. Hering, K. Bressler, J. Gutekunst: Elektronik für Ingenieure, VDI Verlag
- E. Böhmer: Elemente der angewandten Elektronik, Vieweg Verlag
- Stefan Goßner: Grundlagen der Elektronik, Shaker Verlag
- U. Tietze, C. Schenk: Halbleiter-Schaltungstechnik, Springer Verlag
- Wolfgang Schmusch: Elektronische Messtechnik, Vogel-Verlag
- Taschenbuch der Messtechnik, Jörg Hoffmann, Fachbuchverlag Leipzig
- W. Pfeiffer: Elektrische Messtechnik, VDE-Verlag

Stand vom 01.10.2025 T3ELG2005 // Seite 33

Studienbereich Technik // School of Engineering
Elektrotechnik // Electrical Engineering
Medizintechnik // Medical Engineering
MANNHEIM

Mikrocomputertechnik (T3ELG2006)

Introduction to Microcomputers

FORMALE ANGABEN ZUM MODUL

MODULNUMMERVERORTUNG IM STUDIENVERLAUFMODULDAUER (SEMESTER)MODULVERANTWORTUNGSPRACHET3ELG20062. Studienjahr2Prof. Dr.-Ing. Ralf StiehlerDeutsch/Englisch

EINGESETZTE LEHRFORMEN

LEHRFORMENLEHRMETHODENVorlesung, Labor, Vorlesung, ÜbungLehrvortrag, Diskussion, Lehrvortrag, Diskussion, Gruppenarbeit

EINGESETZTE PRÜFUNGSFORMEN

PRÜFUNGSLEISTUNGPRÜFUNGSUMFANG (IN MINUTEN)BENOTUNGKlausurarbeit oder Kombinierte Prüfung120ja

WORKLOAD UND ECTS-LEISTUNGSPUNKTE

WORKLOAD INSGESAMT (IN H) DAVON PRÄSENZZEIT (IN H) DAVON SELBSTSTUDIUM (IN H) ECTS-LEISTUNGSPUNKTE
150 78 5

QUALIFIKATIONSZIELE UND KOMPETENZEN

FACHKOMPETENZ

Die Studierenden kennen die in den Inhalten des Moduls genannten Strukturen, Theorien und Modelle. Sie können diese beschreiben und systematisch darstellen. Sie sind in der Lage, unterschiedliche Ansätze miteinander zu vergleichen und können mit Hilfe ihres Wissens plausible Argumentationen und Schlüsse ableiten.

METHODENKOMPETENZ

Die Studierenden sind mit Abschluss des Moduls in der Lage, für komplexe Praxisanwendungen eine angemessene Methode auszuwählen und anzuwenden. So können die Möglichkeiten, Praktikabilität und Grenzen der eingesetzten Methode einschätzen und sind in der Lage, Handlungsalternativen aufzuzeigen.

PERSONALE UND SOZIALE KOMPETENZ

-

ÜBERGREIFENDE HANDI UNGSKOMPETENZ

_

LERNEINHEITEN UND INHALTE

LEHR- UND LERNEINHEITEN	PRÄSENZZEIT	SELBSTSTUDIUM
Mikrocomputertechnik 1	36	39

- Einführung und Überblick über Geschichte, Stand der Technik und aktuelle Trends
- Grundlegender Aufbau eines Rechners (CPU, Speicher, E/A-Einheiten, Busstruktur)
- Abgrenzung von Neumann/Harvard , CISC/RISC, Mikro-Prozessor / Mikro-Computer / Mikro-ContController
- Oberer Teil des Schichtenmodells : Maschinensprache, Assembler und höhere Programmiersprachen
- Unterer Teil des Schichtenmodells : Betriebssystemebene, Registerebene, Gatter- und Transistorebene
- Computeraritmetik und Rechenwerk (Addierer, Multiplexer, ALU, Flags)
- Steuerwerk (Aufbau und Komponenten)

Stand vom 01.10.2025 T3ELG2006 // Seite 34

LERNEINHEITEN UND INHALTE

LEHR- UND LERNEINHEITENPRÄSENZZEITSELBSTSTUDIUMMikrocomputertechnik 23639

- Befehlsablauf im Prozessor (Maschinenzyklen, Timing, Speicherzugriff, Datenfluss)
- Vertiefte Betrachtung des Steuerwerks
- Ausnahmeverarbeitung (Exceptions, Traps, Interrupts)
- Überblick über verschiedene Arten von Speicherbausteinen
- Funktionsweise paralleler und serieller Schnittstellen
- Übersicht über System- und Schnittstellenbausteine

BESONDERHEITEN

Zur Vetiefung des Vorlesungsstoffs wird empfohlen, das studentische Eigenstudium mit praktischen Programmierübungen an einem handelsüblichen Mikrocontroller mit einem Gesamtumfang von bis zu 24h zu unterstützen.

Die Prüfungsdauer bezieht sich auf die Klausur.

VORAUSSETZUNGEN

-

LITERATUR

- Walter: Mikrocomputertechnik mit der 8051-Familie, Springer
- Schmitt : Mikrocomputertechnik mit Controllern der Atmel-AVR-RISC-Familie, Oldenburg
- Schaaf: Mikrocomputertechnik, Hanser
- Beierlein/Hagenbruch: Taschenbuch Mikroprozessortechnik, Fachbuchverlag Leipzig
- Bähring : Mikrorechner-Technik 1+2, Springer
- Brinkschulte, Ungerer: Mikrocontroller und Mikroprozessoren
- Patterson/Hennessy : Computer Organization and Design The Hardware/Software Interface, Morgan-Kaufmann
- Wittgruber: Digitale Schnittstellen und Bussysteme, Vieweg
- Walter: Mikrocomputertechnik mit der 8051-Familie, Springer
- Schmitt : Mikrocomputertechnik mit Controllern der Atmel-AVR-RISC-Familie, Oldenburg
- Schaaf : Mikrocomputertechnik, Hanser
- Beierlein/Hagenbruch: Taschenbuch Mikroprozessortechnik, Fachbuchverlag Leipzig
- Bähring : Mikrorechner-Technik 1+2, Springer
- Brinkschulte, Ungerer: Mikrocontroller und Mikroporzessoren
- Patterson/Hennessy : Computer Organization and Design The Hardware/Software Interface, Morgan-Kaufmann
- Wittgruber : Digitale Schnittstellen und Bussysteme, Vieweg

Stand vom 01.10.2025 T3ELG2006 // Seite 35

Studienarbeit (T3_3100)

Student Research Project

FORMALE ANGABEN ZUM MODUL

MODULNUMMERVERORTUNG IM STUDIENVERLAUFMODULDAUER (SEMESTER)MODULVERANTWORTUNGSPRACHET3_31003. Studienjahr1Prof. Dr.-Ing. Joachim FrechDeutsch

EINGESETZTE LEHRFORMEN

LEHRFORMENLEHRMETHODENIndividualbetreuungProjekt

EINGESETZTE PRÜFUNGSFORMEN

PRÜFUNGSLEISTUNGPRÜFUNGSUMFANG (IN MINUTEN)BENOTUNGStudienarbeitSiehe Pruefungsordnungja

WORKLOAD UND ECTS-LEISTUNGSPUNKTE

WORKLOAD INSGESAMT (IN H)DAVON PRÄSENZZEIT (IN H)DAVON SELBSTSTUDIUM (IN H)ECTS-LEISTUNGSPUNKTE15061445

QUALIFIKATIONSZIELE UND KOMPETENZEN

FACHKOMPETENZ

Die Studierenden können sich unter begrenzter Anleitung in ein recht komplexes, aber eng umgrenztes Gebiet vertiefend einarbeiten und den allgemeinen Stand des Wissens erwerben.

Sie können sich Lösungen entwickeln und Alternativen bewerten. Dazu nutzen sie bestehendes Fachwissen und bauen es selbständig im Thema der Studienarbeit aus.

Die Studierenden kennen und verstehen die Notwendigkeit des wissenschaftlichen Recherchierens und Arbeitens. Sie sind in der Lage eine wissenschaftliche Arbeit zu steuern und wissenschaftlich korrekt und verständlich zu dokumentieren.

METHODENKOMPETENZ

Die Studierenden haben die Kompetenz erworben, relevante Informationen mit wissenschaftlichen Methoden zu sammeln und unter der Berücksichtigung wissenschaftlicher Erkenntnisse zu interpretieren.

PERSONALE UND SOZIALE KOMPETENZ

Die Studierenden können ausdauernd und beharrlich auch größere Aufgaben selbstständig ausführen. Sie können sich selbst managen und Aufgaben zum vorgesehenen Termin erfüllen.

Sie können stichhaltig und sachangemessen argumentieren, Ergebnisse plausibel darstellen und auch komplexe Sachverhalte nachvollziehbar begründen.

ÜBERGREIFENDE HANDLUNGSKOMPETENZ

LERNEINHEITEN UND INHALTE

LEHR- UND LERNEINHEITEN	PRÄSENZZEIT	SELBSTSTUDIUM
Studienarbeit	6	144

BESONDERHEITEN

Es wird auf die "Leitlinien für die Bearbeitung und Dokumentation der Module Praxisprojekt I bis III, Studienarbeit und Bachelorarbeit" der Fachkommission Technik der Dualen Hochschule Baden-Württemberg hingewiesen.

Stand vom 01.10.2025 T3_3100 // Seite 36

LITERATUR

Kornmeier, M., Wissenschaftlich schreiben leicht gemacht für Bachelor, Master und Dissertation, Bern

Stand vom 01.10.2025 T3_3100 // Seite 37

Studienarbeit II (T3_3200)

Student Research Project II

FORMALE ANGABEN ZUM MODUL

MODULNUMMERVERORTUNG IM STUDIENVERLAUFMODULDAUER (SEMESTER)MODULVERANTWORTUNGSPRACHET3_32003. Studienjahr1Prof. Dr.-Ing. Joachim FrechDeutsch

EINGESETZTE LEHRFORMEN

LEHRFORMENLEHRMETHODENIndividualbetreuungProjekt

EINGESETZTE PRÜFUNGSFORMEN

PRÜFUNGSLEISTUNGPRÜFUNGSUMFANG (IN MINUTEN)BENOTUNGStudienarbeitSiehe Pruefungsordnungja

WORKLOAD UND ECTS-LEISTUNGSPUNKTE

WORKLOAD INSGESAMT (IN H)DAVON PRÄSENZZEIT (IN H)DAVON SELBSTSTUDIUM (IN H)ECTS-LEISTUNGSPUNKTE15061445

QUALIFIKATIONSZIELE UND KOMPETENZEN

FACHKOMPETENZ

Die Studierenden können sich unter begrenzter Anleitung in ein komplexes, aber eng umgrenztes Gebiet vertiefend einarbeiten und den allgemeinen Stand des Wissens erwerben.

Sie können selbstständig Lösungen entwickeln und Alternativen bewerten. Dazu nutzen sie bestehendes Fachwissen und bauen es selbständig im Thema der Studienarbeit aus.

Die Studierenden kennen und verstehen die Notwendigkeit des wissenschaftlichen Recherchierens und Arbeitens. Sie sind in der Lage eine wissenschaftliche Arbeit effizient zu steuern und wissenschaftlich korrekt und verständlich zu dokumentieren.

METHODENKOMPETENZ

Die Studierenden haben die Kompetenz erworben, relevante Informationen mit wissenschaftlichen Methoden zu sammeln und unter der Berücksichtigung wissenschaftlicher Erkenntnisse zu interpretieren.

PERSONALE UND SOZIALE KOMPETENZ

Die Studierenden können ausdauernd und beharrlich auch größere Aufgaben selbstständig ausführen. Sie können sich selbst managen und Aufgaben zum vorgesehenen Termin erfüllen.

Sie können stichhaltig und sachangemessen argumentieren, Ergebnisse plausibel darstellen und auch komplexe Sachverhalte nachvollziehbar begründen.

ÜBERGREIFENDE HANDLUNGSKOMPETENZ

LERNEINHEITEN UND INHALTE

		IUM
Studienarbeit 2 6	144	

BESONDERHEITEN

Es wird auf die "Leitlinien für die Bearbeitung und Dokumentation der Module Praxisprojekt I bis III, Studienarbeit und Bachelorarbeit" der Fachkommission Technik der Dualen Hochschule Baden-Württemberg hingewiesen.

Stand vom 01.10.2025 T3_3200 // Seite 38

VORAUSSETZUNGEN

LITERATUR

Kornmeier, M., Wissenschaftlich schreiben leicht gemacht für Bachelor, Master und Dissertation, Bern

Stand vom 01.10.2025 T3_3200 // Seite 39

Praxisprojekt I (T3_1000)

Work Integrated Project I

FORMALE ANGABEN ZUM MODUL

MODULNUMMERVERORTUNG IM STUDIENVERLAUFMODULDAUER (SEMESTER)MODULVERANTWORTUNGSPRACHET3_10001. Studienjahr2Prof. Dr.-Ing. Joachim FrechDeutsch

EINGESETZTE LEHRFORMEN

LEHRFORMENLEHRMETHODENPraktikum, SeminarLehrvortrag, Diskussion, Projekt

EINGESETZTE PRÜFUNGSFORMEN

PRÖFUNGSLEISTUNGPRÖFUNGSUMFANG (IN MINUTEN)BENOTUNGProjektarbeitSiehe PruefungsordnungBestanden/ Nicht-BestandenAblauf- und ReflexionsberichtSiehe PruefungsordnungBestanden/ Nicht-Bestanden

WORKLOAD UND ECTS-LEISTUNGSPUNKTE

WORKLOAD INSGESAMT (IN H)

DAVON PRÄSENZZEIT (IN H)

DAVON SELBSTSTUDIUM (IN H)

ECTS-LEISTUNGSPUNKTE

596

20

QUALIFIKATIONSZIELE UND KOMPETENZEN

FACHKOMPETENZ

Die Absolventinnen und Absolventen erfassen industrielle Problemstellungen in ihrem Kontext und in angemessener Komplexität. Sie analysieren kritisch, welche Einflussfaktoren

zur Lösung des Problems beachtet werden müssen und beurteilen, inwiefern einzelne theoretische Modelle einen Beitrag zur Lösung des Problems leisten können.

