

Dieses Modulhandbuch gilt für Studierende die im Zeitraum vom 01.10.2017 – 30.09.2024 immatrikuliert wurden.

Modulhandbuch

Studienbereich Technik

School of Engineering

Studiengang

Elektrotechnik

Electrical Engineering

Studienrichtung

Energie- und Umwelttechnik

Energy and Environmental Engineering

Studienakademie

MANNHEIM

Curriculum (Pflicht und Wahlmodule)

Aufgrund der Vielzahl unterschiedlicher Zusammenstellungen von Modulen können die spezifischen Angebote hier nicht im Detail abgebildet werden. Nicht jedes Modul ist beliebig kombinierbar und wird möglicherweise auch nicht in jedem Studienjahr angeboten. Die Summe der ECTS aller Module inklusive der Bachelorarbeit umfasst 210 Credits.

Die genauen Prüfungsleistungen und deren Anteil an der Gesamtnote (sofern die Prüfungsleistung im Modulhandbuch nicht eindeutig definiert ist oder aus mehreren Teilen besteht), die Dauer der Prüfung(en), eventuelle Einreichungsfristen und die Sprache der Prüfung(en) werden zu Beginn der jeweiligen Theoriephase bekannt gegeben.

TSELG2001 Mathematik		FESTGELEGTER MODULBEREICH		
TSELG1002 Mathematik	NUMMER	MODULBEZEICHNUNG	VERORTUNG	ECTS
TSELG1003 Physik 1. Studienjahr 2. Studienjahr 3. S	T3ELG1001	Mathematik I	1. Studienjahr	5
TSELG1004 Grundlagen Elektrotechnik II 1. Studienjahr 1. Studienja	T3ELG1002	Mathematik II	1. Studienjahr	5
TSELG1005 Grundlagen Elektrotechnik II 1. Studienjahr 1. Studienja	T3ELG1003	Physik	1. Studienjahr	5
T3ELG1006 Digitaltechnik 1. Studienjahr 5 T3ELG1007 Elektronik und Messtechnik I 1. Studienjahr 5 T3ELG1008 Informatik I 1. Studienjahr 5 T3ELG1009 Informatik II 1. Studienjahr 5 T3ELG2010 Geschäftsprozesse 1. Studienjahr 5 T3ELG2001 Mathematik III 2. Studienjahr 5 T3ELG2002 Grundlagen Elektrotechnik III 2. Studienjahr 5 T3ELG2003 Systemtheorie 2. Studienjahr 5 T3ELG2004 Regelungstechnik 2. Studienjahr 5 T3ELG2005 Elektronik und Messtechnik II 2. Studienjahr 5 T3_3100 Studienarbeit 3. Studienjahr 5 T3_3200 Studienarbeit II 3. Studienjahr 5 T3_2000 Praxisprojekt II 3. Studienjahr 2 T3_3000 Praxisprojekt III 3. Studienjahr 5 T3ELU3001 Energietechnik 3. Studienjahr 5 T3ELU3002 Regelungssysteme </td <td>T3ELG1004</td> <td>Grundlagen Elektrotechnik I</td> <td>1. Studienjahr</td> <td>5</td>	T3ELG1004	Grundlagen Elektrotechnik I	1. Studienjahr	5
TSELG1007 Elektronik und Messtechnik I 1. Studienjahr 1. Studienja	T3ELG1005	Grundlagen Elektrotechnik II	1. Studienjahr	5
TSELG1008 Informatik I 1. Studienjahr 1. Studienjah	T3ELG1006	Digitaltechnik	1. Studienjahr	5
TSELG1009 Informatik II 1. Studienjahr 1. Studienja	T3ELG1007	Elektronik und Messtechnik I	1. Studienjahr	5
T3ELG2001 Mathematik III 2. Studienjahr 5. T3ELG2002 Grundlagen Elektrotechnik III 2. Studienjahr 5. T3ELG2003 Systemtheorie 2. Studienjahr 5. T3ELG2003 Systemtheorie 2. Studienjahr 5. T3ELG2004 Regelungstechnik 2. Studienjahr 5. T3ELG2005 Elektronik und Messtechnik II 2. Studienjahr 5. T3ELG2005 Elektronik und Messtechnik II 2. Studienjahr 5. T3ELG2006 Mikrocomputertechnik 2. Studienjahr 5. T3ELG2006 Mikrocomputertechnik 3. Studienjahr 5. T3EJ100 Studienarbeit II 3. Studienjahr 5. T3EJ100 Praxisprojekt II 3. Studienjahr 5. T3EJ100 Praxisprojekt II 3. Studienjahr 5. T3EJ100 Praxisprojekt III 3. Studienjahr 5. T3EJ1000 Praxisprojekt III 3. Studienjahr 5. T3EJ10001 Erneuerbare Energien 3. Studienjahr 5. T3EJ10001 Energietechnik 3. Studienjahr 5. T3EJ10002 Solar- und Speichertechnologien 3. Studienjahr 5. T3EJ10002 Solar- und Speichertechnologien 3. Studienjahr 5. T3EJ10003 Umwelttechnik 3. Studienjahr 5. T3EJ10003 Studienjahr 5. T3EJ10004 Studienjahr 5. T3EJ1	T3ELG1008	Informatik I	1. Studienjahr	5
T3ELG2001 Mathematik III 2. Studienjahr 5. Studienj	T3ELG1009	Informatik II	1. Studienjahr	5
T3ELG2002 Grundlagen Elektrotechnik III 2. Studienjahr 5. Studienj	T3ELG1010	Geschäftsprozesse	1. Studienjahr	5
T3ELG2003 Systemtheorie 2. Studienjahr 5. Studienjahr 5. Studienjahr 6. Studienjahr 7. Studienja	T3ELG2001	Mathematik III	2. Studienjahr	5
T3ELG2004 Regelungstechnik 2. Studienjahr 5. Studie	T3ELG2002	Grundlagen Elektrotechnik III	2. Studienjahr	5
T3ELG2005 Elektronik und Messtechnik II 2. Studienjahr 5. T3ELG2006 Mikrocomputertechnik 2. Studienjahr 5. T3_3100 Studienarbeit 3. Studienjahr 5. T3_3200 Studienarbeit II 3. Studienjahr 5. T3_1000 Praxisprojekt I 1. Studienjahr 2.0 T3_2000 Praxisprojekt III 3. Studienjahr 2.0 T3_3000 Praxisprojekt III 3. Studienjahr 2.0 T3_3000 Praxisprojekt III 3. Studienjahr 5. T3ELU2001 Erneuerbare Energien 2. Studienjahr 5. T3ELU3001 Energietechnik 3. Studienjahr 5. T3ELU3002 Regelungssysteme 3. Studienjahr 5. T3ELU3002 Solar- und Speichertechnologien 3. Studienjahr 5. T3ELU3003 Umwelttechnik 3. Studienjahr 5. T3ELU3003 Umwelttechnik 3. Studienjahr 5. T3ELU3004 Elektrische Anlagen und Netze 3. Studienjahr 5. T3ELU3004 Elektrische Anlagen und Netze 3. Studienjahr 5. T3ELE2713 Steuerungstechnik für Energietechnik 5.	T3ELG2003	Systemtheorie	2. Studienjahr	5
T3ELG2006 Mikrocomputertechnik 2. Studienjahr 5. T3_3100 Studienarbeit 3. Studienjahr 5. T3_3200 Studienarbeit II 3. Studienjahr 5. T3_3200 Studienarbeit II 3. Studienjahr 6. T3_3200 Praxisprojekt I 1. Studienjahr 20 T3_2000 Praxisprojekt II 2. Studienjahr 20 T3_2000 Praxisprojekt III 3. Studienjahr 6. T3ELU2001 Erneuerbare Energien 2. Studienjahr 6. T3ELU3001 Energietechnik 3. Studienjahr 6. T3ELU3001 Energietechnik 3. Studienjahr 6. T3ELU3002 Regelungssysteme 3. Studienjahr 6. T3ELU3002 Solar- und Speichertechnologien 3. Studienjahr 6. T3ELU3003 Umwelttechnik 3. Studienjahr 6. T3ELU3712 Grundlagen Drehstromnetze 2. Studienjahr 6. T3ELU3712 Grundlagen Drehstromnetze 3. Studienjahr 6. T3ELE2713 Steuerungstechnik für Energietechnik 6. Studienjahr 6. T3ELE3004 Elektrische Anlagen und Netze 3. Studienjahr 6. Studienj	T3ELG2004	Regelungstechnik	2. Studienjahr	5
T3_3100 Studienarbeit 3. Studienjahr 5. T3_3200 Studienarbeit II 3. Studienjahr 5. T3_1000 Praxisprojekt I 1. Studienjahr 20 T3_2000 Praxisprojekt III 3. Studienjahr 20 T3_3000 Praxisprojekt III 3. Studienjahr 20 T3_3000 Praxisprojekt III 3. Studienjahr 5. T3_5000 Praxisprojekt III 5. T3_5000 Praxisprojekt III 5. Studienjahr 5. T3_5000 Praxisprojekt III 5. T3_5000 Praxisprojekt III 5. T3_5000 Praxisprojekt III 5. T	T3ELG2005	Elektronik und Messtechnik II	2. Studienjahr	5
T3_3200 Studienarbeit II 3. Studienjahr 5. Studienjahr 2. Studienjahr 3. Studienjahr 5. Studienj	T3ELG2006	Mikrocomputertechnik	2. Studienjahr	5
T3_1000 Praxisprojekt II 1. Studienjahr 20 T3_2000 Praxisprojekt III 2. Studienjahr 20 T3_3000 Praxisprojekt III 3. Studienjahr 20 T3_3000 Praxisprojekt III 3. Studienjahr 2. Studienjahr 3. Studienjahr	T3_3100	Studienarbeit	3. Studienjahr	5
T3_2000 Praxisprojekt II 2. Studienjahr 20 T3_3000 Praxisprojekt III 3. Studienjahr 2. Studienjahr 3. Studienja	T3_3200	Studienarbeit II	3. Studienjahr	5
T3_3000 Praxisprojekt III 3. Studienjahr 2. Studienjahr 2. Studienjahr 3. Studien	T3_1000	Praxisprojekt I	1. Studienjahr	20
T3ELU2001 Erneuerbare Energien 2. Studienjahr 3. Studienjahr 5. Studienjahr 5. Studienjahr 5. Studienjahr 6. Studienjahr 6. Studienjahr 6. Studienjahr 7. St	T3_2000	Praxisprojekt II	2. Studienjahr	20
T3ELU3001 Energietechnik 3. Studienjahr 5. Studienjahr 5. Studienjahr 5. Studienjahr 6. Studienjahr 6. Studienjahr 7. Studienj	T3_3000	Praxisprojekt III	3. Studienjahr	8
T3ELA3002 Regelungssysteme 3. Studienjahr 5. Studie	T3ELU2001	Erneuerbare Energien	2. Studienjahr	5
T3ELU3002 Solar- und Speichertechnologien 3. Studienjahr 5. T3ELU3003 Umwelttechnik 3. Studienjahr 5. T3ELE2711 Konstruktionslehre 2. Studienjahr 5. T3ELU2712 Grundlagen Drehstromnetze 2. Studienjahr 5. T3ELE2713 Steuerungstechnik für Energietechnik 2. Studienjahr 5. T3ELE3004 Elektrische Anlagen und Netze 3. Studienjahr 5.	T3ELU3001	Energietechnik	3. Studienjahr	5
T3ELU3003 Umwelttechnik 3. Studienjahr 5. Studienjahr 5. Studienjahr 6. Studienjahr 7. Studienjahr 7. Studienjahr 7. Studienjahr 7. Studienjahr 7. Studienjahr 7. Steuerungstechnik 6. Studienjahr 7. Steuerungstechnik 6. Studienjahr 7. Studienjahr	T3ELA3002	Regelungssysteme	3. Studienjahr	5
T3ELE2711 Konstruktionslehre 2. Studienjahr 2. Studienjahr 2. Studienjahr 2. Studienjahr 2. Studienjahr 2. Studienjahr 3. Steuerungstechnik für Energietechnik 2. Studienjahr 3. Studienja	T3ELU3002	Solar- und Speichertechnologien	3. Studienjahr	5
T3ELU2712 Grundlagen Drehstromnetze 2. Studienjahr 5. Steuerungstechnik für Energietechnik 2. Studienjahr 5. Steuerungstechnik Elektrische Anlagen und Netze 3. Studienjahr 5. Studienjahr 5. Studienjahr 6. Studienjahr	T3ELU3003	Umwelttechnik	3. Studienjahr	5
T3ELE2713 Steuerungstechnik für Energietechnik 2. Studienjahr 5. T3ELE3004 Elektrische Anlagen und Netze 3. Studienjahr 5. Studienjahr 6. Stu	T3ELE2711	Konstruktionslehre	2. Studienjahr	5
T3ELE3004 Elektrische Anlagen und Netze 3. Studienjahr 5	T3ELU2712	Grundlagen Drehstromnetze	2. Studienjahr	5
	T3ELE2713	Steuerungstechnik für Energietechnik	2. Studienjahr	5
T3ELA3704 Schlüsselqualifikation für Ingenieure 3. Studienjahr 5	T3ELE3004	Elektrische Anlagen und Netze	3. Studienjahr	5
	T3ELA3704	Schlüsselqualifikation für Ingenieure	3. Studienjahr	5

Stand vom 01.10.2025 Curriculum // Seite 2

	FESTGELEGTER MODULBEREICH		
NUMMER	MODULBEZEICHNUNG	VERORTUNG	ECTS
T3ELE3712	Hochspannungstechnik	3. Studienjahr	5
T3ELU3704	Energienetze und -anlagen	3. Studienjahr	5
T3ELU3841	Energienetze	3. Studienjahr	5
T3ELU3844	Energiewirtschaft	3. Studienjahr	5
T3_9007	Nachhaltige Energiesysteme	3. Studienjahr	5
T3_3300	Bachelorarbeit	3. Studienjahr	12
T3_ZELA2701	Informatik III	2. Studienjahr	5

Stand vom 01.10.2025 Curriculum // Seite 3

Mathematik I (T3ELG1001)

Mathematics I

FORMALE ANGABEN ZUM MODUL

MODULNUMMERVERORTUNG IM STUDIENVERLAUFMODULDAUER (SEMESTER)MODULVERANTWORTUNGSPRACHET3ELG10011. Studienjahr1Prof. Dr. Gerhard GötzDeutsch

EINGESETZTE LEHRFORMEN

 LEHRFORMEN
 LEHRMETHODEN

 Vorlesung
 Lehrvortrag, Diskussion, Gruppenarbeit

EINGESETZTE PRÜFUNGSFORMEN

PRÜFUNGSLEISTUNGPRÜFUNGSUMFANG (IN MINUTEN)BENOTUNGKlausur120ja

WORKLOAD UND ECTS-LEISTUNGSPUNKTE

WORKLOAD INSGESAMT (IN H)DAVON PRÄSENZZEIT (IN H)DAVON SELBSTSTUDIUM (IN H)ECTS-LEISTUNGSPUNKTE15072785

QUALIFIKATIONSZIELE UND KOMPETENZEN

FACHKOMPETENZ

Die Studierenden sind in der Lage, mit den in den Modulinhalten genannten mathematischen Theoremen und Modelle zielgerichtete Berechnungen anzustellen.

METHODENKOMPETENZ

Die Studierenden kennen mit Abschluss des Moduls die in den Modulinhalten aufgeführten wissenschaftlichen Methoden und sind in der Lage, unter Einsatz dieser Methoden relevante Lösungen zu erarbeiten und unter Berücksichtigung wissenschaftlicher Erkenntnisse den Fachstandards entsprechend zu interpretieren.

PERSONALE UND SOZIALE KOMPETENZ

-

ÜBERGREIFENDE HANDLUNGSKOMPETENZ

-

LERNEINHEITEN UND INHALTE

LEHR- UND LERNEINHEITENPRÄSENZZEITSELBSTSTUDIUMMathematik 17278

Lineare Algebra

- Mathematische Grundbegriffe
- Vektorrechnung
- Matrizen
- Komplexe Zahlen

Analysis I

- Funktionen mit einer Veränderlichen
- Standardfunktionen und deren Umkehrfunktionen

BESONDERHEITEN

Stand vom 01.10.2025 T3ELG1001 // Seite 4

LITERATUR

- Papula, Lothar: Mathematik für Ingenieure und Naturwissenschaftler, Bände 1 u. 2, Vieweg Verlag
- Papula, Lothar: Mathematische Formelsammlung für Ingenieure und Naturwissenschaftler, Vieweg Verlag
- Neumayer; Kaup: Mathematik für Ingenieure, Bände 1 bis 3, Shaker Verlag
- Leupold: Mathematik, ein Studienbuch für Ingenieure, Bände 1 bis 3, Hanser Verlag
- Preuss; Wenisch; Schmidt: Lehr- und Übungsbuch Mathematik, Bände 1 bis 3, Hanser Fachbuchverlag
- Fetzer; Fränkel: Mathematik, Lehrbuch für İngenieurwissenschaftliche Studiengänge, Bände 1 und 2, Springer-Verlag
- Engeln-Müllges, Gisela; Schäfer, Wolfgang; Trippler, Gisela: Kompaktkurs Ingenieurmathematik mit Wahrscheinlichkeitsrechnung und Statistik, Fachbuchverlag Leipzig - Rießinger, Thomas: Mathematik für Ingenieure, Springer Verlag - Stry, Yvonne; Schwenkert, Rainer: Mathematik kompakt für Ingenieure und Informatiker, Springer Verlag
- Bronstein; Semendjajew; Musiol; Mühlig: Taschenbuch der Mathematik, Harri Deutsch Verlag

Stand vom 01.10.2025 T3ELG1001 // Seite 5

Mathematik II (T3ELG1002)

Mathematics II

FORMALE ANGABEN ZUM MODUL

MODULNUMMERVERORTUNG IM STUDIENVERLAUFMODULDAUER (SEMESTER)MODULVERANTWORTUNGSPRACHET3ELG10021. Studienjahr1Prof. Dr. Gerhard GötzDeutsch

EINGESETZTE LEHRFORMEN

LEHRFORMENLEHRMETHODENVorlesungLehrvortrag, Diskussion

EINGESETZTE PRÜFUNGSFORMEN

PRÜFUNGSLEISTUNGPRÜFUNGSUMFANG (IN MINUTEN)BENOTUNGKlausur120ja

WORKLOAD UND ECTS-LEISTUNGSPUNKTE

WORKLOAD INSGESAMT (IN H)DAVON PRÄSENZZEIT (IN H)DAVON SELBSTSTUDIUM (IN H)ECTS-LEISTUNGSPUNKTE15072785

QUALIFIKATIONSZIELE UND KOMPETENZEN

FACHKOMPETENZ

Die Studierenden sind in der Lage, mit den in den Modulinhalten genannten mathematischen Theoremen und Modellen zielgerichtete Berechnungen anzustellen.

METHODENKOMPETENZ

Die Studierenden kennen mit Abschluss des Moduls die in den Modulinhalten aufgeführten wissenschaftlichen Methoden und sind in der Lage, unter Einsatz dieser Methoden relevante Informationen zu sammeln und unter Berücksichtigung wissenschaftlicher Erkenntnisse den Fachstandards entsprechend zu interpretieren.

PERSONALE UND SOZIALE KOMPETENZ

-

ÜBERGREIFENDE HANDLUNGSKOMPETENZ

-

LERNEINHEITEN UND INHALTE

LEHR- UND LERNEINHEITENPRÄSENZZEITSELBSTSTUDIUMMathematik 27278

Analysis I (Fortsetzung)

- Folgen und Reihen, Konvergenz, Grenzwerte
- Differenzialrechnung einer Variablen
- Integralrechnung einer Variablen
- Gewöhnliche Differenzialgleichungen
- Numerische Verfahren der Integralrechnung und zur Lösung von Differenzialgleichungen

BESONDERHEITEN

-

VORAUSSETZUNGEN

-

Stand vom 01.10.2025 T3ELG1002 // Seite 6

LITERATUR

- Papula, Lothar: Mathematik für Ingenieure und Naturwissenschaftler, Bände 1 u. 2, Vieweg Verlag
- Papula, Lothar: Mathematische Formelsammlung für Ingenieure und Naturwissenschaftler, Vieweg Verlag
- Neumayer; Kaup: Mathematik für Ingenieure, Bände 1 bis 3, Shaker Verlag
- Leupold: Mathematik, ein Studienbuch für Ingenieure, Bände 1 bis 3, Hanser Verlag
- Preuss; Wenisch; Schmidt: Lehr- und Übungsbuch Mathematik, Bände 1 bis 3, Hanser Fachbuchverlag
 Fetzer; Fränkel: Mathematik, Lehrbuch für ingenieurwissenschaftliche Studiengänge, Bände 1 und 2, Springer-Verlag
- Engeln-Müllges, Gisela; Schäfer, Wolfgang; Trippler, Gisela: Kompaktkurs Ingenieurmathematik mit Wahrscheinlichkeitsrechnung und Statistik, Fachbuchverlag Leipzig - Rießinger, Thomas: Mathematik für Ingenieure, Springer Verlag - Stry, Yvonne; Schwenkert, Rainer: Mathematik kompakt für Ingenieure und Informatiker, Springer Verlag
- Bronstein; Semendjajew; Musiol; Mühlig: Taschenbuch der Mathematik, Harri Deutsch Verlag

Stand vom 01.10.2025 T3ELG1002 // Seite 7

Physik (T3ELG1003)

Physics

FORMALE ANGABEN ZUM MODUL

MODULNUMMERVERORTUNG IM STUDIENVERLAUFMODULDAUER (SEMESTER)MODULVERANTWORTUNGSPRACHET3ELG10031. Studienjahr2Prof. Dr.-Ing. Thomas KiblerDeutsch

EINGESETZTE LEHRFORMEN

LEHRFORMENLEHRMETHODENVorlesungLehrvortrag, Diskussion

EINGESETZTE PRÜFUNGSFORMEN

PRÜFUNGSLEISTUNGPRÜFUNGSUMFANG (IN MINUTEN)BENOTUNGKlausur120ja

WORKLOAD UND ECTS-LEISTUNGSPUNKTE

WORKLOAD INSGESAMT (IN H)
DAVON PRÄSENZZEIT (IN H)
DAVON SELBSTSTUDIUM (IN H)
ECTS-LEISTUNGSPUNKTE
72
78
5

QUALIFIKATIONSZIELE UND KOMPETENZEN

FACHKOMPETENZ

Die Studierenden sind in der Lage, mit den in den Modulinhalten genannten mathematischen, physikalischen Theoremen und Modelle zielgerichtete Berechnungen anzustellen. Sie analysieren einfache Problemstellungen aus der Praxis treffsicher, nutzen die für die Lösung relevanten Informationen und führen die Berechnungen selbständig durch.

METHODENKOMPETENZ

Die Studierenden kennen mit Abschluss des Moduls die in den Modulinhalten aufgeführten wissenschaftlichen Methoden und sind in der Lage, unter Einsatz dieser Methoden relevante Informationen zu sammeln und unter Berücksichtigung wissenschaftlicher Erkenntnisse den Fachstandards entsprechend zu interpretieren.

PERSONALE UND SOZIALE KOMPETENZ

ÜBERGREIFENDE HANDLUNGSKOMPETENZ

Sie zeichnen sich aus durch fundiertes fachliches Wissen, Verständnis für übergreifende Zusammenhänge sowie die Fähigkeit, theoretisches Wissen in die Praxis zu übertragen.

LERNEINHEITEN UND INHALTE

LEHR- UND LERNEINHEITEN	PRÄSENZZEIT	SELBSTSTUDIUM
Physik	72	78

Technische Mechanik

- Kinematik, Dynamik, Impuls, Arbeit und Energie, Stoßprozesse, Drehbewegungen, Mechanik starrer Körper
- Einführung in die Mechanik deformierbarer Körper und die Mechanik der Flüssigkeiten und Gase

Schwingungen und Wellen

- Schwingungsfähige Systeme
- Grundlagen der Wellenausbreitung
- Akustik
- geometrische Optik
- Wellenoptik, Doppler-Effekt, Interferenz

Grundlagen der Thermodynamik

- Kinetische Theorie
- Hauptsätze der Wärmelehre

Stand vom 01.10.2025 T3ELG1003 // Seite 8

LEHR- UND LERNEINHEITEN PRÄSENZZEIT SELBSTSTUDIUM

BESONDERHEITEN

Die Veranstaltung kann durch Labors und begleitendes Lernen in Form von Übungsstunden mit bis zu 12 h vertieft werden.

VORAUSSETZUNGEN

LITERATUR

- Hering, Martin, Stohrer: Physik für Ingenieure, Springer.
- Stroppe: PHYSIK für Studierende der Natur- und Ingenieurwissenschaften, Carl Hanser Verlag GmbH & Co. KG. Tipler, P.A: Physik für Wissenschaftler und Ingenieure, Spektrum Akademischer Verlag.
- Halliday: Halliday Physik: Bachelor-Edition, Wiley-VCH Verlag GmbH & Co. KGaA.
 Gerthsen, C., Vogel, H.: Physik, Springer Verlag.
 Alonso, M., Finn, E.J: Physik, Oldenbourg Verlag.

Stand vom 01.10.2025 T3ELG1003 // Seite 9 Studienbereich Technik // School of Engineering Elektrotechnik // Electrical Engineering Energie- und Umwelttechnik // Energy and Environmental Engineering MANNHEIM

Grundlagen Elektrotechnik I (T3ELG1004)

Principles of Electrical Engineering I

FORMALE ANGABEN ZUM MODUL

MODULNUMMER VERORTUNG IM STUDIENVERLAUF MODULDAUER (SEMESTER) MODULVERANTWORTUNG SPRACHE T3ELG1004 1. Studienjahr Prof. Dr.-Ing. Gerald Oberschmidt

Deutsch

EINGESETZTE LEHRFORMEN

LEHRFORMEN LEHRMETHODEN Vorlesung, Übung Lehrvortrag, Diskussion

EINGESETZTE PRÜFUNGSFORMEN

PRÜFUNGSUMFANG (IN MINUTEN) **PRÜFUNGSLEISTUNG** BENOTUNG Klausur 120 ja

WORKLOAD UND ECTS-LEISTUNGSPUNKTE

WORKLOAD INSGESAMT (IN H) DAVON PRÄSENZZEIT (IN H) DAVON SELBSTSTUDIUM (IN H) **ECTS-LEISTUNGSPUNKTE** 78 150

QUALIFIKATIONSZIELE UND KOMPETENZEN

Die Studierenden sind in der Lage, mit den in den Modulinhalten genannten mathematischen Theoremen und Modelle für Standardfälle der Praxis Berechnungen anzustellen. Sie analysieren einfache Problemstellungen aus der Praxis treffsicher, nutzen die für die Lösung relevanten Informationen und führen die Berechnung/ Analyse selbständig durch.

METHODENKOMPETEN7

Die Studierenden sind mit Abschluss des Moduls in der Lage, für weitgehend standardisierte Anwendungsfälle in der Praxis die angemessene Methode auszuwählen und anzuwenden. Sie kennen die Stärken und Schwächen der Methode in ihrem beruflichen Anwendungsfeld und können diese in konkreten Handlungssituationen gegeneinander abwägen.

PERSONALE UND SOZIALE KOMPETENZ

ÜBERGREIFENDE HANDLUNGSKOMPETENZ

LERNEINHEITEN UND INHALTE

LEHR- UND LERNEINHEITEN	PRÄSENZZEIT	SELBSTSTUDIUM
Grundlagen Elektrotechnik 1	72	78

Stand vom 01.10.2025 T3ELG1004 // Seite 10

LERNEINHEITEN UND INHALTE

LEHR- UND LERNEINHEITEN

Grundlagen der Elektrotechnik 1

 Grundlegende Begriffe und Definitionen MKSA-System elektrischer Strom elektrische Spannung elektrischer Widerstand/Leitwert Temperaturabhängigkeiten

- elektrischer Widerstand/Leitwert
 Temperaturabhängigkeiten
 Einfacher Gleichstromkreis
 reale Spannungsquelle
 reale Stromquelle
- Verzweigte Gleichstromkreise
- Zweigstromanalyse
- Knotenanalyse
- Maschenanalyse
- Kapazität, Kondensator, Induktivität, Spule
- Strom/Spannungs-DGLs an RLC-Gliedern
- Analyse einfacher RC/RL-Glieder
- Lade/Entladeverhalten, Zeitkonstante

BESONDERHEITEN

VORAUSSETZUNGEN

LITERATUR

- Führer, Arnold; Heidemann, Klaus; Nerreter, Wolfgang: Grundgebiete der Elektrotechnik. Band 1: Stationäre Vorgänge. München, Wien: Hanser Verlag
- Führer, Arnold; Heidemann, Klaus; Nerreter, Wolfgang: Grundgebiete der Elektrotechnik. Band 2: Zeitabhängige Vorgänge. München, Wien: Hanser Verlag
- Weißgerber, Wilfried: Elektrotechnik für Ingenieure. Band 1: Gleichstromtechnik und Elektromagnetisches Feld. Braunschweig, Wiesbaden: Vieweg+Teubner Verlag

PRÄSENZZEIT

SELBSTSTUDIUM

- Weißgerber, Wilfried: Elektrotechnik für Ingenieure. Band 2: Wechselstromtechnik, Ortskurven, Transformator, Mehrphasensysteme. Springer Vieweg
- Paul, Reinhold: Elektrotechnik. Band 1: Elektrische Erscheinungen und Felder. Berlin, Heidelberg, New York: Springer Verlag
- Paul, Reinhold: Elektrotechnik. Band 2: Netzwerke. Berlin, Heidelberg, New York: Springer Verlag
- Erwin Böhmer: Elemente der angewandten Elektronik, Vieweg+Teubner Verlag
- Ulrich Tietze, Christoph Schenk: Halbleiter-Schaltungstechnik, Springer

Stand vom 01.10.2025 T3ELG1004 // Seite 11

Grundlagen Elektrotechnik II (T3ELG1005)

Principles of Electrical Engineering II

FORMALE ANGABEN ZUM MODUL

MODULNUMMERVERORTUNG IM STUDIENVERLAUFMODULDAUER (SEMESTER)MODULVERANTWORTUNGSPRACHET3ELG10051. Studienjahr1Prof. Dr.-Ing. Gerald OberschmidtDeutsch

EINGESETZTE LEHRFORMEN

LEHRFORMEN LEHRMETHODEN

Labor, Vorlesung, Übung Laborarbeit, Lehrvortrag, Diskussion

EINGESETZTE PRÜFUNGSFORMEN

PRÜFUNGSLEISTUNGPRÜFUNGSUMFANG (IN MINUTEN)BENOTUNGKlausur120jaLaborarbeitSiehe PruefungsordnungBestanden/ Nicht-Bestanden

WORKLOAD UND ECTS-LEISTUNGSPUNKTE

WORKLOAD INSGESAMT (IN H)

DAVON PRÄSENZZEIT (IN H)

DAVON SELBSTSTUDIUM (IN H)

ECTS-LEISTUNGSPUNKTE

78

78

5

QUALIFIKATIONSZIELE UND KOMPETENZEN

FACHKOMPETENZ

Die Studierenden sind in der Lage, mit den in den Modulinhalten genannten mathematischen Theoremen und Modelle für Standardfälle der Praxis Berechnungen anzustellen. Sie analysieren einfache Problemstellungen aus der Praxis treffsicher, nutzen die für die Lösung relevanten Informationen und führen die Berechnung/ Analyse selbständig durch

METHODENKOMPETENZ

Die Studierenden sind mit Abschluss des Moduls in der Lage, für weitgehend standardisierte Anwendungsfälle in der Praxis die angemessene Methode auszuwählen und anzuwenden. Sie kennen die Stärken und Schwächen der Methode in ihrem beruflichen Anwendungsfeld und können diese in konkreten Handlungssituationen gegeneinander abwägen.

PERSONALE UND SOZIALE KOMPETENZ

-

ÜBERGREIFENDE HANDLUNGSKOMPETENZ

-

LERNEINHEITEN UND INHALTE

LEHR- UND LERNEINHEITEN	PRÄSENZZEIT	SELBSTSTUDIUM
Grundlagen Elektrotechnik 2	60	65

Grundlagen der Elektrotechnik 2

- Netzwerke bei stationärer harmonischer Erregung
- Komplexe Wechselstromrechnung
- einfache frequenzabhängige Schaltungen

Labor Grundlagen Elektrotechnik 1 12 13

- Strom- und Spannungsmessungen
- Oszilloskop, Multimeter und andere Meßgeräte
- Einfache Gleich- und Wechselstromkreise
- Kennlinien elektrischer Bauelemente

Stand vom 01.10.2025 T3ELG1005 // Seite 12

BESONDERHEITEN

- ergänzt durch ein Grundlagenlabor

VORAUSSETZUNGEN

LITERATUR

- Führer, Arnold; Heidemann, Klaus; Nerreter, Wolfgang: Grundgebiete der Elektrotechnik. Band 1: Stationäre Vorgänge. München, Wien: Hanser Verlag
- Führer, Arnold; Heidemann, Klaus; Nerreter, Wolfgang: Grundgebiete der Elektrotechnik. Band 2: Zeitabhängige Vorgänge München, Wien: Hanser Verlag
- Weißgerber, Wilfried: Elektrotechnik für Ingenieure. Band 1: Gleichstromtechnik und Elektromagnetisches Feld. Braunschweig, Wiesbaden: Vieweg+Teubner Verlag
- Weißgerber, Wilfried: Elektrotechnik für Ingenieure. Band 2: Wechselstromtechnik, Ortskurven, Transformator, Mehrphasensysteme. Braunschweig, Wiesbaden: Springer Vieweg
- Paul, Reinhold: Elektrotechnik. Band 1: Elektrische Erscheinungen und Felder. Berlin, Heidelberg, New York: Springer Verlag
- Paul, Reinhold: Elektrotechnik. Band 2: Netzwerke. Berlin, Heidelberg, New York: Springer Verlag
- Erwin Böhmer: Elemente der angewandten Elektronik, Vieweg+Teubner
- Ulrich Tietze, Christoph Schenk: Halbleiter-Schaltungstechnik, Springer
- Manfred Albach: Grundlagen der Elektrotechnik 1, 2, 3, Pearson Clausert/ Wiesemann: Grundgebiete der Elektrotechnik 1, 2 Oldenbourg
- Gert Hagmann: Grundlagen der Elektrotechnik, Aula
- Koß, Reinhold, Hoppe: Lehr- und Übungsbuch Elektronik, Hanser

Stand vom 01.10.2025 T3ELG1005 // Seite 13

Digitaltechnik (T3ELG1006)

Digital Technology

FORMALE ANGABEN ZUM MODUL

MODULNUMMERVERORTUNG IM STUDIENVERLAUFMODULDAUER (SEMESTER)MODULVERANTWORTUNGSPRACHET3ELG10061. Studienjahr2Prof. Dr. Ralf DorwarthDeutsch

EINGESETZTE LEHRFORMEN

 LEHRFORMEN
 LEHRMETHODEN

 Vorlesung, Übung, Labor
 Lehrvortrag, Diskussion

EINGESETZTE PRÜFUNGSFORMEN

PRÜFUNGSLEISTUNGPRÜFUNGSUMFANG (IN MINUTEN)BENOTUNGKlausur120ja

WORKLOAD UND ECTS-LEISTUNGSPUNKTE

WORKLOAD INSGESAMT (IN H)
DAVON PRÄSENZZEIT (IN H)
DAVON SELBSTSTUDIUM (IN H)
ECTS-LEISTUNGSPUNKTE
90
5

QUALIFIKATIONSZIELE UND KOMPETENZEN

FACHKOMPETENZ

Die Studierenden sind in der Lage, mit den in den Modulinhalten genannten Theoremen und Modelle für Standardfälle der Praxis Berechnungen anzustellen. Sie analysieren einfache Problemstellungen aus der Praxis treffsicher, nutzen die für die Lösung relevanten Informationen und führen die Analyse selbständig durch.

METHODENKOMPETENZ

Die Studierenden sind mit Abschluss des Moduls in der Lage, für weitgehend standardisierte Anwendungsfälle in der Praxis die angemessene Methode auszuwählen und anzuwenden. Sie kennen die Stärken und Schwächen der Methode in ihrem beruflichen Anwendungsfeld und können diese in konkreten Handlungssituationen gegeneinander abwägen.

PERSONALE UND SOZIALE KOMPETENZ

Die Studierenden können sowohl eigenständig, also auch im Team zielorientiert und nachhaltig handeln.

ÜBERGREIFENDE HANDLUNGSKOMPETENZ

LERNEINHEITEN UND INHALTE

LEHR- UND LERNEINHEITEN	PRÄSENZZEIT	SELBSTSTUDIUM
Digitaltechnik	60	90

Stand vom 01.10.2025 T3ELG1006 // Seite 14

LEHR- UND LERNEINHEITEN PRÄSENZZEIT SELBSTSTUDIUM

- Grundbegriffe, Quantisierung
- Binäre Zahlensysteme
- Codes mit und ohne Fehlerkorrektur
- Logische Verknüpfungen, Schaltalgebra
- Rechenregeln
- Methoden des Entwurfs und der Vereinfachung
- Anwendungen (Decoder, Multiplexer, etc.)
- Speicherschaltungen, Schaltwerke
- Flip Flop und Register
- Entwurfstechniken für Schaltwerke
- Anwendung (Zähler, Teiler, etc.)
- Programmierbare Logik (nur PLD)
- Einführung in PAL, GAL
- Rechnergestützter Entwurf
- Schaltkreistechnik und -familien (TTL, CMOS)
- Pegel, Störspannungsabstand
- Übergangskennlinie
- Verlustleistung
- Zeitverhalten
- Hinweise zum Einsatz in der Schaltung
- Interfacetechniken, Bussysteme
- Bustreiberschaltungen
- Abschlüsse, Reflexionen

BESONDERHEITEN

Dieses Modul beinhaltet zusätzlich bis zu 12 h begleites Lernern in Form von Laborübungen bzw. Übungsblättern. Hierbei werden Übungsaufgaben zusammen mit dem Studierenden theoretisch und praktisch berarbeitet.

VORAUSSETZUNGEN

LITERATUR

- C. Siemers, A. Sikora: Taschenbuch Digitaltechnik Hanser Verlag
- K. Beuth: Elektronik 4. Digitaltechnik Vogel Verlag
- H.M. Lipp, J. Becker: Grundlagen der Digitaltechnik Oldenbourg Verlag
- Borgmeyer, Johannes: Grundlagen der Digitaltechnik Fachbuchverlag Leipzig

Stand vom 01.10.2025 T3ELG1006 // Seite 15

Elektronik und Messtechnik I (T3ELG1007)

Electronics and Measurement Technology I

FORMALE ANGABEN ZUM MODUL

MODULNUMMERVERORTUNG IM STUDIENVERLAUFMODULDAUER (SEMESTER)MODULVERANTWORTUNGSPRACHET3ELG10071. Studienjahr1Prof. Dr. Frauke SteinhagenDeutsch

EINGESETZTE LEHRFORMEN

LEHRFORMENLEHRMETHODENVorlesung, Vorlesung, ÜbungLehrvortrag, Diskussion, Lehrvortrag, Diskussion, Fallstudien

EINGESETZTE PRÜFUNGSFORMEN

PRÜFUNGSLEISTUNGPRÜFUNGSUMFANG (IN MINUTEN)BENOTUNGKlausur120ja

WORKLOAD UND ECTS-LEISTUNGSPUNKTE

WORKLOAD INSGESAMT (IN H)DAVON PRÄSENZZEIT (IN H)DAVON SELBSTSTUDIUM (IN H)ECTS-LEISTUNGSPUNKTE15072785

QUALIFIKATIONSZIELE UND KOMPETENZEN

FACHKOMPETENZ

Die Studierenden sind in der Lage, mit den in den Modulinhalten genannten technisch-mathematischen Theoremen Berechnungen durchzuführen. Sie analysieren einfache Problemstellungen aus der Praxis treffsicher, nutzen die für die Lösung relevanten Informationen und führen die Berechnung und Analyse selbstständig durch.