Die Studierenden kennen die zentralen manuellen und maschinellen Grundfertigkeiten des jeweiligen Studiengangs, sie

können diese an praktischen Aufgaben anwenden und haben deren Bedeutung für die Prozesse im Unternehmen kennen gelernt.

Sie kennen die wichtigsten technischen und organisatorischen Prozesse in Teilbereichen ihres Ausbildungsunternehmens und können deren Funktion darlegen.

Die Studierenden können grundsätzlich fachliche Problemstellungen des jeweiligen Studiengangs beschreiben und fachbezogene Zusammenhänge erläutern.

METHODENKOMPETENZ

Absolventinnen und Absolventen kennen übliche Vorgehensweisen der industriellen Praxis und können diese selbstständig umsetzen. Dabei bauen sie auf ihr theoretisches Wissen sowie ihre Berufserfahrung auf.

PERSONALE UND SOZIALE KOMPETENZ

Die Relevanz von Personalen und Sozialen Kompetenz ist den Studierenden für den reibungslosen Ablauf von industriellen Prozessen bewusst und sie können eigene Stärken und Schwächen benennen. Den Studierenden gelingt es, aus Erfahrungen zu lernen, sie übernehmen Verantwortung für die übertragene Aufgaben, mit denen sie sich auch persönlich identifizieren. Die Studierenden übernehmen Verantwortung im Team, integrieren und tragen durch ihr Verhalten zur gemeinsamen Zielerreichung bei.

ÜBERGREIFENDE HANDLUNGSKOMPETENZ

Die Studierenden zeigen Handlungskompetenz, indem sie

ihr theoretisches Fachwissen nutzen, um in berufspraktischen Situationen angemessen, authentisch und erfolgreich zu agieren.

Dazu gehören auch das eigenständige kritische Beobachten, das systematische Suchen alternativer Lösungsansätze sowie eine erste Einschätzung der Anwendbarkeit von Theorien für Praxis.

LERNEINHEITEN UND INHALTE

LEHR- UND LERNEINHEITEN	PRÄSENZZEIT	SELBSTSTUDIUM
Projektarbeit 1	0	560

Stand vom 01.10.2025 T3_1000 // Seite 40

LEHR- UND LERNEINHEITEN	PRÄSENZZEIT	SELBSTSTUDIUM
Es wird auf die jeweiligen Praxispläne der Studiengänge der Fakultät Technik verwiesen		
Wissenschaftliches Arbeiten 1	4	36

Das Seminar "Wissenschaftliches Arbeiten I" findet während der Theoriephase statt. Eine Durchführung im gesamten Umfang in einem Semester oder die Aufteilung auf zwei Semester ist möglich. Für einige Grundlagen kann das WBT "Wissenschaftliches Arbeiten" der DHBW genutzt werden.

- Leitlinien des wissenschaftlichen Arbeitens
- Themenwahl und Themenfindung bei der T1000 Arbeit
- Typische Inhalte und Anforderungen an eine T1000 Arbeit
- Aufbau und Gliederung einer T1000 Arbeit
- Literatursuche, -beschaffung und -auswahl
- Nutzung des Bibliotheksangebots der DHBW
- Form einer wissenschaftlichen Arbeit (z.B. Zitierweise, Literaturverzeichnis)
- Hinweise zu DV-Tools (z.B. Literaturverwaltung und Generierung von Verzeichnissen in der Textverarbeitung)

BESONDERHEITEN

Es wird auf die "Leitlinien für die Bearbeitung und Dokumentation der Module Praxisprojekt I bis III, Studienarbeit und Bachelorarbeit" der Fachkommission Technik der Dualen Hochschule Baden-Württemberg hingewiesen.

Der Absatz "1.2 Abweichungen" aus Anlage 1 zur Studien- und Prüfungsordnung für die Bachelorstudiengänge im Studienbereich Technik der Dualen Hochschule Baden-Württemberg

(DHBW) bei den Prüfungsleistungen dieses Moduls keine Anwendung.

VORAUSSETZUNGEN

LITERATUR

- Web-based Training "Wissenschaftliches Arbeiten"
- Kornmeier, M., Wissenschaftlich schreiben leicht gemacht für Bachelor, Master und Dissertation, Bern

Stand vom 01.10.2025 T3_1000 // Seite 41

Praxisprojekt II (T3_2000)

Work Integrated Project II

FORMALE ANGABEN ZUM MODUL

MODULNUMMER	VERORTUNG IM STUDIENVERLAUF	MODULDAUER (SEMESTER)	MODULVERANTWORTUNG	SPRACHE
T3_2000	2. Studienjahr	2	Prof. DrIng. Joachim Frech	Deutsch

EINGESETZTE LEHRFORMEN

LEHRFORMEN	LEHRMETHODEN
Praktikum, Vorlesung	Lehrvortrag, Diskussion, Gruppenarbeit, Projekt

FINGESETZTE PRÜFUNGSFORMEN

PRÜFUNGSLEISTUNG	PRÜFUNGSUMFANG (IN MINUTEN)	BENOTUNG
Projektarbeit	Siehe Pruefungsordnung	ja
Ablauf- und Reflexionsbericht	Siehe Pruefungsordnung	Bestanden/ Nicht-Bestanden
Mündliche Prüfung	30	ja

WORKLOAD LIND ECTS-LEISTLINGSPLINKTE

MOUNTOAD OND EC13-FEISTONDS-DUNCIE				
WORKLOAD INSGESAMT (IN H)	DAVON PRÄSENZZEIT (IN H)	DAVON SELBSTSTUDIUM (IN H)	ECTS-LEISTUNGSPUNKTE	
600	5	595	20	

QUALIFIKATIONSZIELE UND KOMPETENZEN

FACHKOMPETENZ

Die Studierenden erfassen industrielle Problemstellungen in einem angemessenen Kontext und in angemessener Komplexität. Sie analysieren kritisch, welche Einflussfaktoren zur Lösung des Problems beachtet werden müssen und können beurteilen, inwiefern theoretische Modelle einen Beitrag zur Lösung des Problems

METHODENKOMPETENZ

Die Studierenden kennen die im betrieblichen Umfeld üblichen Methoden, Techniken und Fertigkeiten und können bei der Auswahl deren Stärken und Schwächen einschätzen, so dass sie die Methoden sachangemessen und situationsgerecht auswählen. Die ihnen übertragenen Aufgaben setzen die Studierenden durch durchdachte Konzepte, fundierte Planung und gutes Projektmanagement erfolgreich um. Dabei bauen sie auf ihr theoretisches Wissen sowie ihre wachsende Berufserfahrung auf.

PERSONALE UND SOZIALE KOMPETENZ

Den Studierenden ist die Relevanz von Personalen und Sozialen Kompetenz für den reibungslosen Ablauf von industriellen Prozessen sowie ihrer eigenen Karriere bewusst; sie können eigene Stärken und Schwächen benennen. Den Studierenden gelingt es, aus Erfahrungen zu lernen, sie übernehmen selbstständig Verantwortung für die übertragene Aufgaben, mit denen sie sich auch persönlich identifizieren. Die Studierenden übernehmen Verantwortung im Team, integrieren andere und tragen durch ihr überlegtes Verhalten zur gemeinsamen Zielerreichung bei.

ÜBERGREIFENDE HANDLUNGSKOMPETENZ

Die Studierenden zeigen wachsende Handlungskompetenz, indem sie ihr theoretisches Fachwissen und ihr wachsendes Erfahrungswissen nutzen, um in sozialen berufspraktischen Situationen angemessen und erfolgreich zu agieren.

Dazu gehören auch das eigenständige kritische Beobachten, das systematische Suchen alternativer Denk- und Lösungsansätze sowie das Hinterfragen von bisherigen Vorgehensweisen. Die Studierenden zeichnen sich durch Eigenverantwortung und Tatkraft aus, sie sind auch im Kontext einer globalisierten Arbeitswelt handlungsfähig.

LERNEINHEITEN OND INHALTE			
LEHR- UND LERNEINHEITEN	PRÄSENZZEIT	SELBSTSTUDIUM	
Projektarbeit 2	0	560	

Es wird auf die jeweiligen Praxispläne der Studiengänge der Fakultät Technik verwiesen.

Stand vom 01.10.2025 T3_2000 // Seite 42

LEHR- UND LERNEINHEITEN	PRÄSENZZEIT	SELBSTSTUDIUM
Wissenschaftliches Arbeiten 2	4	26

Das Seminar "Wissenschaftliches Arbeiten II" findet während der Theoriephase statt. Eine Durchführung im gesamten Umfang in einem Semester oder die Aufteilung auf zwei Semester ist möglich. Für einige Grundlagen kann das WBT "Wissenschaftliches Arbeiten" der DHBW genutzt werden.

- Leitlinien des wissenschaftlichen Arbeitens
- Themenwahl und Themenfindung bei der T2000 Arbeit
- Typische Inhalte und Anforderungen an eine T2000 Arbeit
- Aufbau und Gliederung einer T2000 Arbeit
- Vorbereitung der Mündlichen T2000 Prüfung

Mündliche Prüfung	1	9	
-------------------	---	---	--

BESONDERHEITEN

Entsprechend der jeweils geltenden Studien- und Prüfungsordnung für die Bachelorstudiengänge im Studienbereich Technik der Dualen Hochschule Baden-Württemberg (DHBW) sind die mündliche Prüfung und die Projektarbeit separat zu bestehen. Die Modulnote wird aus diesen beiden Prüfungsleistungen mit der Gewichtung 50:50 berechnet.

Es wird auf die "Leitlinien für die Bearbeitung und Dokumentation der Module Praxisprojekt I bis III, Studienarbeit und Bachelorarbeit" der Fachkommission Technik der Dualen Hochschule Baden-Württemberg hingewiesen.

Vandusser			
VORAUSSETZUNGEN			
-			
LITERATUR			

Stand vom 01.10.2025 T3_2000 // Seite 43

Praxisprojekt III (T3_3000)

Work Integrated Project III

FORMALE ANGABEN ZUM MODUL

MODULNUMMER	VERORTUNG IM STUDIENVERLAUF	MODULDAUER (SEMESTER)	MODULVERANTWORTUNG	SPRACHE
T3_3000	3. Studienjahr	1	Prof. DrIng. Joachim Frech	Deutsch

EINGESETZTE LEHRFORMEN

LEHRFORMEN	LEHRMETHODEN
Praktikum, Seminar	Lehrvortrag, Diskussion, Projekt

EINGESETZTE PRÜFUNGSFORMEN

PRÜFUNGSLEISTUNG	PRÜFUNGSUMFANG (IN MINUTEN)	BENOTUNG
Hausarbeit	Siehe Pruefungsordnung	Bestanden/ Nicht-Bestanden
Ablauf- und Reflexionsbericht	Siehe Pruefungsordnung	Bestanden/ Nicht-Bestanden

WORKLOAD UND ECTS-LEISTUNGSPUNKTE

WORKLOAD INSGESAMT (IN H)	DAVON PRÄSENZZEIT (IN H)	DAVON SELBSTSTUDIUM (IN H)	ECTS-LEISTUNGSPUNKTE
240	4	236	8

QUALIFIKATIONSZIELE UND KOMPETENZEN

FACHKOMPETENZ

Die Studierenden erfassen industrielle Problemstellungen in einem breiten Kontext und in moderater Komplexität. Sie haben ein gutes Verständnis von organisatorischen und inhaltlichen Zusammenhängen sowie von Organisationsstrukturen, Produkten, Verfahren, Maßnahmen, Prozessen, Anforderungen und gesetzlichen Grundlagen. Sie analysieren kritisch, welche Einflussfaktoren zur Lösung des Problems beachtet werden müssen und können beurteilen, inwiefern theoretische Modelle einen Beitrag zur Lösung des Problems leisten können.

METHODENKOMPETENZ

Die Studierenden kennen die im betrieblichen Umfeld üblichen Methoden, Techniken und Fertigkeiten und können bei der Auswahl deren Stärken und Schwächen einschätzen, so dass sie die Methoden sachangemessen, situationsgerecht und umsichtig auswählen. Die ihnen übertragenen Aufgaben setzen die Studierenden durch durchdachte Konzepte, fundierte Planung und gutes Projektmanagement auch bei sich häufig ändernden Anforderungen systematisch und erfolgreich um. Dabei bauen sie auf ihr theoretisches Wissen sowie ihre wachsende Berufserfahrung auf.

PERSONALE UND SOZIALE KOMPETENZ

Die Studierenden weisen auch im Hinblick auf ihre persönlichen personalen und sozialen Kompetenzen einen hohen Grad an Reflexivität auf, was als Grundlage für die selbstständige persönliche Weiterentwicklun genutzt wird.