METHODENKOMPETENZ

Die Studierenden sind mit Abschluss des Moduls in der Lage, für weitgehend standardisierte Anwendungsfälle in der Praxis die angemessene Methode auszuwählen und anzuwenden. Sie kennen die Stärken und Schwächen der Methode in ihrem beruflichen Anwendungsfeld und können diese in konkreten Handlungssituationen gegeneinander abwägen.

PERSONALE UND SOZIALE KOMPETENZ

Die Studierenden können sowohl eigenständig als auch im Team zielorientiert und nachhaltig handeln.

ÜBERGREIFENDE HANDLUNGSKOMPETENZ

LERNEINHEITEN UND INHALTE

LEHR- UND LERNEINHEITEN	PRÄSENZZEIT	SELBSTSTUDIUM
Elektronik 1	48	52

Stand vom 01.10.2025 T3ELG1007 // Seite 16

LEHR- UND LERNEINHEITEN PRÄSENZZEIT SELBSTSTUDIUM

Physikalische Grundlagen der Halbleiter

- pn-Übergang (phänomenologische Beschreibung)
- Einführung in die integrierte Technik und Halbleiterprozesse
- Thermischer Widerstand und Kühlung

Diode

- Eigenschaften
- Anwendungen, Beispielschaltungen
- Thyristor und Triac
- Z-Diode und Referenzelemente
- Eigenschaften von Z-Dioden
- Aufbau und Eigenschaften von Referenzelementen
- Anwendungen, Beispielschaltungen

Bipolarer Transistor

- Eigenschaften
- Anwendung als Kleinsignalverstärker
- Anwendung als Schalter

Idealer Operationsverstärker

- Eigenschaften
- Grundschaltungen

Messtechnik 1 24 26

Grundlagen und Begriffe

- Einheiten und Standards
- Kenngrößen elektrischer Signale
- Messfehler und Messunsicherheit
- Darstellung von Messergebnissen

Überblick über Signalquellen und Geräte der elektrischen Messtechnik

- Gleichspannungs- und Gleichstromquellen
- Funktionsgeneratoren
- Messgeräte

Messverfahren

- Messen von Gleichstrom und Gleichspannung
- Messen von Widerständen
- Messen von Wechselgrößen
- Messbereichserweiterungen
- Gleichstrommessbrücken

BESONDERHEITEN

VORAUSSETZUNGEN

LITERATUR

- G. Mechelke: Einführung in die Analog- und Digitaltechnik, STAM Verlag
- E. Hering, K. Bressler, J. Gutekunst: Elektronik für Ingenieure, VDI Verlag
- E. Böhmer: Elemente der angewandten Elektronik, Vieweg Verlag
- Stefan Goßner: Grundlagen der Elektronik, Shaker Verlag
- U. Tietze, C. Schenk: Halbleiter-Schaltungstechnik, Springer Verlag
- G. Koß, W. Reinhold: Lehr- und Übungsbuch Elektronik, Fachbuchverlag Leipzig
- R. Kories, H. Schmidt-Walter: Taschenbuch der Elektrotechnik Grundlagen und Elektronik, Verlag Harri Deutsch
- H. Lindner, H. Brauer, C. Lehmann: Taschenbuch der Elektrotechnik und Elektronik, Fachbuchverlag Leipzi
- Wolfgang Schmusch: Elektronische Messtechnik, Vogel-Verlag
- Jörg Hoffmann: Taschenbuch der Messtechnik, Fachbuchverlag Leipzig im Carl Hanser Verlag

Stand vom 01.10.2025 T3ELG1007 // Seite 17

Informatik I (T3ELG1008)

Computer Science I

FORMALE ANGABEN ZUM MODUL

MODULNUMMERVERORTUNG IM STUDIENVERLAUFMODULDAUER (SEMESTER)MODULVERANTWORTUNGSPRACHET3ELG10081. Studienjahr1Prof. Dr. Christian KuhnDeutsch/Englisch

EINGESETZTE LEHRFORMEN

LEHRFORMENLEHRMETHODENLabor, Vorlesung, ÜbungLaborarbeit, Lehrvortrag, Diskussion, Gruppenarbeit

EINGESETZTE PRÜFUNGSFORMEN

PRÜFUNGSLEISTUNGPRÜFUNGSUMFANG (IN MINUTEN)BENOTUNGKombinierte Prüfung - Programmentwurf 60 % und Klausur 40 %120ja

WORKLOAD UND ECTS-LEISTUNGSPUNKTE

WORKLOAD INSGESAMT (IN H)DAVON PRÄSENZZEIT (IN H)DAVON SELBSTSTUDIUM (IN H)ECTS-LEISTUNGSPUNKTE15060905

QUALIFIKATIONSZIELE UND KOMPETENZEN

FACHKOMPETENZ

Die Studierenden können nach Abschluss des Moduls

- Konzepte von Software und Softwareentwicklung verstehen
- Algorithmen und Datenstrukturen verstehen und strukturieren
- Erste kleine Anwendungen in einer Hochsprache schreiben
- Werkzeuge der Softwareentwicklung auf Problemstellungen anwenden

METHODENKOMPETENZ

Die Studierenden erwerben die Kompetenz:

- systematische Vorgehensweise auf dem Weg vom Problem zum Programm zu kennen und erfahren
- einfache Problemstellungen zu analysieren und Programm-Strukturen umzusetzen
- schrittweise Verfeinerung eines Algorithmus gemäß Problemlösung umzusetzen

PERSONALE UND SOZIALE KOMPETENZ

Die Studierenden erfahren,

- in Teams und Kleingruppen Umsetzungen von Programmen zu diskutieren und durchzuführen
- eigene Umsetzungsideen zu präsentieren und erläutern

ÜBERGREIFENDE HANDLUNGSKOMPETENZ

Die Studierenden besitzen die Kompetenz,

- einfache Aufgabenstellungen aus verschiedenen Anwendungsbereichen zu analysieren, zu diskutieren und zu modellieren
- daraus einen Algorithmus zu entwickeln
- sich an fachlichen Gesprächen und Diskussionen des Fachgebiets zu beteiligen

LERNEINHEITEN UND INHALTE

LEHR- UND LERNEINHEITEN	PRÄSENZZEIT	SELBSTSTUDIUM
Grundlagen der Informatik 1	36	44

Stand vom 01.10.2025 T3ELG1008 // Seite 18

LEHR- UND LERNEINHEITEN PRÄSENZZEIT SELBSTSTUDIUM

Grundlagen der Informatik

- Begrifflichkeiten, Ziele
- Einführung in Rechnersysteme
- Software/Hardware, Betriebssystem, Netzwerk

Grundlagen Softwareentwicklung

- Grundprinzipien von Sprachen (Compiler/Interpreter), Beispiele
- Datentypen, Einfache Datenstrukturen
- Entwurfsmethodik, Spezifikation
- Sprachkonstrukte/Befehlssatz
- Ein- und Ausgabe (Konsole)
- Programmkonstruktion Strukturierte Programmierung
- Einfache Algorithmen
- Staple, Queue, Sortier- und Suchalgorithmen
- Bibliotheken, Schnittstellen

Werkzeuge der Softwareentwicklung

- Einfache Modellierung (Flussdiagramme, Struktogramme)
- Entwicklungsumgebung (SDK/IDE)
- Test, Debugging

Einführung und Verwendung einer klassischen Hochsprache (bevorzugt C und/oder C++, alternativ C#, Java, ...) in einfachen Beispielen. Einführung einer typischen Entwicklungsumgebung

Labor Softwareentwicklung 1 24 46

Selbständige, angeleitete Verwendung einer Softwareentwicklungsumgebung und Verwendung von typischen Werkzeugen der Softwarenetwicklung

Bearbeitung von einfachen, vorgegebenen Problemstellungen und eigenständige Lösung mit Modellen, Algorithmen und Programm-Implementierung, einfache Beispiele (10-50 Codezeilen).

Verwendung einer Hochsprache (bevorzugt C und/oder C++, alternativ C#, Java, ...)

BESONDERHEITEN

Hoher Praxisanteil durch begleitete Laborübungen

VORAUSSETZUNGEN

- Mathematische Grundlagen (Abiturkenntnisse)
- Basiskenntnisse Rechnersysteme (PC, Internet)

Keine Programmierkenntnisse notwendig.

LITERATUR

- Kernighan, B, Ritchie, D.: Programmierwen in C, Hanser Verlag München
- Stroustrup, B.: Einführung in die Programmierung mit C++, Pearson Studium, München
- -Levi, P., Rembold, U.: Einführung in die Informatik für Naturwissenschaftler und Ingenieure, Hanser Verlag, München
- Broy, M.: Informatik eine grundlegende Einführung, Springer Verlag
- Wirth, N.: Algorithmen und Datenstrukturen, Teubner Verlag, Stuttgart
- Herold, H., Lurz, B., Wohlrab, J.: Grundlagen der Informatik, Pearson Studium, München
- Kueveler, G., Schwoch, D.: Informatik für Ingenieure und Naturwissenschaftler 1: Grundlagen, Programmieren mit C/C++, Vieweg+Teubner

Stand vom 01.10.2025 T3ELG1008 // Seite 19

Informatik II (T3ELG1009)

Computer Science II

FORMALE ANGABEN ZUM MODUL

 MODULNUMMER
 VERORTUNG IM STUDIENVERLAUF
 MODULDAUER (SEMESTER)
 MODULVERANTWORTUNG
 SPRACHE

 T3ELG1009
 1. Studienjahr
 1
 Prof. Dr. Christian Kuhn
 Deutsch/Englisch

EINGESETZTE LEHRFORMEN

LEHRFORMENLEHRMETHODENLabor, Vorlesung, ÜbungLaborarbeit, Lehrvortrag, Diskussion, Gruppenarbeit

EINGESETZTE PRÜFUNGSFORMEN

PRÜFUNGSLEISTUNG
Programmentwurf oder Kombinierte Prüfung (Programmentwurf 60 % und Klausur 40 %)
PRÜFUNGSUMFANG (IN MINUTEN)
BENOTUNG
120
ja

WORKLOAD UND ECTS-LEISTUNGSPUNKTE

WORKLOAD INSGESAMT (IN H)	DAVON PRÄSENZZEIT (IN H)	DAVON SELBSTSTUDIUM (IN H)	ECTS-LEISTUNGSPUNKTE
150	48	102	5

QUALIFIKATIONSZIELE UND KOMPETENZEN

FACHKOMPETENZ

Die Studierenden können nach Abschluss des Moduls

- Erweitertet Konzepte von Software und Softwareentwicklung verstehen
- Komplexerer Algorithmen und Datenstrukturen verstehen und strukturieren sowie in voneinander unabhängige Module zu zerlegen
- Komplexere Anwendungen in einer Hochsprache schreiben
- abstrakte Datentypen und Operationen zu einem Algorithmus ausarbeiten und definieren sowie hierachisch zu entwerfen
- Weitere Werkzeuge der Softwareentwicklung auf Problemstellungen anwenden

METHODENKOMPETENZ

Die Studierenden erwerben die Kompetenz:

- systematische Vorgehensweise auf dem Weg vom Problem zum Programm zu kennen und selbst durchzuführen und ihr Wissen auf komplexere Aufgaben anzuwenden.
- komplexere Problemstellungen zu analysieren und Programm-Strukturen umzusetzen

PERSONALE UND SOZIALE KOMPETENZ

Die Studierenden erfahren,

- in Teams und Kleingruppen Umsetzungen von Programmen zu diskutieren, inhaltlich zu erläutern und durchzuführen
- eigene Umsetzungsideen zu präsentieren und mit anderen Ansätzen zu vergleichen

ÜBERGREIFENDE HANDLUNGSKOMPETENZ

Die Studierenden besitzen die Kompetenz,

- komplexere Aufgabenstellungen aus verschiedenen Anwendungsbereichen zu analysieren, zu diskutieren und zu modellieren
- daraus ein modulare Programmstruktur zu entwickeln
- sich an fachlichen Gesprächen und Diskussionen des Fachgebiets zu beteiligen

LERNEINHEITEN UND INHALTE

LEHR- UND LERNEINHEITEN	PRÄSENZZEIT	SELBSTSTUDIUM
Grundlagen der Informatik 2	24	38

Stand vom 01.10.2025 T3ELG1009 // Seite 20

LEHR- UND LERNEINHEITEN PRÄSENZZEIT SELBSTSTUDIUM

Erweiterung Softwareentwicklung

- Komplexe Datenstrukturen (Bäume, Graphen), Abstrakte Datentypen
- Modularisierung
- Kompexere Algorithmen, Rekursion
- Automaten-Theorie
- Konzepte der Objektorientierung

Werkzeuge der Softwareentwicklung

- Erweiterte Modellierung (z.B. UML)
- Erweitertes Debugging

Auswahl an Zusatzinhalten (optional):

- Graphische Benutzeroberflächen Bibliotheken
- Grundkonzepte Web-Entwicklung (HTML, Skriptsprachen)
- Datenbanken, SQL, Zugriff von Programmen
- IT-Sicherheit

Verwendung einer klassischen Hochsprache (bevorzugt C und/oder C++, alternativ C#, Java, ...) in komplexeren Beispielen.

Verwendung einer typischen Entwicklungsumgebung.

Labor Softwareentwicklung 2 24 64

Selbständige, angeleitete Verwendung einer Softwareentwicklungsumgebung und Verwendung von typischen Werkzeugen der Softwarenentwicklung

Bearbeitung von einfachen, vorgegebenen Problemstellungen und eigenständige Lösung mit Modellen, Algorithmen und Programm-Implementierung, komplexere Beispiele (50-500 Codezeilen)

--> auch als selbständige Gruppen/Teamarbeit (hoher Anteil Selbststudium) und Vorstellung der Lösung (inkl. Implementierung) im Präsenzlabor

Verwendung einer Hochsprache (bevorzugt C und/oder C++, alternativ C#, Java, ...)

BESONDERHEITEN

Hoher Praxisanteil durch begleitete Laborübungen

VORAUSSETZUNGEN

Modul Informatik I

LITERATUR

- Kernighan, B, Ritchie, D.: Programmierwen in C, Hanser Verlag München
- Stroustrup, B.: Einführung in die Programmierung mit C++, Pearson Studium, München
- -Levi, P., Rembold, U.: Einführung in die Informatik für Naturwissenschaftler und Ingenieure, Hanser Verlag, München
- Broy, M.: Informatik eine grundlegende Einführung, Springer Verlag
- Wirth, N.: Algorithmen und Datenstrukturen, Teubner Verlag, Stuttgart
- Herold, H., Lurz, B., Wohlrab, J.: Grundlagen der Informatik, Pearson Studium, München
- Alfred V. Aho, Jeffrey D. Ullmann: Informatik Datenstrukturen und Konzepte der Abstraktion, International Thomson Publishing, Bonn
- Kueveler, G., Schwoch, D.: nformatik für Ingenieure und Naturwissenschaftler 1: Grundlagen, Programmieren mit C/C++, Vieweg+Teubner

Stand vom 01.10.2025 T3ELG1009 // Seite 21

Geschäftsprozesse (T3ELG1010)

Business Processes

FORMALE ANGABEN ZUM MODUL

MODULNUMMERVERORTUNG IM STUDIENVERLAUFMODULDAUER (SEMESTER)MODULVERANTWORTUNGSPRACHET3ELG10101. Studienjahr1Prof. Dr. Frauke SteinhagenDeutsch

EINGESETZTE LEHRFORMEN

 LEHRFORMEN
 LEHRMETHODEN

 Vorlesung, Übung
 Lehrvortrag, Diskussion, Fallstudien

EINGESETZTE PRÜFUNGSFORMEN

PRÜFUNGSLEISTUNGPRÜFUNGSUMFANG (IN MINUTEN)BENOTUNGKlausurarbeit oder Kombinierte Prüfung90ja

WORKLOAD UND ECTS-LEISTUNGSPUNKTE

WORKLOAD INSGESAMT (IN H)

DAVON PRÄSENZZEIT (IN H)

DAVON SELBSTSTUDIUM (IN H)

ECTS-LEISTUNGSPUNKTE

150

48

102

5

QUALIFIKATIONSZIELE UND KOMPETENZEN

FACHKOMPETENZ

Nach erfolgreichem Abschluss dieses Modul verfügen die Studierenden über die für Ingenieure notwendigen Grundkenntnisse der Betriebswirtschaftlehre und können diese Problemstellungen in technischen Bereichen anwenden. Sie sind in der Lage, Geschäftsprozesse im Unternehmen zu erkennen. Sie können Vor- und Nachteile unterschiedlicher Organisationsformen erörtern.

METHODENKOMPETENZ

Die Studierenden kennen mit Abschluss des Moduls die in den Modulinhalten aufgeführten wissenschaftlichen Methoden und sind in der Lage, unter Einsatz dieser Methoden relevante Informationen zu sammeln und unter Berücksichtigung wissenschaftlicher Erkenntnisse den Fachstandards entsprechend zu interpretieren.

PERSONALE UND SOZIALE KOMPETENZ

ÜBERGREIFENDE HANDLUNGSKOMPETENZ

LERNEINHEITEN UND INHALTE

LEHR- UND LERNEINHEITENPRÄSENZZEITSELBSTSTUDIUMGeschäftsprozesse48102

- Betriebswirtschaftliche Grundlagen Unterscheidung VWL und BWL Wirtschaften im Wandel
- Rechtsformen von Unternehmen
- Wirtschaftskreislauf
- Überblick von Teilfunktionen im Unternehmen
- Grundzüge der Produktions- und Kostentheorie
- Grundlagen der VoVolkswirtschaftslehre: Grundbegriffe
- Mikroökonomie: Funktion der Preise, Marktformen
- Makroökonomie: Grundbegriffe
- Unternehmensfunktionen Kosten-Leistungsrechnung
- Finanzierung; Investition
- Rechnungswesen; Controlling
- Marketing
- Bilanzierung und Bilanzpolitik

Stand vom 01.10.2025 T3ELG1010 // Seite 22

BESONDERHEITEN

Die Studierenden können in dem Modul an die umfangreiche Phase des Selbsstudiums gewöhnt werden, indem Sie entsprechene Referate selbsständig vorbereiten und erarbeiten.

Die Prüfungsdauer bezieht sich auf die Klausur.

VORAUSSETZUNGEN

LITERATUR

- -Wöhe, Günther: Einführung in die allgemeine Betriebswirtschaftslehre, Verlag Vahlen
- Wiendahl, Hans-Peter: Betriebsorganisation für Ingenieure, Carl Hanser
- Haberstock, Lothar: Kostenrechnung, Erich Schmidt Verlag
- Coenenberg, Adolf G.: Jahresabschlussanalyse, Schäffer-Poeschel Perridon, L.; Schneider, M.: Finanzwirtschaft der Unternehmung, Verlag Vahlen

Stand vom 01.10.2025 T3ELG1010 // Seite 23

Mathematik III (T3ELG2001)

Mathematics III

FORMALE ANGABEN ZUM MODUL

MODULNUMMERVERORTUNG IM STUDIENVERLAUFMODULDAUER (SEMESTER)MODULVERANTWORTUNGSPRACHET3ELG20012. Studienjahr2Prof. Dr. Gerhard GötzDeutsch

EINGESETZTE LEHRFORMEN

 LEHRFORMEN
 LEHRMETHODEN

 Vorlesung, Vorlesung, Übung
 Lehrvortrag, Diskussion, Gruppenarbeit

EINGESETZTE PRÜFUNGSFORMEN

PRÜFUNGSLEISTUNGPRÜFUNGSUMFANG (IN MINUTEN)BENOTUNGKlausur120jaUnbenotete PrüfungsleistungSiehe PruefungsordnungBestanden/ Nicht-Bestanden

WORKLOAD UND ECTS-LEISTUNGSPUNKTE

WORKLOAD INSGESAMT (IN H)DAVON PRÄSENZZEIT (IN H)DAVON SELBSTSTUDIUM (IN H)ECTS-LEISTUNGSPUNKTE15072785

QUALIFIKATIONSZIELE UND KOMPETENZEN

FACHKOMPETENZ

Die Studierenden sind in der Lage, mit den in den Modulinhalten genannten mathematischen Theoremen und Modellen zielgerichtete Berechnungen anzustellen.

METHODENKOMPETENZ

Die Studierenden kennen mit Abschluss des Moduls die in den Modulinhalten aufgeführten wissenschaftlichen Methoden und sind in der Lage, unter Einsatz dieser Methoden relevante Informationen zu sammeln und unter Berücksichtigung wissenschaftlicher Erkenntnisse den Fachstandards entsprechend zu interpretieren.

PERSONALE UND SOZIALE KOMPETENZ

ÜBERGREIFENDE HANDLUNGSKOMPETENZ

-

LERNEINHEITEN UND INHALTE

LEHR- UND LERNEINHEITEN	PRÄSENZZEIT	SELBSTSTUDIUM
Mathematik 3	48	52

Analysis II

- Funktionen mit mehreren unabhängigen Variablen
- Skalarfelder, Vektorfelder
- Differentialrechnung bei Funktionen mehrerer unabhängiger Variabler
- Integralrechnung bei Funktionen mehrerer unabhängiger Variable
- Vektoranalysis Wahrscheinlichkeitsrechnung und Statistik
- Kombinatorik (Überblick, Beispiele)
- Grundbegriffe der Wahrscheinlichkeitsrechnung, Zufallsprozesse
- Zufallsvariable, Dichte- und Verteilungsfunktionen, Erwartungswerte
- Einführung in die beschreibende Statistik
- Schätzverfahren, Konfidenzintervalle
- statistische Prüfverfahren/Tests

Stand vom 01.10.2025 T3ELG2001 // Seite 24

LERNEINHEITEN UND INHALTE

LEHR- UND LERNEINHEITEN	PRÄSENZZEIT	SELBSTSTUDIUM
Mathematische Anwendungen	24	26

Mathematische Anwendungen (mit Hilfe mathematischer Software)

- Berechnungen und Umformungen durchführen
- Grafische Darstellung von Daten in unterschiedlichen Diagrammen
- Gleichungen und lineare Gleichungssysteme lösen
- Probleme mit Vektoren und Matrizen lösen
- Funktionen differenzieren (symbolisch, numerisch)
- Integrale lösen (symbolisch, numerisch)
- Gewöhnliche Differentialgleichungen lösen (symbolisch, numerisch)
- Approximation mit der Fehlerquadrat-Methode (z.B. mit algebraischen Polynomen)
- Interpolation (z.B. linear, mit algebraischen Polynomen, mit kubischen Splines)
- Messdaten einlesen und statistisch auswerten, statistische Tests durchführen
- Lösen von Aufgaben mit Inhalten aus Studienfächern des Grundstudiums (z.B

Regelungstechnik, Signale und Systeme, Messtechnik, Elektronik)

RESONDERHEITEN

Dieses Modul beinhaltet zusätzlich bis zu 24h begleitetes Lernen in Form von Übungsstunden oder Laboren. Hierbei werden Übungsaufgaben und/oder vertiefende Aufgabenstellungen zusammen mit den Studierenden erarbeitet.

VORAUSSETZUNGEN

LITERATUR

- Bronstein; Semendjajew; Musiol; Mühlig: Taschenbuch der Mathematik, Verlag Harri Deutsch
- Fleischhauer: Excel in Naturwissenschaft und Technik, Verlag Addison-Wesley
- Westermann, Thomas: Mathematik für Ingenieure mit MAPLE, Bände 1 und 2, Springer Verlag
- Westermann, Thomas: Mathematische Probleme lösen mit MAPLE Ein Kurzeinstieg, Springer Verlag Benker, Hans: Ingenieurmathematik kompakt
- Problemlösungen mit MATLAB, Springer Verlag
- Ziya Sanat: Mathematik fur Ingenieure Grundlagen, Anwendungen in Maple und C++, Vieweg + Teubner Verlag
- Schott: Ingenieurmathematik mit MATLAB, Hanser Fachbuchverlag
- Papula, Lothar: Mathematik für Ingenieure und Naturwissenschaftler, Bände 1 bis 3, Vieweg Verlag
- Papula, Lothar: Mathematische Formelsammlung für Ingenieure und Naturwissenschaftler, Vieweg Verlag
- Neumayer; Kaup: Mathematik für Ingenieure, Bände 1 bis 3, Shaker Verlag
- Leupold: Mathematik, ein Studienbuch für Ingenieure, Bände 1 bis 3, Hanser Fachbuchverlag
- Preuss; Wenisch; Schmidt: Lehr- und Übungsbuch Mathematik, Bände 1 bis 3, Hanser Fachbuchverlag
- Fetzer; Fränkel: Mathematik, Lehrbuch für ingenieurwissenschaftliche Studiengänge, Bände 1 und 2, Springer-Verlag
- Engeln-Müllges, Gisela; Schäfer, Wolfgang; Trippler, Gisela: Kompaktkurs Ingenieurmathematik mit Wahrscheinlichkeitsrechnung und Statistik, Hanser Fachbuchverlag
- Rießinger, Thomas: Mathematik für Ingenieure, Springer Verlag
- Stry, Yvonne / Schwenkert, Rainer: Mathematik kompakt für Ingenieure und Informatiker, Springer Verlag
- Gramlich; Werner: Numerische Mathematik mit MATLAB, dpunkt Verlag
- Bourier, Günther: Wahrscheinlichkeitsrechnung und schließende Statistik Praxisorientierte Einführung, Gabler Verlag
- Bourier, Günther: Statistik-Übungen, Gabler Verlag
- Bronstein; Semendjajew; Musiol; Mühlig: Taschenbuch der Mathematik, Verlag Harri Deutsch

Stand vom 01.10.2025 T3ELG2001 // Seite 25

Grundlagen Elektrotechnik III (T3ELG2002)

Principles of Electrical Engineering III

FORMALE ANGABEN ZUM MODUL

MODULNUMMERVERORTUNG IM STUDIENVERLAUFMODULDAUER (SEMESTER)MODULVERANTWORTUNGSPRACHET3ELG20022. Studienjahr1Prof. Dr.-Ing. Ralf StiehlerDeutsch

EINGESETZTE LEHRFORMEN

LEHRFORMEN LEHRMETHODEN

Labor, Vorlesung, Übung Laborarbeit, Lehrvortrag, Diskussion

EINGESETZTE PRÜFUNGSFORMEN

PRÜFUNGSLEISTUNGPRÜFUNGSUMFANG (IN MINUTEN)BENOTUNGKlausur120jaLaborarbeitSiehe PruefungsordnungBestanden/ Nicht-Bestanden

WORKLOAD UND ECTS-LEISTUNGSPUNKTE

WORKLOAD INSGESAMT (IN H)DAVON PRÄSENZZEIT (IN H)DAVON SELBSTSTUDIUM (IN H)ECTS-LEISTUNGSPUNKTE15072785

QUALIFIKATIONSZIELE UND KOMPETENZEN

FACHKOMPETENZ

Die Studierenden sind mit Abschluss des Moduls in der Lage, komplexe mathematische Probleme zu lösen.

Sie identifizieren den Einfluss unterschiedlicher Faktoren, setzen diese in Zusammenhang und erzielen die Lösung durch die Neukombination unterschiedlicher Lösungswege

METHODENKOMPETENZ

Die Absolventen verfügen über das in den Modulinhalten aufgeführte Spektrum an Methoden und Techniken zur Bearbeitung komplexer, wissenschaftlicher Probleme in ihrem Studienfach, aus denen sie angemessene Methoden auswählen und anwenden, um neue Lösungen zu erarbeiten.

PERSONALE UND SOZIALE KOMPETENZ

ÜBERGREIFENDE HANDLUNGSKOMPETENZ

-

LERNEINHEITEN UND INHALTE

LEHR- UND LERNEINHEITENPRÄSENZZEITSELBSTSTUDIUMGrundlagen Elektrotechnik 34852

- Mathematische Grundlagen
- Grundlagen der Elektrostatik
- Lösungsmethoden feldtheoretischer Probleme, z.B. Coloumb-Integrale, Spiegelungsverfahren, Laplacegleichung, numerische Lösungen etc.
- Grundlagen der Magnetostatik
- Stationäres Strömungsfeld
- Zeitlich langsam veränderliche Felder
- Induktionsgesetz und Durchflutungsgesetz, elektromotrische Kraft
- Äquivalenz von elektrischer Energie, mechanischer Energie und Wärmeenergie
- beliebig veränderliche Felder
- Maxwellgleichungen

Stand vom 01.10.2025 T3ELG2002 // Seite 26

LERNEINHEITEN UND INHALTE

LEHR- UND LERNEINHEITEN	PRÄSENZZEIT	SELBSTSTUDIUM
Labor Grundlagen Elektrotechnik 2	24	26

- Wechsel- und Drehstromkreise
- Feldmessungen, Schwingkreise
- Dioden- und Transistorschaltungen, Brückenschaltungen
- Induktivität und Transformator
- Operationsverstärker Schaltvorgänge

BESONDERHEITEN

Dieses Modul enthält zusätzlich bis zu 12h begleitetes Lernen in Form von Übungsstunden. Hierbei werden laborpraktische Aufgabenstellungen oder theoretische Übungen zusammen mit den Studierenden bearbeitet.

VORAUSSETZUNGEN

-

LITERATUR

- Manfred Albach: Grundlagen der Elektrotechnik 1, 2, 3, Pearson
- Clausert/ Wiesemann : Grundgebiete der Elektrotechnik 1, 2 Oldenbourg
- Gert Hagmann: Grundlagen der Elektrotechnik, Aula
- Koß, Reinhold, Hoppe: Lehr- und Übungsbuch Elektronik, Hanser
- Marlene Marinescu: Elektrische und magnetische Felder, Springer
- Pascal Leuchtmann: Einführung in die elektromagnetische Feldtheorie. Pearson Studium
- Lonngren, Savov: Fundamentals of electromagnetics with MATLAB, SciTech Publishing
- Küpfmüller, Mathis, Reibiger : Theoretische Elektrotechnik, Springer
- Heino Henke: Elektromagnetische Felder: Theorie und Anwendungen, Springer
- Manfred Albach: Grundlagen der Elektrotechnik 1, 2, 3, Pearson
- Clausert/ Wiesemann: Grundgebiete der Elektrotechnik 1, 2 Oldenbourg
- Gert Hagmann: Grundlagen der Elektrotechnik, Aula
- Koß, Reinhold, Hoppe: Lehr- und Übungsbuch Elektronik, Hanser

Stand vom 01.10.2025 T3ELG2002 // Seite 27

Systemtheorie (T3ELG2003)

Systems Theory

FORMALE ANGABEN ZUM MODUL

MODULNUMMERVERORTUNG IM STUDIENVERLAUFMODULDAUER (SEMESTER)MODULVERANTWORTUNGSPRACHET3ELG20032. Studienjahr1Prof. Dr. Frauke SteinhagenDeutsch

EINGESETZTE LEHRFORMEN

LEHRFORMENLEHRMETHODENVorlesung, ÜbungLehrvortrag, Diskussion

EINGESETZTE PRÜFUNGSFORMEN

PRÜFUNGSLEISTUNGPRÜFUNGSUMFANG (IN MINUTEN)BENOTUNGKlausur120ja

WORKLOAD UND ECTS-LEISTUNGSPUNKTE

WORKLOAD INSGESAMT (IN H)DAVON PRÄSENZZEIT (IN H)DAVON SELBSTSTUDIUM (IN H)ECTS-LEISTUNGSPUNKTE150481025

QUALIFIKATIONSZIELE UND KOMPETENZEN

FACHKOMPETENZ

Die Studierenden können nach Abschluss des Moduls

- die mathematischen Methoden der Systemtheorie für die unterschiedlichen Anwendungsfälle der Systembeschreibung auswählen und einsetzen
- die Begriffe Zeit-Frequenz-Bildbereich unterscheiden und entscheiden, wann sie in welchem Bereich am Besten ihre systemtheoretischen Überlegungen durchführen
- die wichtigsten Funktionaltransformationen der Systemtheorie verstehen und an Beispielen in der Elektrotechnik anwenden
- das Übertragungsverhalten von Systemen im Bildbereich verstehen und regelgerecht anwenden

METHODENKOMPETENZ

Die Studierenden können nach Abschluss des Moduls

- ihr abstraktes Denken in der Systemtheorie wesentlich erweitern und dessen Bedeutung für das Lösen nicht anschaulicher Probleme erkennen
- die Möglichkeiten und Grenzen von mathematischen systemtheoretischen Berechnungen sowie von Simulationen erfassen und in ihrer Bedeutung bewerten
- Lösungsstrategien entwickeln, um allgemeine komplexe Systeme zu abstrahieren, zu modularisieren und zu analysieren

PERSONALE UND SOZIALE KOMPETENZ

ÜBERGREIFENDE HANDLUNGSKOMPETENZ

Die Studierenden können nach Abschluss des Moduls

- die Verfahren der Systemtheorie in einer Vielzahl von Problemen der Elektrotechnik anwenden und daher in weiten Bereichen Zusammenhänge veranschaulichen und das dortige Systemverhalten gestalten
- in einfachen Aufgabenbereichen der Systemsimulation und Systemtheorie unter Bezug auf spezielle Anwendungen in der Elektrotechnik arbeiten und relevante Methoden sowie konventionelle Techniken auswählen und anwenden
- unter Anleitung innerhalb vorgegebener Schwerpunkte der Systemtheorie handeln
- ihre Fähigkeiten und Kenntnisse in der Simulation, der Analyse und Beschreibung von Systemen auf komplexe Beispiele der Elektrotechnik anwenden und vertiefen

LERNEINHEITEN UND INHALTE

LEHR- UND LERNEINHEITEN	PRÄSENZZEIT	SELBSTSTUDIUM
Signale und Systeme	48	102

Stand vom 01.10.2025 T3ELG2003 // Seite 28

LEHR- UND LERNEINHEITEN PRÄSENZZEIT SELBSTSTUDIUM

- Grundlegende Begriffe und Definitionen zu "Signalen" und "Systemen"
- Systemantwort auf ein beliebiges Eingangssignal
- Zeitkontinuierliche Signale und ihre Funktionaltransformationen
- Fourier-Reihe, Fourier-Transformation, Grundlagen der Spektralanalyse
- Laplace-Transformation
- Zeitdiskrete Signale
- z-Transformation
- Abtasttheorem
- Systembeschreibung im Funktionalbereich
- Übertragungsfunktion linearer, zeitinvarianter Systeme
- Differenzialgleichungen und Laplace-Transformation
- Differenzengleichungen und z-Transformation
- Einführung in zeitdiskrete, rekursive und nicht-rekursive Systeme

BESONDERHEITEN

Es werden auf der Basis der Mathematik-Grundvorlesungen die einschlägigen Funktionaltransformationen behandelt. Simulationsbeispiele basierend auf einer Simulationssoftware (z.B. MATLAB, SIMULINK) sollen die theoretischen Inhalte praktisch darstellen. Dieses Modul beinhaltet zusätzlich bis zu 24h begleitetes Lernen in Form von Übungsstunden. Hierbei werden Übungsaufgaben zusammen mit den Studierenden erarbeitet.

VORAUSSETZUNGEN

LITERATUR

- Werner, M.: Signale und Systeme. Vieweg-Teubner Verlag Wiesbaden
- Girod, B; Rabenstein, R; Stenger, A.: Einführung in die Systemtheorie. Vieweg-Teubner Verlag Wiesbaden
- Kiencke, U.; Jäkel, H.: Signale und Systeme. Oldenbourg Verlag München, Wien
- Unbehauen, R.: Systemtheorie 1. Oldenbourg Verlag München, Wien
- Oppenheim, A. V.; Schafer, R. W., Padgett, W. T.; Yoder, M. A.: Discrete-Time Signal Processing. Prentice Hall Upper Saddle River, New Jersey

Stand vom 01.10.2025 T3ELG2003 // Seite 29

Regelungstechnik (T3ELG2004)

Control Technology

FORMALE ANGABEN ZUM MODUL

 MODULNUMMER
 VERORTUNG IM STUDIENVERLAUF
 MODULDAUER (SEMESTER)
 MODULVERANTWORTUNG
 SPRACHE

 T3ELG2004
 2. Studienjahr
 1
 Prof. Dr.-Ing. Thomas Kibler
 Deutsch

EINGESETZTE LEHRFORMEN

LEHRFORMENLEHRMETHODENVorlesung, ÜbungLehrvortrag, Diskussion

EINGESETZTE PRÜFUNGSFORMEN

PRÜFUNGSLEISTUNGPRÜFUNGSUMFANG (IN MINUTEN)BENOTUNGKlausur120ja

WORKLOAD UND ECTS-LEISTUNGSPUNKTE

WORKLOAD INSGESAMT (IN H)DAVON PRÄSENZZEIT (IN H)DAVON SELBSTSTUDIUM (IN H)ECTS-LEISTUNGSPUNKTE150481025

QUALIFIKATIONSZIELE UND KOMPETENZEN

FACHKOMPETENZ

Die Studierenden sind in der Lage, mit den in den Modulinhalten genannten technisch-mathematischen Theoremen Berechnungen durchzuführen. Sie analysieren einfache Problemstellungen aus der Praxis treffsicher, nutzen die für die Lösung relevanten Informationen und führen die Berechnung und Analyse selbstständig durch.

METHODENKOMPETENZ

Die Studierenden sind mit Abschluss des Moduls in der Lage, für weitgehend standardisierte Anwendungsfälle in der Praxis die angemessene Methode auszuwählen und anzuwenden. Sie kennen die Stärken und Schwächen der Methode in ihrem beruflichen Anwendungsfeld und können diese in konkreten Handlungssituationen gegeneinander abwägen.

PERSONALE UND SOZIALE KOMPETENZ

Die Studierenden können sowohl eigenständig als auch im Team zielorientiert und nachhaltig handeln.

ÜBERGREIFENDE HANDLUNGSKOMPETENZ

-

LERNEINHEITEN UND INHALTE

LEHR- UND LERNEINHEITENPRÄSENZZEITSELBSTSTUDIUMRegelungstechnik 148102

- Einführung
- Beschreibung dynamischer Systeme
- Lineare Übertragungsglieder
- Regelkreis und Systemeigenschaften
- Führungsregelung und Störgrößenregelung
- Klassische Regler
- Frequenzkennlinienverfahren
- Wurzelortsverfahren bzw. Kompensationsverfahren
- Simulation des Regelkreises

BESONDERHEITEN

Die Übungen können mit Hife von Simulationen und Laboren im Umfang von bis zu 24 UE ergänzt werden.

Stand vom 01.10.2025 T3ELG2004 // Seite 30

LITERATUR

- H. Unbehauen: Regelungstechnik 1, Vieweg-Verlag
 H.-W. Philippsen: Einstieg in die Regelungstechnik, Hanser Fachbuchverlag
 H. Lutz, W. Wendt, Taschenbuch der Regelungstechnik, Harri Deutsch Verlag
 O. Föllinger: Regelungstechnik, Hüthig Verlag
 J. Lunze: Regelungstechnik 1, 5. Aufl., Springer-Verlag, Berlin
 Gerd Schulz: Regelungstechnik 1, Oldenbourg-Verlag
 Heinz Mann, Horst Schiffelgen, Rainer Froriep: Einführung in die Regelungstechnik, Hanser Verlag

Stand vom 01.10.2025 T3ELG2004 // Seite 31

Elektronik und Messtechnik II (T3ELG2005)

Electronics and Measurement Technology II

FORMALE ANGABEN ZUM MODUL

MODULNUMMERVERORTUNG IM STUDIENVERLAUFMODULDAUER (SEMESTER)MODULVERANTWORTUNGSPRACHET3ELG20052. Studienjahr2Prof. Dr. Frauke SteinhagenDeutsch

EINGESETZTE LEHRFORMEN

LEHRFORMENLEHRMETHODENVorlesungLehrvortrag, Diskussion

EINGESETZTE PRÜFUNGSFORMEN

PRÜFUNGSLEISTUNGPRÜFUNGSUMFANG (IN MINUTEN)BENOTUNGKlausur120ja

WORKLOAD UND ECTS-LEISTUNGSPUNKTE

WORKLOAD INSGESAMT (IN H)DAVON PRÄSENZZEIT (IN H)DAVON SELBSTSTUDIUM (IN H)ECTS-LEISTUNGSPUNKTE15072785

QUALIFIKATIONSZIELE UND KOMPETENZEN

FACHKOMPETENZ

Die Studierenden sind in der Lage, mit den in den Modulinhalten genannten technisch-mathematischen Theoremen Berechnungen durchzuführen. Sie analysieren einfache Problemstellungen aus der Praxis treffsicher, nutzen die für die Lösung relevanten Informationen und führen die Berechnung und Analyse selbstständig durch.