Den Studierenden gelingt es, aus Erfahrungen zu lernen, sie übernehmen selbstständig Verantwortung für die übertragene Aufgaben, mit denen sie sich auch persönlich identifizieren.

Die Studierenden übernehmen Verantwortung für sich und andere. Sie sind konflikt und kritikfähig.

ÜBERGREIFENDE HANDLUNGSKOMPETENZ

Die Studierenden zeigen umfassende Handlungskompetenz, indem sie ihr theoretisches Fachwissen und ihr wachsendes Erfahrungswissen nutzen, um in berufspraktischen Situationen angemessen und erfolgreich zu agieren.

Dazu gehören auch das eigenständige kritische Beobachten, das systematische Suchen alternativer Denk- und Lösungsansätze sowie das Hinterfragen von bisherigen Vorgehensweisen. Die Studierenden zeichnen sich durch Eigenverantwortung und Tatkraft aus, sie sind auch im Kontext einer globalisierten Arbeitswelt handlungsfähig. Sie weisen eine reflektierte Haltung zu gesellschaftlichen, soziale und ökologischen Implikationen des eigenen Handelns auf.

LERNEINHEITEN UND INHALTE

LEHR- UND LERNEINHEITEN	PRÄSENZZEIT	SELBSTSTUDIUM
Projektarbeit 3	0	220

Es wird auf die jeweiligen Praxispläne der Studiengänge der Fakultät Technik verwiesen

Stand vom 01.10.2025 T3_3000 // Seite 44

LEHR- UND LERNEINHEITENPRÄSENZZEITSELBSTSTUDIUMWissenschaftliches Arbeiten 3416

Das Seminar "Wissenschaftliches Arbeiten III" findet während der Theoriephase statt. Eine Durchführung im gesamten Umfang in einem Semester oder die Aufteilung auf zwei Semester ist möglich. Für einige Grundlagen kann das WBT "Wissenschaftliches Arbeiten" der DHBW genutzt werden.

- Was ist Wissenschaft?
- Theorie und Theoriebildung
- Überblick über Forschungsmethoden (Interviews, etc.)
- Gütekriterien der Wissenschaft
- Wissenschaftliche Erkenntnisse sinnvoll nutzen (Bezugssystem, Stand der Forschung/Technik)
- Aufbau und Gliederung einer Bachelorarbeit
- Projektplanung im Rahmen der Bachelorarbeit
- Zusammenarbeit mit Betreuern und Beteiligten

BESONDERHEITEN

Es wird auf die "Leitlinien für die Bearbeitung und Dokumentation der Module Praxisprojekt I bis III, Studienarbeit und Bachelorarbeit" der Fachkommission Technik der Dualen Hochschule Baden-Württemberg hingewiesen.

VORAUSSETZUNGEN

LITERATUR

- Web-based Training "Wissenschaftliches Arbeiten"
- Kornmeier, M., Wissenschaftlich schreiben leicht gemacht für Bachelor, Master und Dissertation,, Bern
- Minto, B., The Pyramid Principle: Logic in Writing, Thinking and Problem Solving, London
- Zelazny, G., Say It With Charts: The Executives's Guide to Visual Communication, Mcgraw-Hill Professional.

Kornmeier, M., Wissenschaftlich schreiben leicht gemacht für Bachelor, Master und Dissertation, Bern

Stand vom 01.10.2025 T3_3000 // Seite 45

Grundlagen Elektrotechnik IV - Automation (T3ELA2001)

Principles of Electrical Engineering IV

FORMALE ANGABEN ZUM MODUL

MODULNUMMERVERORTUNG IM STUDIENVERLAUFMODULDAUER (SEMESTER)MODULVERANTWORTUNGSPRACHET3ELA20012. Studienjahr2Prof. Dr.-Ing. Ralf StiehlerDeutsch

EINGESETZTE LEHRFORMEN

LEHRFORMENLEHRMETHODENVorlesung, ÜbungLehrvortrag, Diskussion, Lehrvortrag, Diskussion, Fallstudien

EINGESETZTE PRÜFUNGSFORMEN

PRÜFUNGSLEISTUNGPRÜFUNGSUMFANG (IN MINUTEN)BENOTUNGKlausur120ja

WORKLOAD UND ECTS-LEISTUNGSPUNKTE

WORKLOAD INSGESAMT (IN H)

DAVON PRÄSENZZEIT (IN H)

DAVON SELBSTSTUDIUM (IN H)

ECTS-LEISTUNGSPUNKTE

90

5

QUALIFIKATIONSZIELE UND KOMPETENZEN

FACHKOMPETENZ

Die Studierenden sind in der Lage, mit den in den Modulinhalten genannten mathematischen/ elektrotechnischen Theoremen und Modelle für Standardfälle der Praxis Berechnungen anzustellen. Sie analysieren einfache Problemstellungen treffsicher, nutzen die für die Lösung relevanten Informationen und führen die Berechnung und Analyse selbständig durch.

METHODENKOMPETENZ

Die Studierenden kennen mit Abschluss des Moduls die in den Modulinhalten aufgeführten wissenschaftlichen Methoden und sind in der Lage, unter Einsatz dieser Methoden relevante Informationen zu sammeln und unter Berücksichtigung wissenschaftlicher Erkenntnisse den Fachstandards entsprechend zu interpretieren.

PERSONALE UND SOZIALE KOMPETENZ

ÜBERGREIFENDE HANDLUNGSKOMPETENZ

LERNEINHEITEN UND INHALTE

LEHR- UND LERNEINHEITENPRÄSENZZEITSELBSTSTUDIUMWellen und Leitungen3654

- Maxwellgleichungen
- Physikalisch relevante partielle Differentialgleichungen (Potentialgleichung, Diffusionsgleichung, Wellengleichung)
- Schnell veränderliche elektromagetische Felder, Wellenausbreitung
- ebene Wellen, harmonische Wellen, polarisierte Wellen, Poynting-Vektor
- Wellengleichung in reeller, komplexer und Phasorendarstellung
- Reflexion und Transmission elektromagnetischer Wellen an Grenzflächen
- verlustlose Leitungstheorie : Leitungsarten, Pulse auf Leitungen, Impedanz, Anpassung
- verlustbehaftete Leitungstheorie: Dispersion, Phasen- und Gruppengeschwindigkeit
- Antennen, Nahfeld, Fernfeld

Stand vom 01.10.2025 T3ELA2001 // Seite 46

LEHR- UND LERNEINHEITEN	PRÄSENZZEIT	SELBSTSTUDIUM
Einführung in die Kommunikationstechnik	24	36

- Grundbegriffe (Signale im Zeit-und Frequenzbereich, Dämpfung, Störabstand, Pegel, Bandbreite, Korrelation, Rauschen, Abtasttheorem, Analog-/Digitalwandlung)
- Modulationsverfahren
- Multiplexverfahren
- Synchronisationsverfahren
- Referenz- und Architekturmodelle der Kommunikationstechnik
- Topologien, Übertragungsarten und Übertragungsprotokolle, Vermittlungstechniken

BESONDERHEITEN

Eine Unterstützung des studentischen Eigenstudiums seitens der Hochschule ist aufgrund des Umfangs und der Komplexität des Themas unabdinglich. Aus diesem Grund enthält dieses Modul zusätzlich bis zu 48h begleitetes Lernen in Form von Übungsstunden, in denen laborpraktische Aufgabenstellungen oder theoretische Übungen zusammen mit den Studierenden bearbeitet werden.

VORAUSSETZUNGEN

-

LITERATUR

- Heino Henke: Elektromagnetische Felder: Theorie und Anwendungen, Springer
- Pascal Leuchtmann: Einführung in die elektromagnetische Feldtheorie. Pearson Studium
- Lonngren, Savov: Fundamentals of electromagnetics with MATLAB, SciTech Publishing
- Küpfmüller, Mathis, Reibiger: Theoretische Elektrotechnik, Springer
- Martin Meyer : Kommunikationstechnik, Vieweg - Herter/Lörcher : Nachrichtentechnik, Hanser

Stand vom 01.10.2025 T3ELA2001 // Seite 47

Einführung in die Medizintechnik (T3ELM2001)

Introduction to Medical Engineering

FORMALE ANGABEN ZUM MODUL

MODULNUMMERVERORTUNG IM STUDIENVERLAUFMODULDAUER (SEMESTER)MODULVERANTWORTUNGSPRACHET3ELM20012. Studienjahr1Prof. Dr. rer. nat. Thomas SchirlDeutsch/Englisch

EINGESETZTE LEHRFORMEN

LEHRFORMENLEHRMETHODENVorlesung, ÜbungLehrvortrag, Diskussion

EINGESETZTE PRÜFUNGSFORMEN

PRÜFUNGSLEISTUNGPRÜFUNGSUMFANG (IN MINUTEN)BENOTUNGKlausur120ja

WORKLOAD UND ECTS-LEISTUNGSPUNKTE

WORKLOAD INSGESAMT (IN H)DAVON PRÄSENZZEIT (IN H)DAVON SELBSTSTUDIUM (IN H)ECTS-LEISTUNGSPUNKTE150481025

QUALIFIKATIONSZIELE UND KOMPETENZEN

FACHKOMPETENZ

Die Studierenden lernen die Notwendigkeit und den Stellenwert der Technik in der Medizin einzuordnen. Physikalisch-technische Methoden werden auf medizinische Gegebenheiten, wie z. B. Anatomie und Physiologie, und allgemeine Rahmenbedingungen, wie z. B. Normen, angewendet.

METHODENKOMPETENZ

Die Studierenden erlernen die komplexen Zusammenhänge der Medizintechnik zu strukturieren und in objektive, natur-wissenschaftliche und soziale Gegebenheiten einzuordnen.

Dabei wird eine systematische Basis geschaffen, sich vertiefend in weitere medizinisch technische Themen einzuarbeiten.

PERSONALE UND SOZIALE KOMPETENZ

ÜBERGREIFENDE HANDLUNGSKOMPETENZ

LERNEINHEITEN UND INHALTE

LEHR- UND LERNEINHEITENPRÄSENZZEITSELBSTSTUDIUMAnatomie und Physiologie2451

- Medizinische Basisinformationen
- Übersicht und Fachtermini
- Anatomische Strukturen
- Physiologische Zusammenhänge
- Zellverband
- Bewegungsapparat
- VerdauungssystemAtmungsapparat
- Kreislaufsystem
- Nervensystem
- Steuerung und Regelung wichtiger Organfunktionen

Stand vom 01.10.2025 T3ELM2001 // Seite 48

LEHR- UND LERNEINHEITENPRÄSENZZEITSELBSTSTUDIUMPhysik in der Medizintechnik2451

- Lasertechnologien (Strahlerzeugung, Anwendungen, Klassifizierung)
- Magnetische Felderzeugung (Erzeugung, Supraleitung, Gefahrpotentiale)
- Physikalische Grundlagen des Ultraschalls
- Technologien von medizinischen Verfahren mit ionisierender Strahlung
- Technik für die Strahlentherapie

BESONDERHEITEN

VORAUSSETZUNGEN

Grundlegendes Verständnis der Inhalte von MINT-Fächern sowie Grundkenntnisse der menschlichen Anatomie.

LITERATUR

- Pschyrembel Klinisches Wörterbuch, Verlag Gruyter
- Der Mensch, Anatomie und Physiologie, Johann S. Schwegler
- Kent Van de Graaff, R. Rhees, Sidney Palmer, "Schaum's Outline of Human Anatomy and Physiology References to 1,440 Solved Problems + 20 Videos", McGraw-Hill Education
- T. Laubenberger ; J. Laubenberger, "Technik der medizinischen Radiologie", Deutscher Ärzte-Verlag
- Klaus Ewen, "Moderne Bildgebung", Thieme
- B.H Brown, R.H Smallwood, D.C. Barber, P.V Lawford, "Medical Physics and Biomedical Engineering", IOP Publishing Ltd.
- Bundesamt für Strahlenschutz, "Strahlung und Strahlenschutz", http://www.bfs.de

Stand vom 01.10.2025 T3ELM2001 // Seite 49

Aufbau des Gesundheitswesens (T3ELM2002)

Health Care and Public Health Systems

FORMALE ANGABEN ZUM MODUL

MODULNUMMERVERORTUNG IM STUDIENVERLAUFMODULDAUER (SEMESTER)MODULVERANTWORTUNGSPRACHET3ELM20022. Studienjahr1Prof. Dr. rer. nat. Thomas SchirlDeutsch/Englisch

EINGESETZTE LEHRFORMEN

LEHRFORMENLEHRMETHODENVorlesung, ÜbungLehrvortrag, Diskussion, Lehrvortrag, Diskussion, Fallstudien

EINGESETZTE PRÜFUNGSFORMEN

PRÜFUNGSLEISTUNGPRÜFUNGSUMFANG (IN MINUTEN)BENOTUNGKlausurarbeit oder Kombinierte Prüfung120ja

WORKLOAD UND ECTS-LEISTUNGSPUNKTE

WORKLOAD INSGESAMT (IN H)DAVON PRÄSENZZEIT (IN H)DAVON SELBSTSTUDIUM (IN H)ECTS-LEISTUNGSPUNKTE150481025

QUALIFIKATIONSZIELE UND KOMPETENZEN

FACHKOMPETENZ

Die Studierenden lernen den Aufbau, die medizinischen bzw. nichtmedizinischen Leistungserbringer und deren Verantwortlichkeiten, die Prozesse in den unterschiedlichen Versorgungsebenen sowie die verschiedenen Finanzierungsstrukturen der Leistungssektoren des Gesundheitswesens kennen.

METHODENKOMPETENZ

Durch dieses Modul werden Studierende in die Lage versetzt selbständig Informationen zu Leistungsbereichen im Gesundheitswesen zu recherchieren und ihre Rolle als Leistungserbringer im Bereich Medizintechnik zu reflektieren und zu gestalten.

PERSONALE UND SOZIALE KOMPETENZ

-

ÜBERGREIFENDE HANDLUNGSKOMPETENZ

_

LERNEINHEITEN UND INHALTE

LEHR- UND LERNEINHEITEN	PRÄSENZZEIT	SELBSTSTUDIUM
Gesundheitswesen	36	66

Struktur und Verantwortlichkeiten des deutschen Gesundheitssystems

- BMG, Bundesoberbehörden, gesundheitspolitische Strukturen auf landes- und kommunaler Ebene
- Soziale Sicherungssysteme und Finanzierungsträger in Deutschland (z. B. GKV, PKV, BG,

Pflegeversicherung)

Leistungsbereiche im Gesundheitswesen

- stationäre Versorgung
- Krankenhauslandschaft
- ambulante Versorgung (Vergütung, GOÄ, EBM, Rolle der KV, Kooperationsformen)
- Schnittstellen der Versorgungssektoren (Integrierte Versorgung, MVZ)
- Rettungsdienste
- Rehabilitationseinrichtungen

Stand vom 01.10.2025 T3ELM2002 // Seite 50

LEHR- UND LERNEINHEITENPRÄSENZZEITSELBSTSTUDIUMSpezifische Medizinprodukteentwicklung1236

- Definition Arzneimittel / Medizinprodukte
- Rechtliche Rahmenbedingungen
- GxP
- Studiendesign
- Arzneimittelentwicklungsprozess
- Arzneimittelarten
- Zulassung von Arzneimitteln und Medizinprodukten
- Pricing & Reimbursement
- Risikoklassifizierung Medizinprodukte
- Gesundheitsökonomische Grundlage
- Health Technology Assessment
- QALY-Konzept

BESONDERHEITEN

Die Prüfungsdauer bezieht sich auf die Klausur.

VORAUSSETZUNGEN

-

LITERATUR

- Michael Simon, "Das Gesundheitssystem in Deutschland: Eine Einführung in Struktur und Funktionsweise", Hogrefe
- Reinhard Busse et al. (Herausgeber), "Management im Gesundheitswesen: Das Lehrbuch für Studium und Praxis", Springer
- Oliver Schöffski und Johann-Matthias Graf von der Schulenburg (Herausgeber), "Gesundheitsökonomische Evaluationen", Springer
- Reinhard Busse (Hrsg.) et al., "Management im Gesundheitswesen: Das Lehrbuch für Studium und Praxis", Springer
- Wilhelm Gaus, Rainer Muche, "Medizinische Statistik: Angewandte Biometrie für Ärzte und Gesundheitsberufe", Schattauer Verlag
- D. Faulkner, "Basic Study Designs in Epidemiology", CreateSpace Independent Publishing Platform
- Petrie, Aviva, Sabin, Caroline, "Medical Statistics at a Glance", Wiley-Blackwell

Stand vom 01.10.2025 T3ELM2002 // Seite 51

Medizinische Gerätetechnik (T3ELM3001)

Medical Devices

FORMALE ANGABEN ZUM MODUL

MODULNUMMERVERORTUNG IM STUDIENVERLAUFMODULDAUER (SEMESTER)MODULVERANTWORTUNGSPRACHET3ELM30013. Studienjahr1Prof. Dr. rer. nat. Thomas SchirlDeutsch/Englisch

EINGESETZTE LEHRFORMEN

LEHRFORMENLEHRMETHODENVorlesung, Vorlesung, ÜbungLehrvortrag, Diskussion

EINGESETZTE PRÜFUNGSFORMEN

PRÜFUNGSLEISTUNGPRÜFUNGSUMFANG (IN MINUTEN)BENOTUNGKlausur120ja

WORKLOAD UND ECTS-LEISTUNGSPUNKTE

WORKLOAD INSGESAMT (IN H)DAVON PRÄSENZZEIT (IN H)DAVON SELBSTSTUDIUM (IN H)ECTS-LEISTUNGSPUNKTE15072785

QUALIFIKATIONSZIELE UND KOMPETENZEN

FACHKOMPETENZ

Um medizinische Diagnose- und Therapiegeräte und deren Anforderungen formulieren zu können, erlernen die Studierenden den prinzipiellen Aufbau medizintechnischer Geräte.

Die Studierenden werden in die Lage versetzt die funktionalen Systemanforderungen durch technische Prozesse zu beschreiben.

METHODENKOMPETENZ

Die Studierenden lernen komplexe, technische Wirkungsketten und deren Strukturumgebung zu verstehen, methodisch zu analysieren und block- und schnittstellenorientiert qualitativ zu beschreiben.

PERSONALE UND SOZIALE KOMPETENZ

ÜBERGREIFENDE HANDLUNGSKOMPETENZ

LERNEINHEITEN UND INHALTE

LEHR- UND LERNEINHEITENPRÄSENZZEITSELBSTSTUDIUMElektronik 42426

Rauscher

- Eigenschaften von Rauschsignalen im Zeitbereich und im Frequenzbereich
- Rauschen bei elektrischen Widerständen
- Kenngrößen rauschender Vierpole
- Transistorrauschen und Anwendungen
- Rauschen in elektronischen Schaltungen
- Rauschen in Audiosignalen
- Rauschen in Bildsignalen

Grundlagen der Optoelektronik

Stand vom 01.10.2025 T3ELM3001 // Seite 52

LEHR- UND LERNEINHEITEN	PRÄSENZZEIT	SELBSTSTUDIUM
Schaltungstechnik medizinischer Geräte	24	16

Entwurfsmethoden medizinischer Geräte und deren Elektronik

- Partitionierung
- Hierarchie und Abstraktion
- Entwurfsablauf
- Verifikation und Abstraktion von digitalen und analogen Komponenten
- Grundlagen Schaltnetzteile
- Weitere Wandler
- Anwendungen in der Medizintechnik

EMV-gerechtes Design 24 36

Störquellen

- Störpegel, Störpfade, Koppelmechanismen Entstörmaßnahmen
- EMV-gerechtes Leiterplattendesign (Simulation, Layout)
- EMV-Messtechnik und Messmethoden Normen und Richtlinien

BESONDERHEITEN

VORAUSSETZUNGEN

- Mathematisch, naturwissenschaftliche Grundlagen
- Grundlagen der Physik
- Grundlagen der Elektrotechnik

LITERATUR

- A. Schwab/W. Kürner: Elektromagnetische Verträglichkeit, Springer Verlag
- J. Franz: EMV: Störungssicherer Aufbau elektronischer Schaltungen, Verlag Springer Vieweg
- G. Durcansky: EMV-gerechtes Gerätedesign, Franzis Verlag
- A. Weber: EMV in der Praxis, Hüthig Verlag
- Karl-Heinz Gonschorek: EMV für Geräteentwickler und Systemintegratoren, Springer
- Stefan Kloth; Hans-Martin Dudenhausen: Elektromagnetische Verträglichkeit, expert-Verlag
- J. Eichmeier, "Medizinische Elektronik", Springer
- E. Böhmer, "Elemente der angewandten Elektronik", Vieweg Verlag
- U. Tietze, C. Schenk, "Halbleiter-Schaltungstechnik", Springer Verlag
- G. Koß, W. Reinhold, "Lehr- und Übungsbuch Elektronik", Fachbuchverlag Leipzig
- R. Kories, H. Schmidt-Walter, "Taschenbuch der Elektrotechnik: Grundlagen und Elektronik", Deutsch Harri GmbH
- Reisch, Michael, "Elektronische Bauelemente", Springer
- Müller, Rudolf, "Rauschen", Springer
- Steven Smith, "Digital Signal Processing. A Practical Guide for Engineers and Scientists (IDC Technology)", Newnes

Stand vom 01.10.2025 T3ELM3001 // Seite 53

Regelungssysteme (T3ELA3002)

Control Systems

FORMALE ANGABEN ZUM MODUL

MODULNUMMERVERORTUNG IM STUDIENVERLAUFMODULDAUER (SEMESTER)MODULVERANTWORTUNGSPRACHET3ELA30023. Studienjahr2Prof. Dr. Frauke SteinhagenDeutsch

EINGESETZTE LEHRFORMEN

 LEHRFORMEN
 LEHRMETHODEN

 Vorlesung, Übung
 Lehrvortrag, Diskussion, Fallstudien

EINGESETZTE PRÜFUNGSFORMEN

PRÜFUNGSLEISTUNGPRÜFUNGSUMFANG (IN MINUTEN)BENOTUNGKlausur120ja

WORKLOAD UND ECTS-LEISTUNGSPUNKTE

WORKLOAD INSGESAMT (IN H)
DAVON PRÄSENZZEIT (IN H)
DAVON SELBSTSTUDIUM (IN H)
ECTS-LEISTUNGSPUNKTE
72
78
5

QUALIFIKATIONSZIELE UND KOMPETENZEN

FACHKOMPETENZ

Die Studierenden sind in der Lage, komplexe Problemstellungen aus der Praxis so zu analysieren und aufzuarbeiten, dass sie zu diesen entsprechende Aufstellungen und Berechnungen erstellen können. Sie gewinnen die für die Lösung relevanten Informationen, führen die Berechnung und Analyse selbstständig durch und geben kritische Hinweise zur Belastbarkeit ihrer Ergebnisse.

METHODENKOMPETENZ

Die Studierenden sind mit Abschluss des Moduls in der Lage, für komplexe Praxisanwendungen eine angemessene Methode auszuwählen und anzuwenden. Sie können die Möglichkeiten, Praktikabilität und Grenzen der eingesetzten Methode einschätzen und sind in der Lage, Handlungsalternativen aufzuzeigen.

PERSONALE UND SOZIALE KOMPETENZ

Die Studierenden können sowohl eigenständig als auch im Team zielorientiert und nachhaltig handeln.

ÜBERGREIFENDE HANDLUNGSKOMPETENZ

-

LERNEINHEITEN UND INHALTE

LEHR- UND LERNEINHEITENPRÄSENZZEITSELBSTSTUDIUMRegelungstechnik 27278

Themen aus den folgenden Bereichen:

- Digitale Regelungssysteme
- Entwurf digitaler Regler
- Zustandsregelung und Mehrgrößensysteme
- Reglersynthese im Zustandsraum
- Nichtlineare Regelungssysteme
- Adaptive Regelung
- Schaltende Regler
- Fuzzy-Control
- Simulationstechniken
- Modellbasierte Entwicklung
- HIL/SII
- Regelungstechnisches Labor

Stand vom 01.10.2025 T3ELA3002 // Seite 54

BESONDERHEITEN

Für ein besseres Verständnis des komplexen Stoffs sollten Vorlesungsinhalte im Umfang von bis zu 24 UE durch begleitete Simulationen und Labore vertieft werden. Darüber hinaus ist es sinnvoll, dass die Studierenden im Selbststudium Aufgaben der Regelungstechnik mittels Simulationstechnik bearbeiten.

VORAUSSETZUNGEN

LITERATUR

- H. Unbehauen, Regelungstechnik II. Vieweg-Verlag R. Isermann, Digitale Regelsysteme. Springer-Verlag
- J. Kahlert , H. Frank: Fuzzy-Logik und Fuzzy-Control, Vieweg-Verlag J. Lunze, Regelungstechnik 2, Springer-Verlag
- H.-W. Philippsen, Einstieg in die Regelungstechnik. Carl Hanser-Verlag
- Gerd Schulze, Regelungstechnik, Oldenbourg-Verlag

Stand vom 01.10.2025 T3ELA3002 // Seite 55

Bachelorarbeit (T3_3300)

Bachelor Thesis

EUBMV	I E ANG	AREN 7	TIME NA	UDIII

 MODULNUMMER
 VERORTUNG IM STUDIENVERLAUF
 MODULDAUER (SEMESTER)
 MODULVERANTWORTUNG
 SPRACHE

 T3_3300
 3. Studienjahr
 1
 Prof. Dr.-lng, Joachim Frech

EINGESETZTE LEHRFORMEN

LEHRFORMEN LEHRMETHODEN
Individualbetreuung Projekt

EINGESETZTE PRÜFUNGSFORMEN

PRÜFUNGSLEISTUNGPRÜFUNGSUMFANG (IN MINUTEN)BENOTUNGBachelor-ArbeitSiehe Pruefungsordnungja

WORKLOAD UND ECTS-LEISTUNGSPUNKTE

WORKLOAD INSGESAMT (IN H)

DAVON PRÄSENZZEIT (IN H)

DAVON SELBSTSTUDIUM (IN H)

ECTS-LEISTUNGSPUNKTE

360

524

12

QUALIFIKATIONSZIELE UND KOMPETENZEN

FACHKOMPETENZ

METHODENKOMPETENZ

-

PERSONALE UND SOZIALE KOMPETENZ

-

ÜBERGREIFENDE HANDLUNGSKOMPETENZ

Die Studierenden erfassen industrielle Problemstellungen in einem breiten Kontext und in realistischer Komplexität. Sie haben ein gutes Verständnis von organisatorischen und inhaltlichen Zusammenhängen sowie von Organisationsstrukturen, Produkten, Verfahren, Maßnahmen, Prozessen, Anforderungen und gesetzlichen Grundlagen. Sie analysieren kritisch, welche Einflussfaktoren zur Lösung des Problems beachtet werden müssen und können beurteilen, inwiefern theoretische Modelle einen Beitrag zur Lösung des Problems leisten können. Die Studierenden können sich selbstständig, nur mit geringer Anleitung in theoretische Grundlagen eines Themengebiets vertiefend einarbeiten und den allgemeinen Stand des Wissens erwerben. Sie können auf der Grundlage von Theorie und Praxis selbstständig Lösungen entwickeln und Alternativen bewerten. Sie sind in der Lage eine wissenschaftliche Arbeit als Teil eines Praxisprojektes effizient zu steuern und wissenschaftlich korrekt und verständlich zu dokumentieren.