METHODENKOMPETENZ

Die Studierenden sind mit Abschluss des Moduls in der Lage, für weitgehend standardisierte Anwendungsfälle in der Praxis die angemessene Methode auszuwählen und anzuwenden. Sie kennen die Stärken und Schwächen der Methode in ihrem beruflichen Anwendungsfeld und können diese in konkreten Handlungssituationen gegeneinander abwägen.

PERSONALE UND SOZIALE KOMPETENZ

Die Studierenden können sowohl eigenständig als auch im Team zielorientiert und nachhaltig handeln.

ÜBERGREIFENDE HANDLUNGSKOMPETENZ

-

LERNEINHEITEN UND INHALTE

LEHR- UND LERNEINHEITENPRÄSENZZEITSELBSTSTUDIUMMesstechnik 22418

Messgeräte

- Analoge Geräte
- Analog/Digital-Wandler
- Digital/Analog-Wandler
- Zähler, Frequenzmessung
- Oszilloskope

Wechselspannungsmessbrücken

- Abgleichmessbrücken
- Ausschlagmessbrücken

Frequenzabhängige Spannungsmessungen

- Breitbandige Messung, Bandbreite
- Grundbegriffe des Rauschens
- Frequenzselektive Messung im Zeitbereich
- Spektrumanalyser

Stand vom 01.10.2025 T3ELG2005 // Seite 32

LERNEINHEITEN UND INHALTE

LEHR- UND LERNEINHEITEN	PRÄSENZZEIT	SELBSTSTUDIUM
Elektronik 2	24	30

Feldeffekttransistor

- Eigenschaften
- Anwendung als Kleinsignalverstärker
- Anwendung als Schalter und als steuerbarer Widerstand
- IGBT

Operationsverstärker (OP)

- Prinzipieller Aufbau
- Eigenschaften des realen OP

Elektronik 3 24 30

Operationsverstärkerschaltungen

- Gegenkopplung, Übertragungsfunktion
- Frequenzgang der Verstärkung, Frequenzkompensation
- Anwendungen des OP, Signalwandler (A/D, D/A),

Beispielschaltungen

Schaltungen mit optoelektronischen Bauelementen

- Sichtbare und unsichtbare elektromagnetische Wellen, Lichtquanten
- Lichtquellen, optische Anzeigen
- Detektoren, Energieerzeugung
- Optokoppler

BESONDERHEITEN

Die Veranstaltung kann durch Labor oder angeleitetes Lernen in Form von Übungsstunden, z.B. Schaltungssimulation oder Referate mit bis zu 12 h vertieft werden.

VORAUSSETZUNGEN

LITERATUR

- G. Mechelke: Einführung in die Analog- und Digitaltechnik, STAM Verlag
- E. Hering, K. Bressler, J. Gutekunst: Elektronik für Ingenieure, VDI Verlag
- E. Böhmer: Elemente der angewandten Elektronik, Vieweg Verlag
- Stefan Goßner: Grundlagen der Elektronik, Shaker Verlag
- U. Tietze, C. Schenk: Halbleiter-Schaltungstechnik, Springer Verlag
- Wolfgang Schmusch: Elektronische Messtechnik, Vogel-Verlag
- Taschenbuch der Messtechnik, Jörg Hoffmann, Fachbuchverlag Leipzig
- W. Pfeiffer: Elektrische Messtechnik, VDE-Verlag

Stand vom 01.10.2025 T3ELG2005 // Seite 33

Studienbereich Technik // School of Engineering
Elektrotechnik // Electrical Engineering
Energie- und Umwelttechnik // Energy and Environmental Engineering
MANNHEIM

Mikrocomputertechnik (T3ELG2006)

Introduction to Microcomputers

FORMALE ANGABEN ZUM MODUL

MODULNUMMERVERORTUNG IM STUDIENVERLAUFMODULDAUER (SEMESTER)MODULVERANTWORTUNGSPRACHET3ELG20062. Studienjahr2Prof. Dr.-Ing. Ralf StiehlerDeutsch/Englisch

EINGESETZTE LEHRFORMEN

LEHRFORMENLEHRMETHODENVorlesung, Labor, Vorlesung, ÜbungLehrvortrag, Diskussion, Lehrvortrag, Diskussion, Gruppenarbeit

EINGESETZTE PRÜFUNGSFORMEN

PRÜFUNGSLEISTUNGPRÜFUNGSUMFANG (IN MINUTEN)BENOTUNGKlausurarbeit oder Kombinierte Prüfung120ja

WORKLOAD UND ECTS-LEISTUNGSPUNKTE

WORKLOAD INSGESAMT (IN H)DAVON PRÄSENZZEIT (IN H)DAVON SELBSTSTUDIUM (IN H)ECTS-LEISTUNGSPUNKTE15072785

QUALIFIKATIONSZIELE UND KOMPETENZEN

FACHKOMPETENZ

Die Studierenden kennen die in den Inhalten des Moduls genannten Strukturen, Theorien und Modelle. Sie können diese beschreiben und systematisch darstellen. Sie sind in der Lage, unterschiedliche Ansätze miteinander zu vergleichen und können mit Hilfe ihres Wissens plausible Argumentationen und Schlüsse ableiten.

METHODENKOMPETENZ

Die Studierenden sind mit Abschluss des Moduls in der Lage, für komplexe Praxisanwendungen eine angemessene Methode auszuwählen und anzuwenden. So können die Möglichkeiten, Praktikabilität und Grenzen der eingesetzten Methode einschätzen und sind in der Lage, Handlungsalternativen aufzuzeigen.

PERSONALE UND SOZIALE KOMPETENZ

-

ÜBERGREIFENDE HANDI UNGSKOMPETENZ

_

LERNEINHEITEN UND INHALTE

LEHR- UND LERNEINHEITEN	PRÄSENZZEIT	SELBSTSTUDIUM
Mikrocomputertechnik 1	36	39

- Einführung und Überblick über Geschichte, Stand der Technik und aktuelle Trends
- Grundlegender Aufbau eines Rechners (CPU, Speicher, E/A-Einheiten, Busstruktur)
- Abgrenzung von Neumann/Harvard , CISC/RISC, Mikro-Prozessor / Mikro-Computer / Mikro-ContController
- Oberer Teil des Schichtenmodells : Maschinensprache, Assembler und höhere Programmiersprachen
- Unterer Teil des Schichtenmodells : Betriebssystemebene, Registerebene, Gatter- und Transistorebene
- Computeraritmetik und Rechenwerk (Addierer, Multiplexer, ALU, Flags)
- Steuerwerk (Aufbau und Komponenten)

Stand vom 01.10.2025 T3ELG2006 // Seite 34

LERNEINHEITEN UND INHALTE

LEHR- UND LERNEINHEITENPRÄSENZZEITSELBSTSTUDIUMMikrocomputertechnik 23639

- Befehlsablauf im Prozessor (Maschinenzyklen, Timing, Speicherzugriff, Datenfluss)
- Vertiefte Betrachtung des Steuerwerks
- Ausnahmeverarbeitung (Exceptions, Traps, Interrupts)
- Überblick über verschiedene Arten von Speicherbausteinen
- Funktionsweise paralleler und serieller Schnittstellen
- Übersicht über System- und Schnittstellenbausteine

BESONDERHEITEN

Zur Vetiefung des Vorlesungsstoffs wird empfohlen, das studentische Eigenstudium mit praktischen Programmierübungen an einem handelsüblichen Mikrocontroller mit einem Gesamtumfang von bis zu 24h zu unterstützen.

Die Prüfungsdauer bezieht sich auf die Klausur.

VORAUSSETZUNGEN

-

LITERATUR

- Walter: Mikrocomputertechnik mit der 8051-Familie, Springer
- Schmitt : Mikrocomputertechnik mit Controllern der Atmel-AVR-RISC-Familie, Oldenburg
- Schaaf: Mikrocomputertechnik, Hanser
- Beierlein/Hagenbruch: Taschenbuch Mikroprozessortechnik, Fachbuchverlag Leipzig
- Bähring : Mikrorechner-Technik 1+2, Springer
- Brinkschulte, Ungerer: Mikrocontroller und Mikroprozessoren
- Patterson/Hennessy : Computer Organization and Design The Hardware/Software Interface, Morgan-Kaufmann
- Wittgruber: Digitale Schnittstellen und Bussysteme, Vieweg
- Walter: Mikrocomputertechnik mit der 8051-Familie, Springer
- Schmitt : Mikrocomputertechnik mit Controllern der Atmel-AVR-RISC-Familie, Oldenburg
- Schaaf : Mikrocomputertechnik, Hanser
- Beierlein/Hagenbruch: Taschenbuch Mikroprozessortechnik, Fachbuchverlag Leipzig
- Bähring : Mikrorechner-Technik 1+2, Springer
- Brinkschulte, Ungerer: Mikrocontroller und Mikroporzessoren
- Patterson/Hennessy : Computer Organization and Design The Hardware/Software Interface, Morgan-Kaufmann
- Wittgruber : Digitale Schnittstellen und Bussysteme, Vieweg

Stand vom 01.10.2025 T3ELG2006 // Seite 35

Studienarbeit (T3_3100)

Student Research Project

FORMALE ANGABEN ZUM MODUL

MODULNUMMERVERORTUNG IM STUDIENVERLAUFMODULDAUER (SEMESTER)MODULVERANTWORTUNGSPRACHET3_31003. Studienjahr1Prof. Dr.-Ing. Joachim FrechDeutsch

EINGESETZTE LEHRFORMEN

LEHRFORMENLEHRMETHODENIndividualbetreuungProjekt

EINGESETZTE PRÜFUNGSFORMEN

PRÜFUNGSLEISTUNGPRÜFUNGSUMFANG (IN MINUTEN)BENOTUNGStudienarbeitSiehe Pruefungsordnungja

WORKLOAD UND ECTS-LEISTUNGSPUNKTE

WORKLOAD INSGESAMT (IN H)DAVON PRÄSENZZEIT (IN H)DAVON SELBSTSTUDIUM (IN H)ECTS-LEISTUNGSPUNKTE15061445

QUALIFIKATIONSZIELE UND KOMPETENZEN

FACHKOMPETENZ

Die Studierenden können sich unter begrenzter Anleitung in ein recht komplexes, aber eng umgrenztes Gebiet vertiefend einarbeiten und den allgemeinen Stand des Wissens erwerben.

Sie können sich Lösungen entwickeln und Alternativen bewerten. Dazu nutzen sie bestehendes Fachwissen und bauen es selbständig im Thema der Studienarbeit aus.

Die Studierenden kennen und verstehen die Notwendigkeit des wissenschaftlichen Recherchierens und Arbeitens. Sie sind in der Lage eine wissenschaftliche Arbeit zu steuern und wissenschaftlich korrekt und verständlich zu dokumentieren.

METHODENKOMPETENZ

Die Studierenden haben die Kompetenz erworben, relevante Informationen mit wissenschaftlichen Methoden zu sammeln und unter der Berücksichtigung wissenschaftlicher Erkenntnisse zu interpretieren.

PERSONALE UND SOZIALE KOMPETENZ

Die Studierenden können ausdauernd und beharrlich auch größere Aufgaben selbstständig ausführen. Sie können sich selbst managen und Aufgaben zum vorgesehenen Termin erfüllen.

Sie können stichhaltig und sachangemessen argumentieren, Ergebnisse plausibel darstellen und auch komplexe Sachverhalte nachvollziehbar begründen.

ÜBERGREIFENDE HANDLUNGSKOMPETENZ

LERNEINHEITEN UND INHALTE

LEHR- UND LERNEINHEITEN	PRÄSENZZEIT	SELBSTSTUDIUM
Studienarbeit	6	144

BESONDERHEITEN

Es wird auf die "Leitlinien für die Bearbeitung und Dokumentation der Module Praxisprojekt I bis III, Studienarbeit und Bachelorarbeit" der Fachkommission Technik der Dualen Hochschule Baden-Württemberg hingewiesen.

Stand vom 01.10.2025 T3_3100 // Seite 36

LITERATUR

Kornmeier, M., Wissenschaftlich schreiben leicht gemacht für Bachelor, Master und Dissertation, Bern

Stand vom 01.10.2025 T3_3100 // Seite 37

Studienarbeit II (T3_3200)

Student Research Project II

FORMALE ANGABEN ZUM MODUL

MODULNUMMERVERORTUNG IM STUDIENVERLAUFMODULDAUER (SEMESTER)MODULVERANTWORTUNGSPRACHET3_32003. Studienjahr1Prof. Dr.-lng. Joachim FrechDeutsch

EINGESETZTE LEHRFORMEN

LEHRFORMEN LEHRMETHODEN
Individualbetreuung Projekt

EINGESETZTE PRÜFUNGSFORMEN

PRÜFUNGSLEISTUNGPRÜFUNGSUMFANG (IN MINUTEN)BENOTUNGStudienarbeitSiehe Pruefungsordnungja

WORKLOAD UND ECTS-LEISTUNGSPUNKTE

WORKLOAD INSGESAMT (IN H)DAVON PRÄSENZZEIT (IN H)DAVON SELBSTSTUDIUM (IN H)ECTS-LEISTUNGSPUNKTE15061445

QUALIFIKATIONSZIELE UND KOMPETENZEN

FACHKOMPETENZ

Die Studierenden können sich unter begrenzter Anleitung in ein komplexes, aber eng umgrenztes Gebiet vertiefend einarbeiten und den allgemeinen Stand des Wissens erwerben.

Sie können selbstständig Lösungen entwickeln und Alternativen bewerten. Dazu nutzen sie bestehendes Fachwissen und bauen es selbständig im Thema der Studienarbeit aus.

Die Studierenden kennen und verstehen die Notwendigkeit des wissenschaftlichen Recherchierens und Arbeitens. Sie sind in der Lage eine wissenschaftliche Arbeit effizient zu steuern und wissenschaftlich korrekt und verständlich zu dokumentieren.

METHODENKOMPETENZ

Die Studierenden haben die Kompetenz erworben, relevante Informationen mit wissenschaftlichen Methoden zu sammeln und unter der Berücksichtigung wissenschaftlicher Erkenntnisse zu interpretieren.

PERSONALE UND SOZIALE KOMPETENZ

Die Studierenden können ausdauernd und beharrlich auch größere Aufgaben selbstständig ausführen. Sie können sich selbst managen und Aufgaben zum vorgesehenen Termin erfüllen.

Sie können stichhaltig und sachangemessen argumentieren, Ergebnisse plausibel darstellen und auch komplexe Sachverhalte nachvollziehbar begründen.

ÜBERGREIFENDE HANDLUNGSKOMPETENZ

LERNEINHEITEN UND INHALTE

LEHR- UND LERNEINHEITEN	PRÄSENZZEIT	SELBSTSTUDIUM
Studienarbeit 2	6	144

BESONDERHEITEN

Es wird auf die "Leitlinien für die Bearbeitung und Dokumentation der Module Praxisprojekt I bis III, Studienarbeit und Bachelorarbeit" der Fachkommission Technik der Dualen Hochschule Baden-Württemberg hingewiesen.

Stand vom 01.10.2025 T3_3200 // Seite 38

VORAUSSETZUNGEN

LITERATUR

Kornmeier, M., Wissenschaftlich schreiben leicht gemacht für Bachelor, Master und Dissertation, Bern

Stand vom 01.10.2025 T3_3200 // Seite 39

Praxisprojekt I (T3_1000)

Work Integrated Project I

FORMALE ANGABEN ZUM MODUL

MODULNUMMERVERORTUNG IM STUDIENVERLAUFMODULDAUER (SEMESTER)MODULVERANTWORTUNGSPRACHET3_10001. Studienjahr2Prof. Dr.-Ing. Joachim FrechDeutsch

EINGESETZTE LEHRFORMEN

LEHRFORMENLEHRMETHODENPraktikum, SeminarLehrvortrag, Diskussion, Projekt

EINGESETZTE PRÜFUNGSFORMEN

PRÖFUNGSLEISTUNGPRÖFUNGSUMFANG (IN MINUTEN)BENOTUNGProjektarbeitSiehe PruefungsordnungBestanden/ Nicht-BestandenAblauf- und ReflexionsberichtSiehe PruefungsordnungBestanden/ Nicht-Bestanden

WORKLOAD UND ECTS-LEISTUNGSPUNKTE

WORKLOAD INSGESAMT (IN H)DAVON PRÄSENZZEIT (IN H)DAVON SELBSTSTUDIUM (IN H)ECTS-LEISTUNGSPUNKTE600459620

QUALIFIKATIONSZIELE UND KOMPETENZEN

FACHKOMPETENZ

Die Absolventinnen und Absolventen erfassen industrielle Problemstellungen in ihrem Kontext und in angemessener Komplexität. Sie analysieren kritisch, welche Einflussfaktoren

zur Lösung des Problems beachtet werden müssen und beurteilen, inwiefern einzelne theoretische Modelle einen Beitrag zur Lösung des Problems leisten können.

Die Studierenden kennen die zentralen manuellen und maschinellen Grundfertigkeiten des jeweiligen Studiengangs, sie

können diese an praktischen Aufgaben anwenden und haben deren Bedeutung für die Prozesse im Unternehmen kennen gelernt.

Sie kennen die wichtigsten technischen und organisatorischen Prozesse in Teilbereichen ihres Ausbildungsunternehmens und können deren Funktion darlegen.

Die Studierenden können grundsätzlich fachliche Problemstellungen des jeweiligen Studiengangs beschreiben und fachbezogene Zusammenhänge erläutern.

METHODENKOMPETENZ

Absolventinnen und Absolventen kennen übliche Vorgehensweisen der industriellen Praxis und können diese selbstständig umsetzen. Dabei bauen sie auf ihr theoretisches Wissen sowie ihre Berufserfahrung auf.

PERSONALE UND SOZIALE KOMPETENZ

Die Relevanz von Personalen und Sozialen Kompetenz ist den Studierenden für den reibungslosen Ablauf von industriellen Prozessen bewusst und sie können eigene Stärken und Schwächen benennen. Den Studierenden gelingt es, aus Erfahrungen zu lernen, sie übernehmen Verantwortung für die übertragene Aufgaben, mit denen sie sich auch persönlich identifizieren. Die Studierenden übernehmen Verantwortung im Team, integrieren und tragen durch ihr Verhalten zur gemeinsamen Zielerreichung bei.

ÜBERGREIFENDE HANDLUNGSKOMPETENZ

Die Studierenden zeigen Handlungskompetenz, indem sie

ihr theoretisches Fachwissen nutzen, um in berufspraktischen Situationen angemessen, authentisch und erfolgreich zu agieren.

Dazu gehören auch das eigenständige kritische Beobachten, das systematische Suchen alternativer Lösungsansätze sowie eine erste Einschätzung der Anwendbarkeit von Theorien für Praxis.