Die Studierenden zeichnen sich durch Eigenverantwortung und Tatkraft aus, sie sind auch im Kontext einer globalisierten Arbeitswelt handlungsfähig. Sie weisen eine reflektierte Haltung zu gesellschaftlichen, soziale und ökologischen Implikationen des eigenen Handelns auf.

LERNEINHEITEN UND INHALTE

LEHR- UND LERNEINHEITEN	PRÄSENZZEIT	SELBSTSTUDIUM
Bachelorarbeit	6	354

BESONDERHEITEN

Es wird auf die "Leitlinien für die Bearbeitung und Dokumentation der Module Praxisprojekt I bis III, Studienarbeit und Bachelorarbeit" der Fachkommission Technik der DHBW hingewiesen.

Stand vom 01.10.2025 T3_3300 // Seite 56

LITERATUR

Kornmeier, M., Wissenschaftlich schreiben leicht gemacht für Bachelor, Master und Dissertation, Bern

Stand vom 01.10.2025 T3_3300 // Seite 57

Informatik III (T3_ZELA2701)

Computer Science III

FORMALE ANGABEN ZUM MODUL

MODULNUMMERVERORTUNG IM STUDIENVERLAUFMODULDAUER (SEMESTER)MODULVERANTWORTUNGSPRACHET3_ZELA27012. Studienjahr2Prof. Dipl.-Phys. Kay WildingDeutsch/Englisch

EINGESETZTE LEHRFORMEN

LEHRFORMENLEHRMETHODENVorlesung, Übung, Vorlesung, Übung, LaborLehrvortrag, Diskussion, Gruppenarbeit

EINGESETZTE PRÜFUNGSFORMEN

PRÜFUNGSLEISTUNGPRÜFUNGSUMFANG (IN MINUTEN)BENOTUNGKlausur oder Kombinierte Prüfung120ja

WORKLOAD UND ECTS-LEISTUNGSPUNKTE

WORKLOAD INSGESAMT (IN H)

DAVON PRÄSENZZEIT (IN H)

DAVON SELBSTSTUDIUM (IN H)

ECTS-LEISTUNGSPUNKTE

150

48

102

5

QUALIFIKATIONSZIELE UND KOMPETENZEN

FACHKOMPETENZ

Die Studierenden sind mit Abschluss des Moduls in der Lage, zu den in den Modulinhalten aufgeführten Theorien, Modellen und Diskursen, praktische Anwendungsfälle zu definieren und diese in ihrer Komplexität zu erfassen, zu analysieren und die wesentlichen Einflussfaktoren zu definieren, um darauf aufbauend Lösungsvorschläge zu entwickeln.

METHODENKOMPETENZ

Die Studierenden sind mit Abschluss des Moduls in der Lage, für komplexe Praxisanwendungen eine angemessene Methode auszuwählen und anzuwenden. So können die Möglichkeiten, Praktikabilität und Grenzen der eingesetzten Methode einschätzen und sind in der Lage, Handlungsalternativen aufzuzeigen

PERSONALE UND SOZIALE KOMPETENZ

~____

ÜBERGREIFENDE HANDLUNGSKOMPETENZ

I FRNFINHFITEN UND INHALTE

LEHR- UND LERNEINHEITENPRÄSENZZEITSELBSTSTUDIUMInformatik 3 für Automation2451

Eine Objektorientierte Sprache (C++, Java):

- Klassen, Objekte und ihre Sichtbarkeit
- Vererbung (einfache, mehrfache)
- Polymorphismus, Funktionssignatur
- Relationen
- Funktionen und Operatoren
- Klassenbibliothek

Spezifikation von Klassen und Klassenrelationen (z.B. mit UML)

Stand vom 01.10.2025 T3_ZELA2701 // Seite 58

LEHR- UND LERNEINHEITENPRÄSENZZEITSELBSTSTUDIUMMikrocontrollerlabor2451

Einführung in die hardwarenahe Softwareprogrammierung

- Einarbeitung in ein vorgegebenes Mikrocontrollersystem
- Effektive Methoden zur Fehleranalyse
- Verschiedene Laboraufgaben mit $\dot{\text{dem}}$ Mikrocontroller MSP430, welche in Gruppenarbeit zu bearbeiten sind

BESONDERHEITEN

_

VORAUSSETZUNGEN

-

LITERATUR

- -Stroustrup, B.: Einführung in die Programmierung mit C++. Pearson Studium
- Lahres, B., Rayman, G.: Objektorientierte Programmierung. Galileo Computing

Texas Instruments: MSP-EXP430F5438 Experimenter Board User's Guide

- Texas Instruments: MSP430x5xx/ MSP430x6xx Family User's Guide
- Texas Instruments: MIXED SIGNAL MICROCONTROLLER MSP430F543x, MSP430F541x
- Sturm: Mikrocontrollertechnik: Am Beispiel der MSP430-Familie, Hanser
- Walter, Tappertzhofen: Das MSP430-Mikrocontroller-Buch, Elektor
- Davies: Msp430 Microcontroller Basics, Butterworth Heinemann

Stand vom 01.10.2025 T3_ZELA2701 // Seite 59

Spezielle Grundlagen der Medizintechnik (T3ELM2722)

Selected Topics in Medical Engineering

FORMALE ANGABEN ZUM MODUL

MODULNUMMERVERORTUNG IM STUDIENVERLAUFMODULDAUER (SEMESTER)MODULVERANTWORTUNGSPRACHET3ELM27222. Studienjahr1Prof. Dr. rer. nat. Thomas SchirlDeutsch

EINGESETZTE LEHRFORMEN

 LEHRFORMEN
 LEHRMETHODEN

 Vorlesung
 Lehrvortrag, Diskussion, Lehrvortrag, Diskussion, Fallstudien

EINGESETZTE PRÜFUNGSFORMEN

PRÜFUNGSLEISTUNGPRÜFUNGSUMFANG (IN MINUTEN)BENOTUNGKlausur oder Kombinierte Prüfung120ja

WORKLOAD UND ECTS-LEISTUNGSPUNKTE

WORKLOAD INSGESAMT (IN H)DAVON PRÄSENZZEIT (IN H)DAVON SELBSTSTUDIUM (IN H)ECTS-LEISTUNGSPUNKTE150481025

QUALIFIKATIONSZIELE UND KOMPETENZEN

FACHKOMPETENZ

Die Studierenden sind mit Abschluss des Moduls in der Lage, zu den in den Modulinhalten aufgeführten Theorien, Modellen und Diskursen, praktische Anwendungsfälle zu definieren und diese in ihrer Komplexität zu erfassen, zu analysieren und die wesentlichen Einflussfaktoren zu definieren, um darauf aufbauend Lösungsvorschläge zu entwickeln.

METHODENKOMPETENZ

Die Absolventen verfügen über das in den Modulinhalten aufgeführte Spektrum an Methoden und Techniken zur Bearbeitung komplexer, wissenschaftlicher Probleme in ihrem Studienfach, aus denen sie angemessene Methoden auswählen und anwenden, um neue Lösungen zu erarbeiten. Bein einzelnen Methoden verfügen Sie über vertieftes Fach- und Anwendungswissen.

PERSONALE UND SOZIALE KOMPETENZ

ÜBERGREIFENDE HANDLUNGSKOMPETENZ

-

LERNEINHEITEN UND INHALTE

LEHR- UND LERNEINHEITENPRÄSENZZEITSELBSTSTUDIUMRadiologie und Strahlenschutz2451

Stand vom 01.10.2025 T3ELM2722 // Seite 60

LERNEINHEITEN UND INHALTE LEHR- UND LERNEINHEITEN **PRÄSENZZEIT** SELBSTSTUDIUM Technische Grundlagen: -Konventionelles Röntgen (Thorax, Abdomen, Skelett) -Durchleuchtung -Mammographie -Digitale Radiographie -Angiographie -Computertomographie -Magnetresonanztomographie -PET-CT -PET-MR -StraheIntherapie -Ultraschall -Sonographie Strahlenschutz: -Strahlenschutzgrundlagen -Röntgenverordnung und Strahlenschutzverordnung

Fachkundenachweis gemäß Röntgenverordnung

-Strahlenwirkung auf biologisches Gewebe

24

51

Röntgenverordnung (RöV)

Strahlenschutzberechnungen

- Allgemeine Vorschriften
- Strahlenschutzgrundsätze –
- Überwachungsvorschriften
- Vorschriften für den Betrieb
- Arbeitsmedizinische Vorsorge
- Außergewöhnliche Ereignisabläufe oder Betriebszustände

-Messgeräte und Messverfahren -Baulicher Strahlenschutz -

- Formvorschriften
- Ordnungswidrigkeiten
- Schlussvorschriften

Fachkunde im Strahlenschutz

- Allgemeine Übersicht über die Fachkunde im Strahlenschutz
- Umfang der erforderlichen Fachkunde im Strahlenschutz
- Erwerb, Aktualisierung und Bescheinigung der Fachkunde

BESONDERHEITEN

VORAUSSETZUNGEN

LITERATUR

- Laubenberger ,Th.;Laubenberger ,J. : Technik der medizinischen Radiologie, Deutscher Ärzte Verlag
- Strahlung und Strahlenschutz, Bundesamt für Strahlenschutz http://www.bfs.de/de/bfs/druck/broschueren/str_u_strschutz.html
- Ewen, Klaus: Moderne Bildgebung: Physik, Gerätetechnik, Bildverarbeitungf und Kommunikation, Strahlenschutz, Qualitätskontrolle; Thieme Verlag
- Dössel, O.: Bildgebende Verfahren in der Medizin: Von der Technik zur medizinischen Anwendung, Springer Verlag
- Röntgenverordnung, http://www.gesetze-im-internet.de/bundesrecht/r_v_1987/gesamt.pdf Strahlenschutzverordnung, http://www.gesetze-im-internet.de/bundesrecht/strlschv_2001/gesamt.pdf
- Roth, Jacob: Strahlenschutz in der Medizin. Praktische Anwendung zum Strahlenschutz in Röntgendiagnostik, Nuklearmedizin und Strahlentherapie, Huber Verlag
- Röntgenverordnung, http://www.gesetze-im-internet.de/bundesrecht/r_v_1987/gesamt.pdf -Strahlenschutzverordnung, http://www.gesetze-im-internet.de/bundesrecht/strlschv_2001/gesamt.pdf -Fachkunde
- Richtlinie Technik nach der Röntgenverordnung http://www.bfs.de/de/ion/Kompetenzerhalt.html/national.html/ FachkunderichtlinieTechnikRoeV.pdf
- Richtlinie Fachkunde und Kenntnisse im Strahlenschutz bei dem Betrieb von Röntgeneinrichtungen in der Medizin oder Zahnmedizin

http://www.bfs.de/de/ion/Kompetenzerhalt.html/national.html/ FachkunderichtlinieTechnikstrlschv.pdf:

Stand vom 01.10.2025 T3ELM2722 // Seite 61

Medizinische Messtechnik (T3ELM3003)

Measurement Methods in Medical Engineering

FORMALE ANGABEN ZUM MODUL

MODULNUMMERVERORTUNG IM STUDIENVERLAUFMODULDAUER (SEMESTER)MODULVERANTWORTUNGSPRACHET3ELM30033. Studienjahr2Prof. Dr. rer. nat. Thomas SchirlDeutsch/Englisch

EINGESETZTE LEHRFORMEN

LEHRFORMENLEHRMETHODENVorlesung, ÜbungLehrvortrag, Diskussion

EINGESETZTE PRÜFUNGSFORMEN

PRÜFUNGSLEISTUNGPRÜFUNGSUMFANG (IN MINUTEN)BENOTUNGKlausur oder Kombinierte Prüfung120ja

WORKLOAD UND ECTS-LEISTUNGSPUNKTE

WORKLOAD INSGESAMT (IN H)DAVON PRÄSENZZEIT (IN H)DAVON SELBSTSTUDIUM (IN H)ECTS-LEISTUNGSPUNKTE15072785

QUALIFIKATIONSZIELE UND KOMPETENZEN

FACHKOMPETENZ

Die Studierenden lernen deterministische, technische Signale, Bio-Signale und Störgrößen, zu verstehen, zu beschreiben und einzuschätzen. Sie können nicht nur auf die Qualität von audiologischen und optischen Systemen schließen, sondern auch unterschiedliche Messmethoden und qualitätsverbesserte Maßnahmen bewerten.

METHODENKOMPETENZ

Mit dem technischen Verständnis und dem erworbenen Wissen über medizintechnische Systeme können Studierende sich in moderne Anwendungen, sowie fachübergreifende Themen, einarbeiten.

PERSONALE UND SOZIALE KOMPETENZ

-

ÜBERGREIFENDE HANDLUNGSKOMPETENZ

_

LERNEINHEITEN UND INHALTE

LEHR- UND LERNEINHEITENPRÄSENZZEITSELBSTSTUDIUMSensoren und Messwertverarbeitung in der Medizintechnik3639

- Auswahl, Aufbau, Funktion, Kenngrößen, Einsatz von medizintechnischen Sensoren
- Einbindung von Sensoren in ein medizintechnisches System
- Messsignalvorverarbeitung
- Messwertübertragung
- Messwerterfassung und Signalanalyse
- Grundlagen des Messens in der Medizintechnik
- Biomedizinische Sensoren und Sensorsysteme
- Technik von Sensoren
- Anbindung von Sensoren

Stand vom 01.10.2025 T3ELM3003 // Seite 62

LEHR- UND LERNEINHEITEN	PRÄSENZZEIT	SELBSTSTUDIUM
Medizinische Signalverarbeitung	36	39

Beschreibung und Analyse deterministischer Zeit- und Bildsignale

- Stochastische Prozesse im Zeit- und Frequenzbereich
- Beschreibung und Analyse stochastischer Zeit- und Bildsignale
- Technische Signalbeschreibung und physiologische Signalerkennung und sowie deren Verarbeitung
- Signalqualität, z. B. von Audiosignalen
- Bildqualität und deren Beschreibungsmöglichkeiten mit Betonung medizintechnischer Aspekte
- Darstellung von medizintechnischen Systemen durch technische Signalketten
- Qualitative Systemanalyse für die Medizintechnik

BESONDERHEITEN

VORAUSSETZUNGEN

- mathematisch, naturwissenschaftliche Grundkenntnisse
- Grundkenntnisse der Elektrotechnik und Elektronik
- Grundkenntnisse der Anatomie und Physiologie
- Kenntnisse der Signal- und System-Theorie

LITERATUR

- Eichmeier J., Medizinische Elektronik, Springer
- Smith, Steven, Digital Signal Processing. A Practical Guide for Engineers and Scientists (IDC Technology), Newnes
- Salzburger, Lukas, Signalverarbeitung und Messdatenerfassung in der Elektronik, Franzis
- Reisch, Michael, "Elektronische Bauelemente", Springer
- Tietze, Schenk, "Halbleiter-Schaltungstechnik", Springer
- Geddes L. et al, "Principles of Applied Biomedical Instrumentation", Wiley
- R. Kramme (Hrsg.), "Medizintechnik", Springer

Stand vom 01.10.2025 T3ELM3003 // Seite 63

Betriebswirtschaftliche Grundlagen der Medizintechnik (T3ELM3004)

Fundamentals in Healthcare Business Economics and Management

FORMALE ANGABEN ZUM MODUL

MODULNUMMERVERORTUNG IM STUDIENVERLAUFMODULDAUER (SEMESTER)MODULVERANTWORTUNGSPRACHET3ELM30043. Studienjahr1Prof. Dr. rer. nat. Thomas SchirlDeutsch/Englisch

EINGESETZTE LEHRFORMEN

LEHRFORMENLEHRMETHODENVorlesung, ÜbungLehrvortrag, Diskussion

EINGESETZTE PRÜFUNGSFORMEN

PRÜFUNGSLEISTUNGPRÜFUNGSUMFANG (IN MINUTEN)BENOTUNGKlausur oder Kombinierte Prüfung120ja

WORKLOAD UND ECTS-LEISTUNGSPUNKTE

WORKLOAD INSGESAMT (IN H)

DAVON PRÄSENZZEIT (IN H)

DAVON SELBSTSTUDIUM (IN H)

ECTS-LEISTUNGSPUNKTE

90

5

QUALIFIKATIONSZIELE UND KOMPETENZEN

FACHKOMPETENZ

Die Studierenden lernen qualitätssichernde Rahmenbedingungen im medizinischen Bereich bis hin zum Produkthersteller kennen und können die damit verbundenen notwendigen Maßnahmen und deren Relevanz in ihrem beruflichen Umfeld abschätzen.

METHODENKOMPETENZ

In diesem Modul erlernen Studierende die Notwendigkeit für Verantwortlichkeiten und qualitätssichernde Prozesse im Bereich Gesundheit und Technik zu verstehen und umzusetzen. Hierbei werden die Zusammenhänge der europäischen Gesetzgebung für die Medizintechnik ebenso berücksichtigt, wie deren Umsetzung auf nationaler Ebene.

PERSONALE UND SOZIALE KOMPETENZ

ÜBERGREIFENDE HANDLUNGSKOMPETENZ

LERNEINHEITEN UND INHALTE

LEHR- UND LERNEINHEITENPRÄSENZZEITSELBSTSTUDIUMRechtliche Grundlagen2436

- Zustandekommen von Verträgen und Regeln für den Vertragsschluss
- Inhalte von Verträgen Vertragstypen, wie z. B. Kaufvertrag, Werkvertrag, Dienstvertrag, Leasingvertrag, Mietvertrag, Pay per Use
- Leistungsstörungsrecht, Allgemeines Leistungsstörungsrecht
- Arbeitnehmerhaftung
- Vertragliche Gewährleistungen, u. a. beim Kaufvertrag, Werkvertrag, Mietvertrag, Beendigung von Verträgen
- Besondere vertragliche Vereinbarung im Bereich Medizingerätetechnik
- Urheberrechtliche Aspekte bei Softwareüberlassung
- Datenschutzrechtliche Aspekte im Serviceumfeld
- Rentabilitätsbetrachtungen Kaufvertrag vs. Leasingvertrag
- Überblick der rechtlichen Einbindung der Europäischen Gesetzgebung im Gesundheitswesen
- Rechtlicher Rahmen von Medizinprodukten
- Einordung und rechtliche Bezüge zum Medizinprodukterecht, Medizinproduktegesetz und Verordnungen

Stand vom 01.10.2025 T3ELM3004 // Seite 64

LEHR- UND LERNEINHEITEN	PRÄSENZZEIT	SELBSTSTUDIUM
Qualitätssicherung in der Medizintechnik	36	54

- Qualitätssicherung in der Medizintechnik
- Von der Innovation zur Zulassung eines Medizinprodukts
- Einsatzbereiche und Leistungsangebote für Medizinprodukte, z. B. im Katalog der GKV/PKV, im
- stationären Bereich oder als IGel-Leistung
- Status Quo und Service beim Kunden
- Prozessbeschreibungen und Managementmethoden
- Qualitätsleitlinien vom medizinischen Bereich bis zum Produkthersteller
- Qualitätssicherung und Qualitätsmanagementsysteme in der Medizintechnik
- Europäische Gesetzgebung zur Qualitätsgewährleistung im Gesundheitswesen
- Umsetzung und praktische Anwendungen des Medizinprodukterecht, Medizinproduktegesetz, sowie weitere Verordnungen (u. a. Medizinproduktebetreiberverordnung)
- Klassifizierung und Inverkehrbringen von Medizinprodukten
- Sicherheits- und messtechnische Kontrollen an Medizinprodukten, wie z. B. Abnahme- und Konstanzprüfung

ES				

_

VORAUSSETZUNGEN

LITERATUR

- Klunzinger, Eugen, "Einführung in das bürgerliche Recht", Vahlen Verlag
- Miksch, Marcus, "Grundlagen des Vertragsrechts, EPV-Verlag
- Köhler, Helmut, "Bürgerliches Gesetzbuch", dtv Verlagsgesellschaft
- Marly, Jochen, "Softwareüberlassungsverträge", Verlag C.H. Beck
- Tietze, Jochen, "Einführung in die Finanzmathematik", Vieweg und Teubner Verlag
- Backhaus, Claus, "Usability-Engineering in der Medizintechnik", Springer
- Marc Deschka, "Medizinprodukte-Pass. Persönlicher Gerätepass über die Einweisung in Medizinprodukte gemäß § 5 der Medizinprodukte Betreiberverordnung (MPBetreibV)", Bibliomed-Verlag
- Johann Harer, "Anforderungen an Medizinprodukte Praxisleitfaden für Hersteller und Zulieferer", Carl Hanser Verlag GmbH & Co. KG
- Rolf-Dieter Böckmann, Horst Frankenberger, "MPG & Co., Eine Vorschriftensammlung zum Medizinprodukterecht mit Fachwörterbuch", TÜV Media GmbH TÜV Rheinland Group
- $\ MPG, \ Medizin produktege setz, \ http://www.gesetze-im-internet.de/bundesrecht/mpg/gesamt.pdf \ MPBetreib Value and \ and \ an approximate the setze-im-internet.de/bundesrecht/mpg/gesamt.pdf \ MPBetreib Value and \ an approximate the setze-im-internet.de/bundesrecht/mpg/gesamt.pdf \ MPBetreib Value and \ and \ an approximate the setze-im-internet.de/bundesrecht/mpg/gesamt.pdf \ MPBetreib Value and \ an approximate the setze-im-internet.de/bundesrecht/mpg/gesamt.pdf \ MPBetreib Value and \ and \ an approximate the setze-im-internet.de/bundesrecht/mpg/gesamt.pdf \ MPBetreib Value and \ an approximate the setze-im-internet.de/bundesrecht/mpg/gesamt.pdf \ MPBetreib Value and \ and \ an approximate the setze-im-internet.de/bundesrecht/mpg/gesamt.pdf \ MPBetreib Value and \ an approximate the setze-im-internet.de/bundesrecht/mpg/gesamt.pdf \ MPBetreib Value and \ and \ an approximate the setze-im-internet.de/bundesrecht/mpg/gesamt.pdf \ MPBetreib Value and \ an approximate the setze-im-internet.de/bundesrecht/mpg/gesamt.pdf \ MPBetreib Value and \ an approximate the setze-im-internet.de/bundesrecht/mpg/gesamt.pdf \ MPBetreib Value and \ an approximate the setze-im-internet.de/bundesrecht/mpg/gesamt.pdf \ MPBetreib Value and \ an approximate the setze-im-internet.de/bundesrecht/mpg/gesamt.pdf \ MPBetreib Value and \ an approximate the setze-im-internet.de/bundesrecht/mpg/gesamt.pdf \ MPBetreib Value and \ an approximate the setze-im-internet.de/bundesrecht/mpg/gesamt.pdf \ MPBetreib Value and \ an approximate the setze-im-internet.de/bundesrecht/mpg/gesamt.pdf \ MPBetreib Value and \ an approximate the setze-im-internet.de/bundesrecht/mpg/gesamt.pdf \ MPBetreib Value and \ an approximate the setze-im-internet.de/bundesrecht/mpg/gesamt.pdf \ MPBetreib Value and \ an approximate the setze-im-internet.de/bundesrecht/mpg/gesamt.pdf \ MPBetreib Value and \ an approximate the setze-im-internet.de/bundesrecht/mpg/gesamt.pdf \ MPBetreib Value and \ an approximate the setze-im-i$
- Claus Backhaus, "Usability-Engineering in der Medizintechnik", Springer
- Norbert Leitgeb, "Sicherheit von Medizingeräten: Recht Risiko Chancen", Springer Vieweg

Stand vom 01.10.2025 T3ELM3004 // Seite 65

Embedded Systems (T3ELE3505)

Embedded Systems

FORMALE ANGABEN ZUM MODUL

MODULNUMMERVERORTUNG IM STUDIENVERLAUFMODULDAUER (SEMESTER)MODULVERANTWORTUNGSPRACHET3ELE35053. Studienjahr2Prof. Dr.-Ing. Thomas KiblerDeutsch/Englisch

EINGESETZTE LEHRFORMEN

LEHRFORMEN LEHRMETHODEN

Labor, Vorlesung, Übung Laborarbeit, Lehrvortrag, Diskussion

EINGESETZTE PRÜFUNGSFORMEN

PRÜFUNGSLEISTUNGPRÜFUNGSUMFANG (IN MINUTEN)BENOTUNGKombinierte Prüfung - Klausur (< 50 %) und Programmentwurf</td>120ja

WORKLOAD UND ECTS-LEISTUNGSPUNKTE

WORKLOAD INSGESAMT (IN H)DAVON PRÄSENZZEIT (IN H)DAVON SELBSTSTUDIUM (IN H)ECTS-LEISTUNGSPUNKTE15060905

QUALIFIKATIONSZIELE UND KOMPETENZEN

FACHKOMPETENZ

Die Studierenden sind mit Abschluss des Moduls in der Lage, zu den in den Modulinhalten genannten Theorien, Modellen und Diskursen detaillierte Analysen der technischen Prozesse und Argumentationen aufzubauen. Sie können Zusammenhänge und Einflüsse innerhalb von Problemlagen differenzieren und darauf aufbauend neue Lösungsvorschläge entwickeln und diese kritisch evaluieren.

METHODENKOMPETENZ

Die Studierenden sind mit Abschluss des Moduls in der Lage, für komplexe Anwendungsfälle in der Praxis die angemessene Methode auszuwählen und anzuwenden. Sie kennen die Stärken und Schwächen der Methode in ihrem beruflichen Anwendungsfeld und können diese in konkreten Handlungssituationen gegeneinander ahwägen.