LERNEINHEITEN UND INHALTE

LEHR- UND LERNEINHEITEN	PRÄSENZZEIT	SELBSTSTUDIUM
Projektarbeit 1	0	560

Stand vom 01.10.2025 T3_1000 // Seite 40

LEHR- UND LERNEINHEITEN	PRÄSENZZEIT	SELBSTSTUDIUM
Es wird auf die jeweiligen Praxispläne der Studiengänge der Fakultät Technik verwiesen		
Wissenschaftliches Arbeiten 1	4	36

Das Seminar "Wissenschaftliches Arbeiten I" findet während der Theoriephase statt. Eine Durchführung im gesamten Umfang in einem Semester oder die Aufteilung auf zwei Semester ist möglich. Für einige Grundlagen kann das WBT "Wissenschaftliches Arbeiten" der DHBW genutzt werden.

- Leitlinien des wissenschaftlichen Arbeitens
- Themenwahl und Themenfindung bei der T1000 Arbeit
- Typische Inhalte und Anforderungen an eine T1000 Arbeit
- Aufbau und Gliederung einer T1000 Arbeit
- Literatursuche, -beschaffung und -auswahl
- Nutzung des Bibliotheksangebots der DHBW
- Form einer wissenschaftlichen Arbeit (z.B. Zitierweise, Literaturverzeichnis)
- Hinweise zu DV-Tools (z.B. Literaturverwaltung und Generierung von Verzeichnissen in der Textverarbeitung)

BESONDERHEITEN

Es wird auf die "Leitlinien für die Bearbeitung und Dokumentation der Module Praxisprojekt I bis III, Studienarbeit und Bachelorarbeit" der Fachkommission Technik der Dualen Hochschule Baden-Württemberg hingewiesen.

Der Absatz "1.2 Abweichungen" aus Anlage 1 zur Studien- und Prüfungsordnung für die Bachelorstudiengänge im Studienbereich Technik der Dualen Hochschule Baden-Württemberg

(DHBW) bei den Prüfungsleistungen dieses Moduls keine Anwendung.

VORAUSSETZUNGEN

LITERATUR

- Web-based Training "Wissenschaftliches Arbeiten"
- Kornmeier, M., Wissenschaftlich schreiben leicht gemacht für Bachelor, Master und Dissertation, Bern

Stand vom 01.10.2025 T3_1000 // Seite 41

Praxisprojekt II (T3_2000)

Work Integrated Project II

FORMALE ANGABEN ZUM MODUL

MODULNUMMERVERORTUNG IM STUDIENVERLAUFMODULDAUER (SEMESTER)MODULVERANTWORTUNGSPRACHET3_20002. Studienjahr2Prof. Dr.-Ing. Joachim FrechDeutsch

EINGESETZTE LEHRFORMEN

LEHRFORMENLEHRMETHODENPraktikum, VorlesungLehrvortrag, Diskussion, Gruppenarbeit, Projekt

EINGESETZTE PRÜFUNGSFORMEN

PRÜFUNGSLEISTUNGPRÜFUNGSUMFANG (IN MINUTEN)BENOTUNGProjektarbeitSiehe PruefungsordnungjaAblauf- und ReflexionsberichtSiehe PruefungsordnungBestanden/ Nicht-BestandenMündliche Prüfung30ja

WORKLOAD UND ECTS-LEISTUNGSPUNKTE

WORKLOAD INSGESAMT (IN H)	DAVON PRÄSENZZEIT (IN H)	DAVON SELBSTSTUDIUM (IN H)	ECTS-LEISTUNGSPUNKTE
600	5	595	20

QUALIFIKATIONSZIELE UND KOMPETENZEN

FACHKOMPETENZ

Die Studierenden erfassen industrielle Problemstellungen in einem angemessenen Kontext und in angemessener Komplexität. Sie analysieren kritisch, welche Einflussfaktoren zur Lösung des Problems beachtet werden müssen und können beurteilen, inwiefern theoretische Modelle einen Beitrag zur Lösung des Problems leisten können.

METHODENKOMPETENZ

Die Studierenden kennen die im betrieblichen Umfeld üblichen Methoden, Techniken und Fertigkeiten und können bei der Auswahl deren Stärken und Schwächen einschätzen, so dass sie die Methoden sachangemessen und situationsgerecht auswählen. Die ihnen übertragenen Aufgaben setzen die Studierenden durch durchdachte Konzepte, fundierte Planung und gutes Projektmanagement erfolgreich um. Dabei bauen sie auf ihr theoretisches Wissen sowie ihre wachsende Berufserfahrung auf.

PERSONALE UND SOZIALE KOMPETENZ

Den Studierenden ist die Relevanz von Personalen und Sozialen Kompetenz für den reibungslosen Ablauf von industriellen Prozessen sowie ihrer eigenen Karriere bewusst; sie können eigene Stärken und Schwächen benennen. Den Studierenden gelingt es, aus Erfahrungen zu lernen, sie übernehmen selbstständig Verantwortung für die übertragene Aufgaben, mit denen sie sich auch persönlich identifizieren. Die Studierenden übernehmen Verantwortung im Team, integrieren andere und tragen durch ihr überlegtes Verhalten zur gemeinsamen Zielerreichung bei.

ÜBERGREIFENDE HANDLUNGSKOMPETENZ

Die Studierenden zeigen wachsende Handlungskompetenz, indem sie ihr theoretisches Fachwissen und ihr wachsendes Erfahrungswissen nutzen, um in sozialen berufspraktischen Situationen angemessen und erfolgreich zu agieren.

Dazu gehören auch das eigenständige kritische Beobachten, das systematische Suchen alternativer Denk- und Lösungsansätze sowie das Hinterfragen von bisherigen Vorgehensweisen. Die Studierenden zeichnen sich durch Eigenverantwortung und Tatkraft aus, sie sind auch im Kontext einer globalisierten Arbeitswelt handlungsfähig.

LERNEINHEITEN UND INHALTE

LEHR- UND LERNEINHEITEN	PRÄSENZZEIT	SELBSTSTUDIUM
Projektarbeit 2	0	560

Es wird auf die jeweiligen Praxispläne der Studiengänge der Fakultät Technik verwiesen.

Stand vom 01.10.2025 T3_2000 // Seite 42

LEHR- UND LERNEINHEITEN	PRÄSENZZEIT	SELBSTSTUDIUM
Wissenschaftliches Arbeiten 2	4	26

Das Seminar "Wissenschaftliches Arbeiten II" findet während der Theoriephase statt. Eine Durchführung im gesamten Umfang in einem Semester oder die Aufteilung auf zwei Semester ist möglich. Für einige Grundlagen kann das WBT "Wissenschaftliches Arbeiten" der DHBW genutzt werden.

- Leitlinien des wissenschaftlichen Arbeitens
- Themenwahl und Themenfindung bei der T2000 Arbeit
- Typische Inhalte und Anforderungen an eine T2000 Arbeit
- Aufbau und Gliederung einer T2000 Arbeit
- Vorbereitung der Mündlichen T2000 Prüfung

Mündliche Prüfung	1	9	
-------------------	---	---	--

BESONDERHEITEN

Entsprechend der jeweils geltenden Studien- und Prüfungsordnung für die Bachelorstudiengänge im Studienbereich Technik der Dualen Hochschule Baden-Württemberg (DHBW) sind die mündliche Prüfung und die Projektarbeit separat zu bestehen. Die Modulnote wird aus diesen beiden Prüfungsleistungen mit der Gewichtung 50:50 berechnet.

Es wird auf die "Leitlinien für die Bearbeitung und Dokumentation der Module Praxisprojekt I bis III, Studienarbeit und Bachelorarbeit" der Fachkommission Technik der Dualen Hochschule Baden-Württemberg hingewiesen.

Vandusser			
VORAUSSETZUNGEN			
-			
LITERATUR			

Stand vom 01.10.2025 T3_2000 // Seite 43

Praxisprojekt III (T3_3000)

Work Integrated Project III

FORMALE ANGABEN ZUM MODUL

MODULNUMMER	VERORTUNG IM STUDIENVERLAUF	MODULDAUER (SEMESTER)	MODULVERANTWORTUNG	SPRACHE
T3_3000	3. Studienjahr	1	Prof. DrIng. Joachim Frech	Deutsch

EINGESETZTE LEHRFORMEN

LEHRFORMEN	LEHRMETHODEN
Praktikum, Seminar	Lehrvortrag, Diskussion, Projekt

EINGESETZTE PRÜFUNGSFORMEN

PRÜFUNGSLEISTUNG	PRÜFUNGSUMFANG (IN MINUTEN)	BENOTUNG
Hausarbeit	Siehe Pruefungsordnung	Bestanden/ Nicht-Bestanden
Ablauf- und Reflexionsbericht	Siehe Pruefungsordnung	Bestanden/ Nicht-Bestanden

WORKLOAD UND ECTS-LEISTUNGSPUNKTE

WORKLOAD INSGESAMT (IN H)	DAVON PRÄSENZZEIT (IN H)	DAVON SELBSTSTUDIUM (IN H)	ECTS-LEISTUNGSPUNKTE
240	4	236	8

QUALIFIKATIONSZIELE UND KOMPETENZEN

FACHKOMPETENZ

Die Studierenden erfassen industrielle Problemstellungen in einem breiten Kontext und in moderater Komplexität. Sie haben ein gutes Verständnis von organisatorischen und inhaltlichen Zusammenhängen sowie von Organisationsstrukturen, Produkten, Verfahren, Maßnahmen, Prozessen, Anforderungen und gesetzlichen Grundlagen. Sie analysieren kritisch, welche Einflussfaktoren zur Lösung des Problems beachtet werden müssen und können beurteilen, inwiefern theoretische Modelle einen Beitrag zur Lösung des Problems leisten können.

METHODENKOMPETENZ

Die Studierenden kennen die im betrieblichen Umfeld üblichen Methoden, Techniken und Fertigkeiten und können bei der Auswahl deren Stärken und Schwächen einschätzen, so dass sie die Methoden sachangemessen, situationsgerecht und umsichtig auswählen. Die ihnen übertragenen Aufgaben setzen die Studierenden durch durchdachte Konzepte, fundierte Planung und gutes Projektmanagement auch bei sich häufig ändernden Anforderungen systematisch und erfolgreich um. Dabei bauen sie auf ihr theoretisches Wissen sowie ihre wachsende Berufserfahrung auf.

PERSONALE UND SOZIALE KOMPETENZ

Die Studierenden weisen auch im Hinblick auf ihre persönlichen personalen und sozialen Kompetenzen einen hohen Grad an Reflexivität auf, was als Grundlage für die selbstständige persönliche Weiterentwicklun genutzt wird.

Den Studierenden gelingt es, aus Erfahrungen zu lernen, sie übernehmen selbstständig Verantwortung für die übertragene Aufgaben, mit denen sie sich auch persönlich identifizieren.

Die Studierenden übernehmen Verantwortung für sich und andere. Sie sind konflikt und kritikfähig.

ÜBERGREIFENDE HANDLUNGSKOMPETENZ

Die Studierenden zeigen umfassende Handlungskompetenz, indem sie ihr theoretisches Fachwissen und ihr wachsendes Erfahrungswissen nutzen, um in berufspraktischen Situationen angemessen und erfolgreich zu agieren.

Dazu gehören auch das eigenständige kritische Beobachten, das systematische Suchen alternativer Denk- und Lösungsansätze sowie das Hinterfragen von bisherigen Vorgehensweisen. Die Studierenden zeichnen sich durch Eigenverantwortung und Tatkraft aus, sie sind auch im Kontext einer globalisierten Arbeitswelt handlungsfähig. Sie weisen eine reflektierte Haltung zu gesellschaftlichen, soziale und ökologischen Implikationen des eigenen Handelns auf.

LERNEINHEITEN UND INHALTE

LEHR- UND LERNEINHEITEN	PRÄSENZZEIT	SELBSTSTUDIUM
Projektarbeit 3	0	220

Es wird auf die jeweiligen Praxispläne der Studiengänge der Fakultät Technik verwiesen

Stand vom 01.10.2025 T3_3000 // Seite 44

LEHR- UND LERNEINHEITENPRÄSENZZEITSELBSTSTUDIUMWissenschaftliches Arbeiten 3416

Das Seminar "Wissenschaftliches Arbeiten III" findet während der Theoriephase statt. Eine Durchführung im gesamten Umfang in einem Semester oder die Aufteilung auf zwei Semester ist möglich. Für einige Grundlagen kann das WBT "Wissenschaftliches Arbeiten" der DHBW genutzt werden.

- Was ist Wissenschaft?
- Theorie und Theoriebildung
- Überblick über Forschungsmethoden (Interviews, etc.)
- Gütekriterien der Wissenschaft
- Wissenschaftliche Erkenntnisse sinnvoll nutzen (Bezugssystem, Stand der Forschung/Technik)
- Aufbau und Gliederung einer Bachelorarbeit
- Projektplanung im Rahmen der Bachelorarbeit
- Zusammenarbeit mit Betreuern und Beteiligten

BESONDERHEITEN

Es wird auf die "Leitlinien für die Bearbeitung und Dokumentation der Module Praxisprojekt I bis III, Studienarbeit und Bachelorarbeit" der Fachkommission Technik der Dualen Hochschule Baden-Württemberg hingewiesen.

VORAUSSETZUNGEN

LITERATUR

- Web-based Training "Wissenschaftliches Arbeiten"
- Kornmeier, M., Wissenschaftlich schreiben leicht gemacht für Bachelor, Master und Dissertation,, Bern
- Minto, B., The Pyramid Principle: Logic in Writing, Thinking and Problem Solving, London
- Zelazny, G., Say It With Charts: The Executives's Guide to Visual Communication, Mcgraw-Hill Professional.

Kornmeier, M., Wissenschaftlich schreiben leicht gemacht für Bachelor, Master und Dissertation, Bern

Stand vom 01.10.2025 T3_3000 // Seite 45

Erneuerbare Energien (T3ELU2001)

Renewable Energy

FORMALE ANGABEN ZUM MODUL

MODULNUMMERVERORTUNG IM STUDIENVERLAUFMODULDAUER (SEMESTER)MODULVERANTWORTUNGSPRACHET3ELU20012. Studienjahr1Prof. Dr.-Ing. Konrad ReifDeutsch/Englisch

EINGESETZTE LEHRFORMEN

 LEHRFORMEN
 LEHRMETHODEN

 Vorlesung, Übung
 Lehrvortrag, Diskussion, Fallstudien

EINGESETZTE PRÜFUNGSFORMEN

PRÜFUNGSLEISTUNGPRÜFUNGSUMFANG (IN MINUTEN)BENOTUNGKlausur90ja

WORKLOAD UND ECTS-LEISTUNGSPUNKTE

WORKLOAD INSGESAMT (IN H)

DAVON PRÄSENZZEIT (IN H)

DAVON SELBSTSTUDIUM (IN H)

ECTS-LEISTUNGSPUNKTE

150

5

QUALIFIKATIONSZIELE UND KOMPETENZEN

FACHKOMPETENZ

Die Studierenden sind aufgrund der in diesem Modul erworbenen Kenntnisse über erneuerbare Energiequellen und Anlagentechniken in der Lage, diese auf komplexe Problemstellungen aus der Praxis anzuwenden, zu analysieren und aufzuarbeiten. Dabei können sie die erneuerbaren Energien auch im Zusammhang mit den ökologischen, wirtschaftlichen und gesellschaftlichen Auswirkungen gegenüber herkömmlichen Energieerzeugern einordnen und bewerten. Sie gewinnen die für die Lösung relevanten Informationen, führen die Berechnungen und Analysen und selbständig durch und geben kritische Hinweise zur Belastbarkeit ihrer Ergebnisse. Die Studierden sind in der Lage, die Chancen, Einschränkungen und Risiken neuer Technologien zu beurteilen und diese Beurteilung angemessen zu vertreten.

METHODENKOMPETENZ

Die Studierenden sind mit Abschluss des Moduls in der Lage, für komplexe Praxisanwendungen eine angemessene Methode auszuwählen und anzuwenden. Sie können die Möglichkeiten, Praktikabilität und Grenzen der eingesetzten Methode einschätzen und sind in der Lage, Handlungsalternativen aufzuzeigen.

PERSONALE UND SOZIALE KOMPETENZ

ÜBERGREIFENDE HANDLUNGSKOMPETENZ

Die Studierenden sind in der Lage, die gelernten Methoden aus dem Modul Erneuerbare Energien interdisziplinär einzusetzen.

LERNEINHEITEN UND INHALTE

LEHR- UND LERNEINHEITENPRÄSENZZEITSELBSTSTUDIUMErneuerbare Energien48102

- Energiehaushalt der Erde und Erscheinungsformen von Energie
- Energiebedarf des Menschen
- Thermodynamische Grundlagen
- Nutzungsprinzipien und Anlagentechnik von
- Windkraft
- Biomasse
- Sonnenenergie
- Wasserkraft
- Geothermie
- Gezeitenenergie
- Möglichkeiten der Energiespeicherung, ORC-Prozess, Wasserstofftechnologie
- Integration erneuerbarer Energien in die bestehende Energieversorgungslandschaft

Stand vom 01.10.2025 T3ELU2001 // Seite 46

LEHR- UND LERNEINHEITEN PRÄSENZZEIT SELBSTSTUDIUM

BESONDERHEITEN

Exkursionen können durchgeführt werden.

VORAUSSETZUNGEN

LITERATUR

- Quaschning, V: Regenerative Energiesysteme, Carl Hanser Verlag Reich, Reppich: Regenerative Energietechnik, Springer Vieweg Wesselak, V., Schabbach, T.: Regenerative Energietechnik, Springer Vieweg Quaschning, V.: Erneuerbare Energien und Klimaschutz, Carl Hanser Verlag
- Scheer, H.: Energieautonomie, Eine neue Politik für erneuerbare Energien, Kunstmann
- Gasch, R. (Hrsg.): Windkraftanlagen, Springer Vieweg
- Giesecke, Heimerl, Mosonyi; Wasserkraftanlagen, Springer Vieweg Zahoransky: Energietechnik, Springer Vieweg

Stand vom 01.10.2025 T3ELU2001 // Seite 47

Energietechnik (T3ELU3001)

Power Engineering

FORMALE ANGABEN ZUM MODUL

MODULNUMMERVERORTUNG IM STUDIENVERLAUFMODULDAUER (SEMESTER)MODULVERANTWORTUNGSPRACHET3ELU30013. Studienjahr1Prof. Dr.-Ing. Nicole MöhringDeutsch

EINGESETZTE LEHRFORMEN

LEHRFORMENLEHRMETHODENVorlesung, Vorlesung, ÜbungLehrvortrag, Diskussion

EINGESETZTE PRÜFUNGSFORMEN

PRÜFUNGSLEISTUNGPRÜFUNGSUMFANG (IN MINUTEN)BENOTUNGKlausur120ja

WORKLOAD UND ECTS-LEISTUNGSPUNKTE

WORKLOAD INSGESAMT (IN H)DAVON PRÄSENZZEIT (IN H)DAVON SELBSTSTUDIUM (IN H)ECTS-LEISTUNGSPUNKTE15072785

QUALIFIKATIONSZIELE UND KOMPETENZEN

FACHKOMPETENZ

Die Studierenden sind mit Abschluss des Moduls in der Lage, grundlegende energietechnische Probleme zu lösen.

Sie identifizieren den Einfluss unterschiedlicher Faktoren, setzen diese in Zusammenhang und erzielen die Lösung durch die Neukombination unterschiedlicher Lösungswege.

METHODENKOMPETENZ

Die Absolventinnen und Absolventen verfügen über das in den Modulinhalten aufgeführte Spektrum an Methoden und Techniken zur Bearbeitung wissenschaftlicher Probleme in ihrem Studienfach, aus denen sie angemessene Methoden auswählen und anwenden, um neue Lösungen zu erarbeiten.

PERSONALE UND SOZIALE KOMPETENZ

ÜBERGREIFENDE HANDLUNGSKOMPETENZ

LERNEINHEITEN UND INHALTE

LEHR- UND LERNEINHEITENPRÄSENZZEITSELBSTSTUDIUMGrundlagen der Energietechnik4852

- Aufbau von elektrischen Energieversorgungsnetzen
- Symmetrische Komponenten
- Freileitungen
- Kabel
- Leitungsgleichungen
- Hochspannungsgleichstromübertragung

Optionale Inhalte:

- Drehstromsystem
- Synchron- und Asynchronmaschine
- Motor- und Generatorbetrieb

Stand vom 01.10.2025 T3ELU3001 // Seite 48

LEHR- UND LERNEINHEITENPRÄSENZZEITSELBSTSTUDIUMLeistungselektronik2426

- Einführung in die Leistungselektronik
- Leistungshalbleiter
- Verluste und Kühlung
- Methoden der Ansteuerung
- Schaltvorgänge (Schaltungskomponenten, Stromrichter)
- Fremdgeführte Stromrichter
- Selbstgeführte Stromrichter
- Umrichter mit Gleichspannungszwischenkreis

BESONDERHEITEN

VORAUSSETZUNGEN

LITERATUR

- Flosdorff, Hilgarth: Elektrische Energieverteilung, Vieweg+Teubner
- Frohne, H.; Löcherer, K.-H.: Moeller Grundlagen der Elektrotechnik Teubner Verlag
- Heuck: Elektrische Energieversorgung, Vieweg+Teubner
- Oeding, D.: Elektrische Kraftwerke und Netze, Springer
- Schlabbach, J.:Elektroenergiesysteme VDE-Verlag
- Schwab: Elektro-Energiesysteme, Springer Verlag
- Spring, E.: Elektrische Energienetze, VDE Verlag
- Heumann, K: Grundlagen der Leistungselektronik, Teubner Studienbücher
- Jäger, S: Leistungselektronik, Grundlagen und Anwendungen, VDEVerlag
- Probst, U: Leistungselektronik für Bachelors, Carl Hanser Verlag München
- Specovius, J: Grundkurs Leistungselektronik, Vieweg Verlag

Stand vom 01.10.2025 T3ELU3001 // Seite 49

Regelungssysteme (T3ELA3002)

Control Systems

FORMALE ANGABEN ZUM MODUL

MODULNUMMER	VERORTUNG IM STUDIENVERLAUF	MODULDAUER (SEMESTER)	MODULVERANTWORTUNG	SPRACHE
T3ELA3002	3. Studienjahr	2	Prof. Dr. Frauke Steinhagen	Deutsch

EINGESETZTE LEHRFORMEN

LEHRFORMEN	LEHRMETHODEN
Vorlesung, Übung	Lehrvortrag, Diskussion, Fallstudien

EINGESETZTE PRÜFUNGSFORMEN

PRÜFUNGSLEISTUNG	PRÜFUNGSUMFANG (IN MINUTEN)	BENOTUNG
Klausur	120	ja

WORKLOAD UND ECTS-LEISTUNGSPUNKTE

WORKLOAD INSGESAMT (IN H)	DAVON PRÄSENZZEIT (IN H)	DAVON SELBSTSTUDIUM (IN H)	ECTS-LEISTUNGSPUNKTE
150	72	78	5

QUALIFIKATIONSZIELE UND KOMPETENZEN

FACHKOMPETENZ

Die Studierenden sind in der Lage, komplexe Problemstellungen aus der Praxis so zu analysieren und aufzuarbeiten, dass sie zu diesen entsprechende Aufstellungen und Berechnungen erstellen können. Sie gewinnen die für die Lösung relevanten Informationen, führen die Berechnung und Analyse selbstständig durch und geben kritische Hinweise zur Belastbarkeit ihrer Ergebnisse.

METHODENKOMPETENZ

Die Studierenden sind mit Abschluss des Moduls in der Lage, für komplexe Praxisanwendungen eine angemessene Methode auszuwählen und anzuwenden. Sie können die Möglichkeiten, Praktikabilität und Grenzen der eingesetzten Methode einschätzen und sind in der Lage, Handlungsalternativen aufzuzeigen.

PERSONALE UND SOZIALE KOMPETENZ

Die Studierenden können sowohl eigenständig als auch im Team zielorientiert und nachhaltig handeln.

ÜBERGREIFENDE HANDLUNGSKOMPETENZ

I FRNFINHFITEN UND INHALTE

LEHR- UND LERNEINHEITEN	PRÄSENZZEIT	SELBSTSTUDIUM
Regelungstechnik 2	72	78

Themen aus den folgenden Bereichen:

- Digitale Regelungssysteme
- Entwurf digitaler Regler
- Zustandsregelung und Mehrgrößensysteme
- Reglersynthese im Zustandsraum
- Nichtlineare Regelungssysteme
- Adaptive Regelung
- Schaltende Regler
- Fuzzy-Control
- Simulationstechniken
- Modellbasierte Entwicklung
- HIL/SII
- Regelungstechnisches Labor

Stand vom 01.10.2025 T3ELA3002 // Seite 50

BESONDERHEITEN

Für ein besseres Verständnis des komplexen Stoffs sollten Vorlesungsinhalte im Umfang von bis zu 24 UE durch begleitete Simulationen und Labore vertieft werden. Darüber hinaus ist es sinnvoll, dass die Studierenden im Selbststudium Aufgaben der Regelungstechnik mittels Simulationstechnik bearbeiten.

VORAUSSETZUNGEN

LITERATUR

- H. Unbehauen, Regelungstechnik II. Vieweg-Verlag R. Isermann, Digitale Regelsysteme. Springer-Verlag
- J. Kahlert , H. Frank: Fuzzy-Logik und Fuzzy-Control, Vieweg-Verlag J. Lunze, Regelungstechnik 2, Springer-Verlag
- H.-W. Philippsen, Einstieg in die Regelungstechnik. Carl Hanser-Verlag
- Gerd Schulze, Regelungstechnik, Oldenbourg-Verlag

Stand vom 01.10.2025 T3ELA3002 // Seite 51

Solar- und Speichertechnologien (T3ELU3002)

Solar- and Energy Storage Technology

FORMALE ANGABEN ZUM MODUL

MODULNUMMER	VERORTUNG IM STUDIENVERLAUF	MODULDAUER (SEMESTER)	MODULVERANTWORTUNG	SPRACHE
T3ELU3002	3. Studienjahr	1	Prof. DrIng. Konrad Reif	Deutsch/Englisch

EINGESETZTE LEHRFORMEN

LEHRFORMEN LEHRMETHODEN

Vorlesung, Übung, Labor Lehrvortrag, Diskussion, Fallstudien

EINGESETZTE PRÜFUNGSFORMEN

PRÜFUNGSLEISTUNGPRÜFUNGSUMFANG (IN MINUTEN)BENOTUNGKlausurarbeit oder Kombinierte Prüfung90ja

WORKLOAD UND ECTS-LEISTUNGSPUNKTE

WORKLOAD INSGESAMT (IN H)	DAVON PRÄSENZZEIT (IN H)	DAVON SELBSTSTUDIUM (IN H)	ECTS-LEISTUNGSPUNKTE
150	60	90	5

QUALIFIKATIONSZIELE UND KOMPETENZEN

FACHKOMPETENZ

Die Studierenden sind in der Lage, mit den in den Modulinhalten beschriebenen Kenntnissen der Solar- und Speichertechnologien komplexe Problemstellungen aus der Praxis zu analysieren und aufzuarbeiten, so dass sie zu diesen entsprechende Aufstellungen und Berechnungen erstellen und die Ergebnisse kritisch bewerten können.

METHODENKOMPETENZ

Die Studierenden sind mit Abschluss des Moduls in der Lage, für komplexe Praxisanwendungen eine angemessene Methode auszuwählen und anzuwenden. Sie können die Möglichkeiten, Praktikabilität und Grenzen der eingesetzten Methode einschätzen und sind in der Lage, Handlungsalternativen aufzuzeigen.

PERSONALE UND SOZIALE KOMPETENZ

ÜBERGREIFENDE HANDLUNGSKOMPETENZ

Die Studierenden können die gelernten Methoden in der Solartechnologien und Speichertechnologien interdisziplinär einsetzen.

LERNEINHEITEN UND INHALTE

LEHR- UND LERNEINHEITEN	PRÄSENZZEIT	SELBSTSTUDIUM
Solar- und Speichertechnologien	60	90

Stand vom 01.10.2025 T3ELU3002 // Seite 52

LEHR- UND LERNEINHEITEN PRÄSENZZEIT SELBSTSTUDIUM

- Photovoltaik
- Leistungselektronik und Regelungstechnik
- Wechselrichter
- Solarzellen und Module
- Nachführsysteme und Tracking
- Inselanlagen und Vebundnetz
- Solarthermische Energiegewinnung
- Solarkollektoren und Wärmepumpen
- Solarthermische Klein- und Großanlagen
- Solare Kühlung
- Stationäre Energiespeicherung:
- chemische Speicher
- Batterietechnik
- mechanische Speicher
- thermische Speicher
- elektrostatische u. magnetische Speicher
- Brennstoffzelle

BESONDERHEITEN

Exkursionen können durchgeführt werden. Die Prüfungsdauer bezieht sich auf die Klausur.

VORAUSSETZUNGEN

-

LITERATUR

- Quaschning, V.: Regenerative Energiesysteme, Carl Hanser Verlag
- Mertens, K.: Photovoltaik. Lehrbuch zu Grundlagen, Technologien und Praxis, Hanser
- Goetzberger, A.: Sonnenenergie: Photovoltaik, Teubner Verlag
- Wagner, A.:Photovoltaik Engineering, VDI Buch
- Häberlin, H.: Photovoltaik, Strom aus Sonnenlicht für Verbundnetz und Inselanlagen, VDE Verlag
- Probst, U.: Leistungselektronik für Bachelors. Grundlagen und praktische Anwendungen, Hanser
- Schröder: Leistungselektronische Schaltungen, Springer
- Rummrich, E.: Energiespeiche, expert
- Kurzweil, P.: Brennstoffzellentechnik, Springer Vieweg

Stand vom 01.10.2025 T3ELU3002 // Seite 53

Umwelttechnik (T3ELU3003)

Environmental Engineering

FORMALE ANGABEN ZUM MODUL

MODULNUMMERVERORTUNG IM STUDIENVERLAUFMODULDAUER (SEMESTER)MODULVERANTWORTUNGSPRACHET3ELU30033. Studienjahr2Prof. Dr.-Ing. Konrad ReifDeutsch/Englisch

EINGESETZTE LEHRFORMEN

LEHRFORMENLEHRMETHODENVorlesung, ÜbungLehrvortrag, Diskussion

EINGESETZTE PRÜFUNGSFORMEN

PRÜFUNGSLEISTUNGPRÜFUNGSUMFANG (IN MINUTEN)BENOTUNGKlausur90ja

WORKLOAD UND ECTS-LEISTUNGSPUNKTE

WORKLOAD INSGESAMT (IN H)DAVON PRÄSENZZEIT (IN H)DAVON SELBSTSTUDIUM (IN H)ECTS-LEISTUNGSPUNKTE15060905

QUALIFIKATIONSZIELE UND KOMPETENZEN

FACHKOMPETENZ

Die Studierenden sind in der Lage, komplexe Problemstellungen aus dem Bereich der Umwelttechnik so zu analysieren und aufzuarbeiten, dass sie zu diesen entsprechende Aufstellungen und Berechnungen erstellen können. Dabei greifen sie auf die in den Modulinhalten erworbenen Kenntnisse zurück. Sie gewinnen die für die Lösung relevanten Informationen, führen die Berechnungen und Analysen selbständig durch und geben kritische Hinweise zur Belastbarkeit ihrer Ergebnisse.

METHODENKOMPETENZ

Die Studierenden sind mit Abschluss des Moduls in der Lage, für komplexe Praxisanwendungen in der Umwelttechnik eine angemessene Methode auszuwählen und anzuwenden. Sie können die Möglichkeiten, Praktikabilität und Grenzen der eingesetzten Methode einschätzen und sind in der Lage, Handlungsalternativen aufzuzeigen.

PERSONALE UND SOZIALE KOMPETENZ

-

ÜBERGREIFENDE HANDLUNGSKOMPETENZ

Die Studierenden können die erworbenen Kompetenzen und Methoden interdisziplinär einsetzen.

LERNEINHEITEN UND INHALTE

LEHR- UND LERNEINHEITENPRÄSENZZEITSELBSTSTUDIUMUmwelttechnik6090

- Grundlagen der Verfahrenstechnik
- Grundlagen der Strömungslehre
- Thermodynamische Prozesse
- Grundlagen der Energieumwandlung
- Grundlagen der Umweltchemie und Umweltphysik
- Deponietechnik und Recycling
- Müll- und Entsogungstechnik
- Wasser und Abwasser
- Luftreinhaltung und Abgasreinigung
- Messen, Steuern und Regeln

Stand vom 01.10.2025 T3ELU3003 // Seite 54

BESONDERHEITEN

Die Lerninhalte können durch Exkursionen ergänzt werden.

VORAUSSETZUNGEN

LITERATUR

- Bank, M.: Basiswissen Umwelttechnik, Vogel Buchverlag
- Wilhelm, S.: Wasseraufbereitung, Springer-Verlag Grote, K.-H. (Hrsg.).: Dubbel-Taschenbuch für den Maschinenbau, Springer Verlag
- Schwister, K., Leven, V.: Verfahrenstechnik für Ingenieure, Fachbuchverlag Leipzig
- Kurzweil, P.: Chemie, Vieweg-Teubner
- Kurzweil, P.: Toxikologie und Gefahrstoffe, Europa-Lehrmittel Föllinger, O.: Regelungstechnik, Hüthig Verlag

Stand vom 01.10.2025 T3ELU3003 // Seite 55 Studienbereich Technik // School of Engineering
Elektrotechnik // Electrical Engineering
Energie- und Umwelttechnik // Energy and Environmental Engineering
MANNHEIM

Konstruktionslehre (T3ELE2711)

Mechanical Design

FORMALE ANGABEN ZUM MODUL

MODULNUMMERVERORTUNG IM STUDIENVERLAUFMODULDAUER (SEMESTER)MODULVERANTWORTUNGSPRACHET3ELE27112. Studienjahr1Prof. Dr. Michael UllmannDeutsch

EINGESETZTE LEHRFORMEN

LEHRFORMEN LEHRMETHODEN

Vorlesung, Übung Lehrvortrag, Diskussion, Fallstudien

EINGESETZTE PRÜFUNGSFORMEN

PRÜFUNGSLEISTUNG PRÜFUNGSUMFANG (IN MINUTEN) BENOTUNG

Klausur oder Kombinierte Prüfung 120 ja

WORKLOAD UND ECTS-LEISTUNGSPUNKTE

WORKLOAD INSGESAMT (IN H)DAVON PRÄSENZZEIT (IN H)DAVON SELBSTSTUDIUM (IN H)ECTS-LEISTUNGSPUNKTE150481025

QUALIFIKATIONSZIELE UND KOMPETENZEN

FACHKOMPETENZ

Die Studierenden sind mit Abschluss des Moduls in der Lage, zu den in den Modulinhalten aufgeführten Theorien, Modellen und Diskursen, praktische Anwendungsfälle zu definieren und diese in ihrer Komplexität zu erfassen, zu analysieren und die wesentlichen Einflussfaktoren zu definieren, um darauf aufbauend Lösungsvorschläge und ggf. Alternativmodelle zu entwickeln.

METHODENKOMPETENZ

Die Studierenden sind mit Abschluss des Moduls in der Lage, für weitgehend standardisierte Anwendungsfälle in der Praxis die angemessene Methode auszuwählen und anzuwenden. Sie kennen die Stärken und Schwächen der Methode in ihrem beruflichen Anwendungsfeld und können diese in konkreten Handlungssituationen gegeneinander abwägen.

PERSONALE UND SOZIALE KOMPETENZ

.

ÜBERGREIFENDE HANDLUNGSKOMPETENZ

-

LERNEINHEITEN UND INHALTE

LEHR- UND LERNEINHEITEN	PRÄSENZZEIT	SELBSTSTUDIUM
Konstruktionslehre	24	51

Stand vom 01.10.2025 T3ELE2711 // Seite 56

LEHR- UND LERNEINHEITEN **PRÄSENZZEIT SELBSTSTUDIUM**

Konstruktionslehre

- Darstellung technischer Gebilde
- Technisches Zeichnen (Papierformate, Linienarten, Schnittdarstellungen, Bemaßung,

Projektionsmethoden)

- Grundzüge der darstellenden Geometrie
- Abweichungen von der idealen Gestalt (Toleranzen, Rauigkeiten) Kennenlernen vvon

Bauelementen (Lager, Federn, Dichtungen, Bolzen, Stifte)

- Austauschbau
- Methoden zur Verbindung von Bauelementen
- Normgerechte Einzelteilzeichnung
- Normung
- Grundzüge der Konstruktionssystematik
- Fertigungsverfahren
- Aufbau und Ermittlung einer Anforderungsliste
- Kostenabschätzungen

Werkstofftechnik 24 51

Werkstofftechnik

Grundlagen Chemie

- Periodensystem der Elemente
- Wertigkeit und Reaktionsvermögen organischer und anorganischer Verbindungen
- Primäre und sekundäre Bindungsarten Aufbau metallischer Werkstoffe
- Legierungsbildung (binäre Zustandsdiagramme) Eisenwerkstoffe
- Gitterbau-, und Werkstofffehler Eisenkohlenstoffdiagramm
- Stabiles und metastabiles System Roheisen- und Stahlerzeugung Stahl und Gusswerkstoffe
- Wirkung der Begleit-, und Legierungselemente im Stahl Wärmebehandlung
- Grobkornglühen
- Diffusionsglühen
- Normalglühen
- Weichglühen
- Rekristallisationsglühen
- Spannungsarmglühen Allgemeine Werkstoffprüfung
- Zerstörende Werkstoffprüfung
- Zerstörungsfreie Werkstoffprüfung

BESONDERHEITEN

VORAUSSETZUNGEN

LITERATUR

- Bargel, H.-J./Schulze, G. (Hrsg.): Werkstoffkunde, Springer
- Bergmann, W.: Werkstofftechnik, Hanser Verlag
- Hahn, F.: Werkstofftechnik: Werkstoffe Eigenschaften Prüfung-Anwendung, Hanser Verlag,
- Weißbach, W.: Aufgabensammlung Werkstoffkunde: Fragen-Antworten, Vieweg Verlag
- Pahl, Beitz: "Konstruktionslehre", Springer-Verlag
- Hoenow, Meißner: "Entwerfen und Gestalten im Maschinenbau", Hanser-Verlag
- Rolof; Matek: "Maschinenelemente" Lehr- und Tabellenbuch, Vieweg Verlag
- Decker: Maschinenelemente. Funktion, Gestaltung und Berechnung, Hanser Verlag

Stand vom 01.10.2025 T3ELE2711 // Seite 57

Grundlagen Drehstromnetze (T3ELU2712)

Three-Phase Systems Basics

FORMALE ANGABEN ZUM MODUL

MODULNUMMERVERORTUNG IM STUDIENVERLAUFMODULDAUER (SEMESTER)MODULVERANTWORTUNGSPRACHET3ELU27122. Studienjahr2Prof. Dr.-Ing. Nicole MöhringDeutsch

EINGESETZTE LEHRFORMEN

LEHRFORMENLEHRMETHODENVorlesung, ÜbungLehrvortrag, Diskussion, Lehrvortrag, Diskussion, Gruppenarbeit

EINGESETZTE PRÜFUNGSFORMEN

PRÜFUNGSLEISTUNGPRÜFUNGSUMFANG (IN MINUTEN)BENOTUNGKlausur oder Kombinierte Prüfung120ja

WORKLOAD UND ECTS-LEISTUNGSPUNKTE

WORKLOAD INSGESAMT (IN H)DAVON PRÄSENZZEIT (IN H)DAVON SELBSTSTUDIUM (IN H)ECTS-LEISTUNGSPUNKTE15060905

QUALIFIKATIONSZIELE UND KOMPETENZEN

FACHKOMPETENZ

Die Studierenden kennen die in den Inhalten des Moduls genannten Prozesse und Modelle. Sie können diese beschreiben und systematisch darstellen.