PERSONALE UND SOZIALE KOMPETENZ

ÜBERGREIFENDE HANDLUNGSKOMPETENZ

LERNEINHEITEN UND INHALTE

LEHR- UND LERNEINHEITENPRÄSENZZEITSELBSTSTUDIUMEmbedded Systems3654

- Rechnertechnik
- Mikrocontroller
- Sensoren und Aktoren
- Realzeitbetriebssysteme

Labor Embedded Systems 24 36

- Mikrocontrollerprogrammierung
- Messtechnik
- Systemprogrammierung
- Realzeitprogrammierung

Stand vom 01.10.2025 T3ELE3505 // Seite 66

BESONDERHEITEN

Die Prüfungsdauer bezieht sich auf die Klausur.

VORAUSSETZUNGEN

LITERATUR

- Niebuhr, J., Lindner, G.: Physikalische Messtechnik mit Sensoren Bähring; Mikrorechner-Technik I und II, Springer Verlag
- Siemers, Christian: Prozessorbau; Hanser-Verlag
- Wörn, H, Brinkschulte, U. Echtzeitsysteme, Springer Verlag
- Schwabl-Schmdit, M.: Systemprogrammierung für AVR-Mikrocontroller: Interrupts, Multitasking, Fliesskommaarithmetik und Zufallszahlen, Elektor-Verlag,
- Schröder, Joachim: Embedded Linux: Das Praxisbuch, Springer

Stand vom 01.10.2025 T3ELE3505 // Seite 67

Bildgebende Verfahren (T3ELM3721)

Imaging Systems

FORMALE ANGABEN ZUM MODUL

MODULNUMMERVERORTUNG IM STUDIENVERLAUFMODULDAUER (SEMESTER)MODULVERANTWORTUNGSPRACHET3ELM37213. Studienjahr1Prof. Dr. rer. nat. Thomas SchirlDeutsch

EINGESETZTE LEHRFORMEN

LEHRFORMENLEHRMETHODENVorlesung, ÜbungLehrvortrag, Diskussion, Lehrvortrag, Diskussion, Fallstudien

EINGESETZTE PRÜFUNGSFORMEN

PRÜFUNGSLEISTUNGPRÜFUNGSUMFANG (IN MINUTEN)BENOTUNGKlausur oder Kombinierte Prüfung120ja

WORKLOAD UND ECTS-LEISTUNGSPUNKTE

WORKLOAD INSGESAMT (IN H)DAVON PRÄSENZZEIT (IN H)DAVON SELBSTSTUDIUM (IN H)ECTS-LEISTUNGSPUNKTE15072785

QUALIFIKATIONSZIELE UND KOMPETENZEN

FACHKOMPETENZ

Die Studierenden sind mit Abschluss des Moduls in der Lage, zu den in den Modulinhalten aufgeführten Theorien, Modellen und Diskursen, praktische Anwendungsfälle zu definieren und diese in ihrer Komplexität zu erfassen, zu analysieren und die wesentlichen Einflussfaktoren zu definieren, um darauf aufbauend Lösungsvorschläge zu entwickeln.

METHODENKOMPETENZ

Die Absolventen verfügen über das in den Modulinhalten aufgeführte Spektrum an Methoden und Techniken zur Bearbeitung komplexer, wissenschaftlicher Probleme in ihrem Studienfach, aus denen sie angemessene Methoden auswählen und anwenden, um neue Lösungen zu erarbeiten. Bein einzelnen Methoden verfügen Sie über vertieftes Fach- und Anwendungswissen.

PERSONALE UND SOZIALE KOMPETENZ

LINSON

ÜBERGREIFENDE HANDLUNGSKOMPETENZ

_

LERNEINHEITEN UND INHALTE

LEHR- UND LERNEINHEITENPRÄSENZZEITSELBSTSTUDIUMTomografische Verfahren in der Medizin4852

- Mathematisch-technische Grundlagen
- Prinzipien der Schnittbildgebung f $\ddot{\text{u}}$ r die Medizin
- Bilderzeugung und Bildrekonstruktion
- Computer-Tomographie (CT)
- Magnetresonanzbildgebung (MRT)

Stand vom 01.10,2025 T3ELM3721 // Seite 68

LEHR- UND LERNEINHEITEN	PRÄSENZZEIT	SELBSTSTUDIUM
Nuklearmedizin	12	13

- Nuklearmedizinische Funktionsdiagnostik
- Radiopharmaka und Radionuklide für die Medizin
- Strahlenexposition von Patienten, Personal und sonstigen Personen
- Kontamination, Dekontaminierungsmaßnahmen, Strahlenunfälle und Schutzmaßnahmen
- Sammlung, temporäre Lagerung und Beseitigung radioaktiver Abfälle
- Bildgebende Technik in der Nuklearmedizin
- (Planare) Szintigraphie
- SPECT
- PET

Ultraschall 12 13

- Wellenausbreitung im medizinischen Ultra-Schall
- Funktionsweise von Sonographie-Verfahren
- Bildverfahren, Signaldarstellung und technische Umsetzung
- Bauformen von Echtzeit-Wandlern
- Anwendungen
- Doppler-Sonographie

BESONDERHEITEN

_

VORAUSSETZUNGEN

-

LITERATUR

- Karl zum Winkel, "Nuklearmedizin", Springer-Verlag
- Torsten Kuwert et al., "Nuklearmedizin", Georg Thieme Verlag KG
- B.H Brown, R.H Smallwood, D.C. Barber, P.V Lawford, "Medical Physics and Biomedical Engineering", IOP Publishing Ltd.
- Sol Nudelman, D. D. Patton (eds.), "Imaging for Medicine Volume 1, NUCLEAR MEDICINE, ULTRASONICS, and THERMOGRAPHY", Springer
- Mark A. Haidekker, "Medical Imaging Technology", Springer
- M. Analoui, J. D. Bronzino, D. Peterson, "MEDICAL IMAGING PRINCIPLES AND Practices", CRC Press Taylor & Francis Group, LLC
- Nadine Barrie Smith, Andrew Webb, "Introduction to Medical Imaging Physics, Engineering and Clinical Applications", Cambridge University Press
- Berthold Block, "Der Sono-Guide Taschenatlas der sonographischen Schnittbilddiagnostik", Georg Thieme Verlag, Stuttgart
- R. Kramme (Hrsg.), "Medizintechnik", Springer
- Thorsten M. Buzug, "Einführung in die Computertomographie: Mathematisch-physikalische Grundlagen der Bildrekonstruktion", Springer
- Maximilian F. Reiser, Wolfhard Semmler, Hedvig Hricak, (eds.), "Magnetic Resonance Tomography", Springer
- D.Weishaupt, V. D. Köchli, B. Marincek, "Wie funktioniert MRI?", Springer

Stand vom 01.10.2025 T3ELM3721 // Seite 69

Clinical Workflow (T3ELM3723)

Clinical Workflow

FORMALE ANGABEN ZUM MODUL

MODULNUMMERVERORTUNG IM STUDIENVERLAUFMODULDAUER (SEMESTER)MODULVERANTWORTUNGSPRACHET3ELM37233. Studienjahr1Prof. Dr. rer. nat. Thomas SchirlDeutsch

EINGESETZTE LEHRFORMEN

 LEHRFORMEN
 LEHRMETHODEN

 Vorlesung
 Lehrvortrag, Diskussion, Fallstudien

EINGESETZTE PRÜFUNGSFORMEN

PRÜFUNGSLEISTUNGPRÜFUNGSUMFANG (IN MINUTEN)BENOTUNGKlausur oder Kombinierte Prüfung120ja

WORKLOAD UND ECTS-LEISTUNGSPUNKTE

WORKLOAD INSGESAMT (IN H)DAVON PRÄSENZZEIT (IN H)DAVON SELBSTSTUDIUM (IN H)ECTS-LEISTUNGSPUNKTE150481025

QUALIFIKATIONSZIELE UND KOMPETENZEN

FACHKOMPETENZ

Die Studierenden sind mit Abschluss des Moduls in der Lage, zu den in den Modulinhalten aufgeführten Theorien, Modellen und Diskursen, praktische Anwendungsfälle zu definieren und diese in ihrer Komplexität zu erfassen, zu analysieren und die wesentlichen Einflussfaktoren zu definieren, um darauf aufbauend Lösungsvorschläge zu entwickeln.

METHODENKOMPETENZ

Die Absolventen verfügen über das in den Modulinhalten aufgeführte Spektrum an Methoden und Techniken zur Bearbeitung komplexer, wissenschaftlicher Probleme in ihrem Studienfach, aus denen sie angemessene Methoden auswählen und anwenden, um neue Lösungen zu erarbeiten. Bein einzelnen Methoden verfügen Sie über vertieftes Fach- und Anwendungswissen.

PERSONALE UND SOZIALE KOMPETENZ

ÜBERGREIFENDE HANDLUNGSKOMPETENZ

LERNEINHEITEN UND INHALTE

LEHR- UND LERNEINHEITENPRÄSENZZEITSELBSTSTUDIUMClinical Workflow48102

Aufbau eines Krankenhauses, Aufgaben unterschiedlicher Abteilungen (Radiologie, Chirurgie, Gynäkologie, etc.)

- Abteilung Radiologie als Dienstleister
- Ablauf in der Stroke-Unit, Onkologie, Unfallchirurgie
- Prozessmanagement, Change Management, Prozess-Optimierung
- Veränderungen auf dem Gesundheitsmarkt: alternde Bevölkerung, Kostendruck, Einführungen neuer Abrechnungsverfahren
- Kennzahlen im Gesundheitswesen; Wie lässt sich Erfolg messbar machen? Verschiedene Arten von Kennzahlen. Kennzahlensysteme (Balanced Score Card)
- Healthcare Consulting: Unternehmensberatung im Gesundheitswesen

Stand vom 01.10.2025 T3ELM3723 // Seite 70

BESONDERHEITEN

VORAUSSETZUNGEN

LITERATUR

- Zapp, Winfried (Hrsg.); Kennzahlen im Krankenhaus, EUL Verlag Franke, Detlef Hans: Krankenhaus-Management im Umbruch, Kohlhammer Verlag Debatin,J.F.; Goyen, M. (Hrsg.): Green Hospital Wege zur effektiven Nachhaltigkeit, Thieme Verlag

Stand vom 01.10.2025 T3ELM3723 // Seite 71

Wahlpflichtfach Medizintechnik (T3ELM3724)

Elective Module Medical Engineering

FORMALE ANGABEN ZUM MODUL

MODULNUMMER VERORTUNG IM STUDIENVERLAUF MODULDAUER (SEMESTER) MODULVERANTWORTUNG SPRACHE T3ELM3724 3. Studienjahr 1 Prof. Dr. rer. nat. Thomas Schirl Deutsch

EINGESETZTE LEHRFORMEN

LEHRFORMEN LEHRMETHODEN

Vorlesung, Übung Lehrvortrag, Diskussion, Fallstudien

EINGESETZTE PRÜFUNGSFORMEN

PRÜFUNGSUMFANG (IN MINUTEN) **PRÜFUNGSLEISTUNG** BENOTUNG Klausur oder Kombinierte Prüfung 120 ja

WORKLOAD UND ECTS-LEISTUNGSPUNKTE

WORKLOAD INSGESAMT (IN H) DAVON PRÄSENZZEIT (IN H) DAVON SELBSTSTUDIUM (IN H) **ECTS-LEISTUNGSPUNKTE** 78 150

QUALIFIKATIONSZIELE UND KOMPETENZEN

Die Studierenden sind mit Abschluss des Moduls in der Lage, zu den in den Modulinhalten aufgeführten Theorien, Modellen und Diskursen, praktische Anwendungsfälle zu definieren und diese in ihrer Komplexität zu erfassen, zu analysieren und die wesentlichen Einflussfaktoren zu definieren, um darauf aufbauend Lösungsvorschläge zu entwickeln.

METHODENKOMPETEN7

Die Absolventen verfügen über das in den Modulinhalten aufgeführte Spektrum an Methoden und Techniken zur Bearbeitung komplexer, wissenschaftlicher Probleme in ihrem Studienfach, aus denen sie angemessene Methoden auswählen und anwenden, um neue Lösungen zu erarbeiten. Bein einzelnen Methoden verfügen Sie über vertieftes Fach- und Anwendungswissen.

PERSONALE UND SOZIALE KOMPETENZ

ÜBERGREIFENDE HANDLUNGSKOMPETENZ

LERNEINHEITEN UND INHALTE

LEHR- UND LERNEINHEITEN **PRÄSENZZEIT SELBSTSTUDIUM** Digitale Bildverarbeitung 48

Digitale Bildverarbeitung

- Einführung
- Programmierung
- Bildaufnahme
- Bildsignale
- Licht und Farbe - Punktoperatoren
- Segmentauswertung
- Umgebungsoperatoren - Geometrische Transformationen
- Invariante Objektlokalisierung

Stand vom 01.10.2025 T3ELM3724 // Seite 72

LEHR- UND LERNEINHEITENPRÄSENZZEITSELBSTSTUDIUMLabordiagnostik2426

- Grundlagen der Biochemie von Nucleinsäuren
- Methoden der Molekular Biologie
- Technik im klinischen Labor
- Qualitätssicherung und Qualitätskontrolle im Molekular-Labor

BESONDERHEITEN

VORAUSSETZUNGEN

-

LITERATUR

- Lela Buckingham, Maribeth L. Flaws, "Molecular Diagnostics Fundamentals, Methods, & Clinical Applications", F. A. Davis Company
- William B. Coleman, Gregory. J. Tsongalis (eds.), "Molecular Diagnostics For the Clinical Laboratorian", Humana Press Inc.
- Markus Vieten, "Laborwerte verstehen leicht gemacht", Trias Verlag
- Szeliski: Computer Vision-Algoriths and Applications; Springer Verlag
- Beyerer, Puente, Frese: Automatische Sichtprüfung; Springer Verlag
- Jähne: Digitale Bildverarbeitung; Springer Verlag

Stand vom 01.10.2025 T3ELM3724 // Seite 73

Informationssysteme in der Medizintechnik (T3ELM3726)

Information Systems in Medical Engineering

FORMALE ANGABEN ZUM MODUL

MODULNUMMERVERORTUNG IM STUDIENVERLAUFMODULDAUER (SEMESTER)MODULVERANTWORTUNGSPRACHET3ELM37263. Studienjahr1Prof. Dr. rer. nat. Thomas SchirlDeutsch/Englisch

EINGESETZTE LEHRFORMEN

LEHRFORMENLEHRMETHODENVorlesung, ÜbungLehrvortrag, Diskussion, Lehrvortrag, Diskussion, Fallstudien

EINGESETZTE PRÜFUNGSFORMEN

PRÜFUNGSLEISTUNGPRÜFUNGSUMFANG (IN MINUTEN)BENOTUNGKlausur oder Kombinierte Prüfung120ja

WORKLOAD UND ECTS-LEISTUNGSPUNKTE

WORKLOAD INSGESAMT (IN H)DAVON PRÄSENZZEIT (IN H)DAVON SELBSTSTUDIUM (IN H)ECTS-LEISTUNGSPUNKTE15068825

QUALIFIKATIONSZIELE UND KOMPETENZEN

FACHKOMPETENZ

Die Studierenden sind mit Abschluss des Moduls in der Lage, zu den in den Modulinhalten aufgeführten Theorien und Modellen praktische Anwendungsfälle zu definieren und diese in ihrer Komplexität zu erfassen. Anwendungsnah für die Medizintechnik werden relevante Fälle analysiert und die wesentliche Einflussfaktoren definiert, um darauf aufbauend Problemstellungen und Lösungsvorschläge in geeigneten Umgebungen zu entwickeln und zu implementieren.

METHODENKOMPETENZ

Die Absolventen verfügen über das in den Modulinhalten aufgeführte Spektrum an Methoden und Techniken zur Bearbeitung komplexer, wissenschaftlicher Probleme in ihrem Studienfach, aus denen sie angemessene Methoden des Software-Engineerings und der Qualitätssicherung für Informationstechnologien in der Medizintechnik auswählen und anwenden, um neue Lösungen zu erarbeiten. Bei einzelnen Methoden verfügen Sie über vertieftes Fach- und Anwendungswissen.

PERSONALE UND SOZIALE KOMPETENZ

ÜBERGREIFENDE HANDLUNGSKOMPETENZ

LERNEINHEITEN UND INHALTE

LEHR- UND LERNEINHEITENPRÄSENZZEITSELBSTSTUDIUMMedizinische Informationssysteme3442

- Informationstechnologien in der Medizintechnik (KIS, RIS, PACS)
- Schnittstellen-Design
- H-C-I Human-Computer-Interaction (Kollaborative digitale Medizin, u.a. KI, Machine Learing, Deep Learning)
- H-M-I (Human-Machine-Interface)

Stand vom 01.10.2025 T3ELM3726 // Seite 74

LEHR- UND LERNEINHEITEN	PRÄSENZZEIT	SELBSTSTUDIUM
Informationsverarbeitung medizinischer Systeme	34	40

- Methoden des Software-Engineering (Anforderungen, Analyse, Entwurf, Test, Integration mit
- Workflow-Modellierung
- Qualitätssicherung
- Zielsetzung und Qualitätsmerkmale (u.a. Performance, Security, Traceability)
- Qualitätssicherung (Testverfahren und Methodik)

BESONDERHEITEN

Prüfungsdauer gilt nur für Klausur

VORAUSSETZUNGEN

- Mathematik 1-3
- Mathematischen Anwendungen
- Informatik 1 und 2
- Labor Software-Entwicklung
- Mikrocomputertechnik 1 und 2
- Einführung Kommunikationstechnik

LITERATUR

- Alexander Peck, "Clark's Essential PACS, RIS and Imaging Informatics Clark's Companion Essential Guides", Taylor & Francis Inc.
- Adrian Stavert-Dobson, "Health Information Systems: Managing Clinical Risk", Springer
- Rudi van de Velde, "Hospital Information Systems The Next Generation", Springer
- Yu Liu, Jihong Wang, "PACS and Digital Medicine: Essential Principles and Modern Practice", CRC Press
 Ian Goodfellow, Yoshua Bengio, Aaron Courville, "Deep Learning Adaptive Computation and Machine Learning", The MIT Press
- Ben Shneiderman, "Designing the User Interface: Strategies for Effective Human-Computer Interaction", Pearson
- Leszek A. Maciaszek, "Requirements Analysis and System Design: Developing Information Systems with UML", Addison Wesley
- Robert C. Martin, "Clean Code: A Handbook of Agile Software Craftsmanship", Prentice Hall
- Karl Wiegers, Joy Beatty, "Software Requirements (Developer Best Practices)", Microsoft Press

Stand vom 01.10.2025 T3ELM3726 // Seite 75

Angewandte medizinische Informationstechnologien (T3ELM3725)

Applied Medical Information Technologies

FORMALE ANGABEN ZUM MODUL

MODULNUMMERVERORTUNG IM STUDIENVERLAUFMODULDAUER (SEMESTER)MODULVERANTWORTUNGSPRACHET3ELM37253. Studienjahr2Prof. Dr. rer. nat. Thomas SchirlDeutsch/Englisch

EINGESETZTE LEHRFORMEN

LEHRFORMENLEHRMETHODENVorlesung, ÜbungLehrvortrag, Diskussion, Lehrvortrag, Diskussion, Fallstudien

EINGESETZTE PRÜFUNGSFORMEN

PRÜFUNGSLEISTUNGPRÜFUNGSUMFANG (IN MINUTEN)BENOTUNGKlausur oder Kombinierte Prüfung120ja

WORKLOAD UND ECTS-LEISTUNGSPUNKTE

WORKLOAD INSGESAMT (IN H)DAVON PRÄSENZZEIT (IN H)DAVON SELBSTSTUDIUM (IN H)ECTS-LEISTUNGSPUNKTE15060905

QUALIFIKATIONSZIELE UND KOMPETENZEN

FACHKOMPETENZ

Die Studierenden sind mit Abschluss des Moduls in der Lage, zu den in den Modulinhalten aufgeführten Theorien, Modellen und Diskursen, praktische Anwendungsfälle zu definieren und diese in ihrer Komplexität zu erfassen, zu analysieren und die wesentlichen Einflussfaktoren zu definieren, um darauf aufbauend Lösungsvorschläge zu entwickeln.

METHODENKOMPETENZ

Die Absolventen verfügen über das in den Modulinhalten aufgeführte Spektrum an Methoden und Techniken zur Bearbeitung komplexer, wissenschaftlicher Probleme in ihrem Studienfach, aus denen sie angemessene Methoden auswählen und anwenden, um neue Lösungen zu erarbeiten. Bein einzelnen Methoden verfügen Sie über vertieftes Fach- und Anwendungswissen.

PERSONALE UND SOZIALE KOMPETENZ

ÜBERGREIFENDE HANDLUNGSKOMPETENZ

LERNEINHEITEN UND INHALTE

LEHR- UND LERNEINHEITENPRÄSENZZEITSELBSTSTUDIUMMedizinische Daten-Analyse2440

Inhalte der Unit - Data Management

- Modellierung und Speicherung strukturierter und unstrukturierter Massendaten
- Data Mining and Profiling
- Predictive Analytics
- Data-driven Decision Making

Technologien der Digitalen Transformation 36 50

Inhalte der Unit - Big Data

- Data Science
- Interpretation von KI-Daten in der Medizintechnik

Stand vom 01.10.2025 T3ELM3725 // Seite 76

BESONDERHEITEN

Die Prüfungsdauer gilt nur für die Klausur.

VORAUSSETZUNGEN

- Mathematik 1-3
- Mathematischen Anwendungen
- Informatik 1 und 2
- Labor Software-Entwicklung
- Mikrocomputertechnik 1 und 2
- Einführung Kommunikationstechnik
- Medizinische Informationssysteme
- Engineering of Medical Software Systems

LITERATUR

- Bernard Marr, "Big Data: Using SMART Big Data, Analytics and Metrics To Make Better Decisions and Improve Performance", Wiley
- Nataraj Dasgupta, "Practical Big Data Analytics: Hands-on techniques to implement enterprise analytics and machine learning using Hadoop, Spark, NoSQL and R", Packt Publishing
- Field Cady, The Data Science handbook", John Wiley & Sons Inc
- Alex Galea, "Beginning Data Analysis with Python And Jupyter: Use powerful industry-standard tools to unlock new, actionable insight from your existing data", Packt Publishing
- Stuart Russell, Peter Norvig, "Artificial Intelligence: A Modern Approach", Addison Wesley
- Ralf Huss, "Künstliche Intelligenz, Robotik und Big Data in der Medizin", Springer

Stand vom 01.10.2025 T3ELM3725 // Seite 77

Nachhaltige Energiesysteme (T3_9007)

Sustainable Energy Systems

FORMALE ANGABEN ZUM MODUL

MODULNUMMERVERORTUNG IM STUDIENVERLAUFMODULDAUER (SEMESTER)MODULVERANTWORTUNGSPRACHET3_90073. Studienjahr1Prof. Dr.-Ing. Alexandra DunzDeutsch

EINGESETZTE LEHRFORMEN

LEHRFORMEN LEHRMETHODEN

Vorlesung, Labor Lehrvortrag, Diskussion, Gruppenarbeit

EINGESETZTE PRÜFUNGSFORMEN

PRÜFUNGSLEISTUNG PRÜFUNGSUMFANG (IN MINUTEN) BENOTUNG

Klausurt oder Kombinierte Prüfung 120 ja

WORKLOAD UND ECTS-LEISTUNGSPUNKTE

WORKLOAD INSGESAMT (IN H)DAVON PRÄSENZZEIT (IN H)DAVON SELBSTSTUDIUM (IN H)ECTS-LEISTUNGSPUNKTE15060905

QUALIFIKATIONSZIELE UND KOMPETENZEN

FACHKOMPETENZ

Die Studierenden sind in der Lage, mit den in den Modulinhalten genannten Techniken ingenieurmäßige Fragestellungen in ihrem Arbeitsumfeld zu diesem Thema zu erkennen, sie methodisch grundlagenorientiert zu analysieren und zu lösen.

METHODENKOMPETENZ

Die Studierenden sind mit Abschluss des Moduls in der Lage, für weitgehend standardisierte Anwendungsfälle in der Praxis die angemessene Methode auszuwählen und anzuwenden. Sie kennen die Stärken und Schwächen der Methode in ihrem beruflichen Anwendungsfeld und können diese in konkreten Handlungssituationen gegeneinander abwägen.

PERSONALE UND SOZIALE KOMPETENZ

_

ÜBERGREIFENDE HANDLUNGSKOMPETENZ

-

LERNEINHEITEN UND INHALTE

LEHR- UND LERNEINHEITENPRÄSENZZEITSELBSTSTUDIUMNachhaltige Energiesysteme6090

- Einführung in die nachhaltige Energietechnik und -wirtschaft
- Grundlagen der erneuerbaren Energien wie Photovoltaik, Solarthermie, Windkraft, Wasserkraft, Brennstoffzellen und Biomasse; aufgebaut auf vorhandenem Wissen der

Thermodynamik, Strömungslehre und Elektronik

- Energieeffiziente Gebäudetechnik
- Energiewirtschaftliche Prozesse

BESONDERHEITEN

Die Prüfungsdauer bezieht sich auf die Klausur.

VORAUSSETZUNGEN

-

Stand vom 01.10.2025 T3_9007 // Seite 78

LITERATUR

- Kaltschmitt, M; Streicher, W; Wiese, A: Erneuerbare Energien, Springer Vieweg
- Quaschning, V: Regenerative Energiesysteme, Hanser-Verlag
- Wastter, H: Nachhaltige Energiesysteme, Vieweg + Teubner
 Zahoransky, Richard A.: Energietechnik Systeme zur Energieumwandlung. Vieweg+Teubner
 Hadamovsky, Jonas: Solarstrom Solarthermie. Vogel-Verlag
 Cerbe; Hoffmann: Einführung in die Wärmelehre. Carl Hanser Verlag München Wien

- Baehr, H.D.: Thermodynamik. Springer Verlag Hau, Erich: Windkraftanlagen Grundlagen, Technik, Einsatz, Wirtschaftlichkeit. Springer Verlag
- Recknagel; Sprenger: Taschenbuch für Heizungs- und Klimatechnik. Oldenbourg-Verlag München Tiator; Schenker: Wärmepumpen und Wärmepumpenanlagen. Vogel-Verlag

Stand vom 01.10.2025 T3_9007 // Seite 79