METHODENKOMPETENZ

Die Absolventen verfügen über das in den Modulinhalten aufgeführte Spektrum an Methoden und Techniken zur Bearbeitung komplexer, wissenschaftlicher Probleme in ihrem Studienfach, aus denen sie angemessene Methoden auswählen und anwenden, um neue Lösungen zu erarbeiten.

PERSONALE UND SOZIALE KOMPETENZ

ÜBERGREIFENDE HANDLUNGSKOMPETENZ

Der Studierende ist sich der Bedeutung der elektrischen Energie für die Gesellschaft bewusst.

LERNEINHEITEN UND INHALTE

LEHR- UND LERNEINHEITEN	PRÄSENZZEIT	SELBSTSTUDIUM
Drehstromnetz und Transformator	36	54

Allgemeiner Überblick Elektroenergiesysteme

- Dreiphasensystem und Leistungsbegriffe
- Erzeugung dreiphasiger Spannungen Sternschaltung / Dreieckschaltung / Drehoperatoren
- Spannung zwischen Generator- und Verbrauchersternpunkt
- Leistungsbegriffe für allgemeine Verbraucher
- Leistungen im Dreiphasensystem
- Dreiphasensystem mit unsymmetrischer Belastung
- Physikalische Grundlagen der Transformatoren
- Einphasige Zweiwicklungstransformatoren
- Ersatzschaltbild / Leerlauf-, Kurzschlussversuch

Stand vom 01.10.2025 T3ELU2712 // Seite 58

LEHR- UND LERNEINHEITENPRÄSENZZEITSELBSTSTUDIUMKraftwerkstechnik2436

- Thermodynamische Grundbegriffe
- Dampfkraftprozess
- Gasturbinenprozess
- Gasturbinenkraftwerke
- Dampfkraftwerke
- Gas- und Dampf-(GuD)Kraftwerke
- Kernkraftwerke
- Kraftwerk-Eigenbedarf
- Kraftwerksregelung

BESONDERHEITEN

Prüfungsdauer gilt nur für die Klausur

VORAUSSETZUNGEN

-

LITERATUR

- Frohne, H.; Löcherer, K.-H.: Moeller Grundlagen der Elektrotechnik Teubner Verlag
- Hagmann, G.: Grundlagen der Elektrotechnik Aula Verlag
- Schwab: Elektroenergiesysteme, Springer Verlag
- Heuck: Elektrische Energieversorgung, Vieweg+Teubner
- Oeding, D.: Elektrische Kraftwerke und Netze, Springer
- Spring, E.: Elektrische Energienetze, VDE Verlag
- Zahoransky: Energietechnik, Vieweg Verlag
- Crastan: Elektrische Energieversorgung, Springer Verlag
- Schlabbach: Elektroenergieversorgung, VDE Verlag
- Frohne, H.; Löcherer, K.-H.: Moeller Grundlagen der Elektrotechnik Teubner Verlag
- Hagmann, G.: Grundlagen der Elektrotechnik Aula Verlag
- Schwab: Elektro-Energiesysteme, Springer Verlag
- Heuck: Elektrische Energieversorgung, Vieweg+Teubner
- Schlabbach, J.:Elektroenergiesysteme VDE-Verlag
- Oeding, D.: Elektrische Kraftwerke und Netze, Springer
- Spring, E.: Elektrische Energienetze, VDE Verlag

Stand vom 01.10.2025 T3ELU2712 // Seite 59

Steuerungstechnik für Energietechnik (T3ELE2713)

Control Systems for Power Engineering

FORMALE ANGABEN ZUM MODUL

MODULNUMMERVERORTUNG IM STUDIENVERLAUFMODULDAUER (SEMESTER)MODULVERANTWORTUNGSPRACHET3ELE27132. Studienjahr1Prof. Kay Wilding ### DUBLETTE ###Deutsch

EINGESETZTE LEHRFORMEN

LEHRFORMENLEHRMETHODENLabor, Vorlesung, Übung, LaborLaborarbeit, Lehrvortrag, Diskussion, Gruppenarbeit

EINGESETZTE PRÜFUNGSFORMEN

PRÜFUNGSLEISTUNGPRÜFUNGSUMFANG (IN MINUTEN)BENOTUNGKombinierte Prüfung - Klausur <50%, Programmentwurf, Laborarbeit</td>120ja

WORKLOAD UND ECTS-LEISTUNGSPUNKTE

WORKLOAD INSGESAMT (IN H)DAVON PRÄSENZZEIT (IN H)DAVON SELBSTSTUDIUM (IN H)ECTS-LEISTUNGSPUNKTE15058925

QUALIFIKATIONSZIELE UND KOMPETENZEN

FACHKOMPETENZ

Die Studierenden kennen die in den Inhalten des Moduls genannten Theorien und Modelle. Sie können diese beschreiben und systematisch darstellen. Sie sind in der Lage, unterschiedliche Ansätze miteinander zu vergleichen und können mit Hilfe ihres Wissens plausible Argumentationen und Schlüsse ableiten.

METHODENKOMPETENZ

Die Studierenden sind mit Abschluss des Moduls in der Lage, für weitgehend standardisierte Anwendungsfälle in der Praxis die angemessene Methode auszuwählen und anzuwenden.

PERSONALE UND SOZIALE KOMPETENZ

-

ÜBERGREIFENDE HANDLUNGSKOMPETENZ

_

LERNEINHEITEN UND INHALTE

LEHR- UND LERNEINHEITEN	PRÄSENZZEIT	SELBSTSTUDIUM
SPS	36	54

- Einführung in die Steuerungstechnik
- Programmiernorm DIN EN 61131-3
- Programmiersysteme, SPS Programmierung
- Übertragungs- und Programmsteuerung
- Ablaufsteuerungen
- Zusatndsgraph
- Automationssysteme

Labor Grundlagen Elektrotechnik 3 22 38

Ergänzende Laborversuche zu den Modulen der Grundlagen Elektrotechnik

BESONDERHEITEN

-

Stand vom 01.10.2025 T3ELE2713 // Seite 60

VORAUSSETZUNGEN

LITERATUR

- Tröster,F: Steuerungs- und Regelungstechnik für Ingenieure Wellenreuther,G.;Zastrow,D.: Automatisieren mit SPS, Vieweg + Teubner Verlag

Stand vom 01.10.2025 T3ELE2713 // Seite 61 Studienbereich Technik // School of Engineering
Elektrotechnik // Electrical Engineering
Energie- und Umwelttechnik // Energy and Environmental Engineering
MANNHEIM

Elektrische Anlagen und Netze (T3ELE3004)

Electrical Systems and Networks

FORMALE ANGABEN ZUM MODUL

MODULNUMMERVERORTUNG IM STUDIENVERLAUFMODULDAUER (SEMESTER)MODULVERANTWORTUNGSPRACHET3ELE30043. Studienjahr2Prof. Dr.-Ing. Nicole MöhringDeutsch/Englisch

EINGESETZTE LEHRFORMEN

LEHRFORMENLEHRMETHODENVorlesungLehrvortrag, Diskussion

EINGESETZTE PRÜFUNGSFORMEN

PRÜFUNGSLEISTUNGPRÜFUNGSUMFANG (IN MINUTEN)BENOTUNGKlausur120ja

WORKLOAD UND ECTS-LEISTUNGSPUNKTE

WORKLOAD INSGESAMT (IN H)DAVON PRÄSENZZEIT (IN H)DAVON SELBSTSTUDIUM (IN H)ECTS-LEISTUNGSPUNKTE15072785

QUALIFIKATIONSZIELE UND KOMPETENZEN

FACHKOMPETENZ

Die Studierenden sind mit Abschluss des Moduls in der Lage, grundlegende automationstechnische Probleme und komplexe Probleme der Kurzschlussstromberechnung zu lösen.

METHODENKOMPETENZ

Die Absolventen verfügen über das in den Modulinhalten aufgeführte Spektrum an Methoden und Techniken zur Bearbeitung komplexer, wissenschaftlicher Probleme in ihrem Studienfach, aus denen sie angemessene Methoden auswählen und anwenden, um neue Lösungen zu erarbeiten. Bein einzelnen Methoden verfügen Sie über vertieftes Fach- und Anwendungswissen.

PERSONALE UND SOZIALE KOMPETENZ

-

ÜBERGREIFENDE HANDLUNGSKOMPETENZ

-

LERNEINHEITEN UND INHALTE

LEHR- UND LERNEINHEITENPRÄSENZZEITSELBSTSTUDIUMNetze und Anlagen4852

- Drehstromtransformatoren
- Synchrongeneratoren
- Kurzschlussstromberechnung
- Sternpunktbehandlung

Stand vom 01.10.2025 T3ELE3004 // Seite 62

LEHR- UND LERNEINHEITENPRÄSENZZEITSELBSTSTUDIUMAutomationssysteme2426

- Begriffe, Ziele, Prozesse, Arten von Automationssystemen und Realisierungen
- Komponenten und Aufgaben
- Strukturen der Prozess- und Fertigungsautomation, Industrie 4.0
- Systemkommunikation in Automationssystemen
- Anforderungen: Zuverlässigkeit, Verfügbarkeit, Sicherheit, EMV, Explosionsschutz
- Kennzeichnung und Dokumentation
- Engineering von Automationssystemen:
 - Abläufe, Dokumente, Entwurfsstrategien
 - Handhabung Feldbusgeräte
 - Programmiersprachen (DIN61131 und DIN60848)
- Anwendungen in der Produktionstechnik

BESONDERHEITEN

VORAUSSETZUNGEN

LITERATUR

- Flossdorf/Hilgrath: Elektrische Energieverteilung, Wiesbaden: Springer Vieweg
- Heuck: Elektrische Energieversorgung, Wiesbaden: Vieweg+Teubner
- Oeding, D.: Elektrische Kraftwerke und Netze, Berlin: Springer Vieweg
- Schlabbach, J.: Elektroenergiesysteme VDE-Verlag
- Schwab: Elektroenergiesysteme, Berlin: Springer Verlag
- Spring, E.: Elektrische Energienetze, Berlin: VDE Verlag
- Früh, K.-F.:Handbuch der Prozessautomatisierung, OldenbourgVerlag
- Langmann, R. (Hrsg.) Taschenbuch der Automatisierung, München: Fachbuchverl. Leipzig im Carl-Hanser-Verlag
- Strohmann, G.: Automatisierungstechnik (2 Bände), Oldenbourg-Verlag
- Taschenbuch der Automatisierung, VDE Verlag

Stand vom 01.10.2025 T3ELE3004 // Seite 63

Studienbereich Technik // School of Engineering
Elektrotechnik // Electrical Engineering
Energie- und Umwelttechnik // Energy and Environmental Engineering
MANNHEIM

Schlüsselqualifikation für Ingenieure (T3ELA3704)

Key Qualifications for Engineers

FORMALE ANGABEN ZUM MODUL

MODULNUMMERVERORTUNG IM STUDIENVERLAUFMODULDAUER (SEMESTER)MODULVERANTWORTUNGSPRACHET3ELA37043. Studienjahr2Prof. Dr.-Ing. Bozena Lamek-CreutzDeutsch/Englisch

EINGESETZTE LEHRFORMEN

LEHRFORMEN LEHRMETHODEN

Seminar, Vorlesung Fallstudien, Lehrvortrag, Diskussion

EINGESETZTE PRÜFUNGSFORMEN

PRÜFUNGSLEISTUNGPRÜFUNGSUMFANG (IN MINUTEN)BENOTUNGKombinierte Prüfung - Klausur < 50 %, Hausarbeit, Referat</td>Siehe Pruefungsordnungja

WORKLOAD UND ECTS-LEISTUNGSPUNKTE

WORKLOAD INSGESAMT (IN H)
DAVON PRÄSENZZEIT (IN H)
DAVON SELBSTSTUDIUM (IN H)
ECTS-LEISTUNGSPUNKTE
90
5

QUALIFIKATIONSZIELE UND KOMPETENZEN

FACHKOMPETENZ

Die Studierenden sind in der Lage, mit den in den Modulinhalten genannten Theoremen und Modelle für Standardfälle der Praxis Berechnungen anzustellen oder Lösungen zu erarbeiten. Sie analysieren einfache Problemstellungen aus der Praxis treffsicher, nutzen die für die Lösung relevanten Informationen und führen die Analyse selbständig durch.

METHODENKOMPETENZ

Die Studierenden sind mit Abschluss des Moduls in der Lage, für komplexe Praxisanwendungen eine angemessene Methode auszuwählen und anzuwenden. So können die Möglichkeiten, Praktikabilität und Grenzen der eingesetzten Methode einschätzen und sind in der Lage, Handlungsalternativen aufzuzeigen.

PERSONALE UND SOZIALE KOMPETENZ

ÜBERGREIFENDE HANDLUNGSKOMPETENZ

I FRNFINHFITEN UND INHALTE

LEHR- UND LERNEINHEITENPRÄSENZZEITSELBSTSTUDIUMInformationsmanagement1218

Informationsmanagement

- Entwicklung des Informationsmanagements
- Definition des Begriffes Informationsmanagement
- Datenbank-Management-Systeme
- Enterprise Ressource Planning
- Dokumenten Management
- Business Process / Workflow Management

Stand vom 01.10.2025 T3ELA3704 // Seite 64

LERNEINHEITEN UND INHALTE		
LEHR- UND LERNEINHEITEN	PRÄSENZZEIT	SELBSTSTUDIUM
Produktmanagement	12	18
Produktmanagement		
Grundbegriffe		
Markt und Marktstrukturen		
Strategisches Marketing		
Funktion und Bedeutung des PM		
Einsatz des Marketingmix		
Produkt- und Programmpolitik Kontrahierungspolitik		
Kommunikation		
Distribution		
Arbeits- und Analysetechniken		
Kostenrechnung/Kalkulation/Preisfindung		
Produktfindung, Produktlebenszyklus, Produktentwicklung, Pflichtenheft,		
Markteinführungsplan		
Portfolio, SWOT-, DB-Analyse		
Recht	12	18
Recht		
100 Begriffe aus dem Recht		
Das juristische Taschenmesser(R)		
Grundlagen des Vertragsrecht unter besonderer Berücksichtigung der AGB		
Die Störung des Vertrages		
Grundlagen des Schadenersatzrechts		
Grundlagen des Arbeitsrechts		
Kündigungsschutz im Arbeitsverhältnis Prozessführung allg. Zivilprozesse		
Die Besonderheiten des Arbeitsgerichtsprozesses		
Handeln des Staates und der Bürger wehrt sich		
Traineer des staates and der barger Wente sten		
Einführung in das Projektmanagement	12	18
inführung in das Projektmanagement		
Projektcontrolling		
trukturplan, Planungsphase, Realisierungsphase, Projektcontrolling, Reporting,		
ostencontrolling		
Projektleiter ompetenzen, Anforderungen, Aufgaben		
ompetenzen, Amorderungen, Aufgaben Projektplannung		
Defintion, Planung, Durchführung und Controlling, Abschluss		
Projektorganisation		
efintion, Schema, Funktionale Organisation, Prozessorientierung, Resourecenorientierung,		
Ordermanagement		

Ordermanagement

Seminar Anwendungen 24 36

Schriftliche Ausarbeitung und Präsentation zu einem vorgegebenen Thema mit Bezug zur Automation. $\$

Didaktische Hinweise: Die Themen sollen sich auf aktuelle Fragestellungen des Studienganges beziehen. Das Thema wird am Ende des 4. bzw. 5. Semesters ausgegeben und soll selbständig erarbeitet werden. Die Ergebnisse werden im Laufe der Theoriephase des 5. bzw. 6. Semesters in einem Referat präsentiert und als schriftliche Ausarbeitung abgegeben. Der Prüfer stellt Fragen zum Referat und zu dem behandelten Fachgebiet, deren Beantwortung mit in die Benotung eingehen.

Literatur

- Sandberg, Berit: Wissenschaftlich Arbeiten von Abbildung bis Zitat. Lehr- und Übungsbuch für Bachelor, Master und Promotion, De Gruyter.
- Garten, Matthias: Präsentationen erfolgreich gestalten und halten. Wie Sie mit starker Wirkung präsentieren. Offenbach am Main: GABAL.
- Sesink, Werner: Einführung in das wissenschaftliche Arbeiten. Inklusive E-Learning, Web-Recherche, digitale Präsentation, München: Oldenbourg.

Stand vom 01.10.2025 T3ELA3704 // Seite 65

LEHR- UND LERNEINHEITEN	PRÄSENZZEIT	SELBSTSTUDIUM
Qualitätsmanagement	12	18

Grundlagen des Qualitätsmanagements verstehen, Methoden zur Umsetzung kennen:

- Notwendigkeit begreifen, wie sichern wir unsere Zukunft?
- Qualität als Wissenschaft
- Vordenker und Pioniere / Historische Entwicklung
- Qualitätsmanagement Umsetzung, Systeme und Modelle
- Qualitätsmanagement / Prozessmanagement, Normen, Standards, Zertifizierung
- Qualitätsmanagement Techniken, Messwerkzeuge
- Fehlerkorrektur bzw. -vermeidung, Ergebnisdarstellung / Dokumentation /Präsentation
- Qualitätsmanagement-Handbuch
- Umsetzung eines Qualitätsmanagement-Systems am Beispiel der IBM Deutschland u.a

BESONDERHEITEN

Die Pflichtunit Seminar Anwendungen muss von den Studierenden belegt werden. Aus den weiteren Wahlunits müssen die Studierenden drei belegen.

VORAUSSETZUNGEN

_

LITERATUR

- A.Gadatsch, Geschäftsprozessmanagement
- Alan Beaulieu: Einführung in SQL, O'Reilly Verlag
- Thomas Allweyer: BPMN 2.0 Business Process Model and Notation: Einführung in den Standard für die Geschäftsprozess-modellierung, Books on Demand
- Thomas Allweyer: Geschäftsprozessmanagement, W3I
- BGB dtv , Aktuelle Ausgabe
- Vock, Willi: Das Recht der Ingenieure
- Frenz, W., Müggenborg, H.-J.: Recht für Ingenieure
- Paul A. Samuelson/William D. Nordhaus: Volkswirtschaftslehre, FinanzBuch Verlag
- Wöhe, Günter/ Döring Ulrich: Einführung in die allgemeine Betriebswirtschaftslehre, Vahlen Verlag
- Godefroid, Peter/ Pförtsch, Waldemar: Business-to-Business-Marketing, Friedrich Kiehl Verlag
- Kairies, Peter: Professionelles Produktmanagement für die Investitionsgüterindustrie, expert Verlag
- QZ Qualität und Zuverlässigkeit, die Zeitschrift für Q-Management und Q-Sicherung, Herausgeber:

Deutsche Gesellschaft für Qualität e.V

- Zollondz, H.-D.: Grundlagen QM
- Sandberg, Berit: Wissenschaftlich Arbeiten von Abbildung bis Zitat. Lehr- und Übungsbuch für Bachelor, Master und Promotion, De Gruyter.
- Garten, Matthias: Präsentationen erfolgreich gestalten und halten. Wie Sie mit starker Wirkung präsentieren. Offenbach am Main: GABÁL.
- Sesink, Werner: Einführung in das wissenschaftliche Arbeiten. Inklusive E-Learning, Web-Recherche, digitale Präsentation, München: Oldenbourg.

Stand vom 01.10.2025 T3ELA3704 // Seite 66

Hochspannungstechnik (T3ELE3712)

High-Voltage Technology

FORMALE ANGABEN ZUM MODUL

MODULNUMMERVERORTUNG IM STUDIENVERLAUFMODULDAUER (SEMESTER)MODULVERANTWORTUNGSPRACHET3ELE37123. Studienjahr2Prof. Dr.-lng. Nicole MöhringDeutsch

EINGESETZTE LEHRFORMEN

 LEHRFORMEN
 LEHRMETHODEN

 Labor, Vorlesung, Übung
 Laborarbeit, Lehrvortrag, Diskussion

EINGESETZTE PRÜFUNGSFORMEN

PRÜFUNGSLEISTUNGPRÜFUNGSUMFANG (IN MINUTEN)BENOTUNGKlausur oder Kombinierte Prüfung90ja

WORKLOAD UND ECTS-LEISTUNGSPUNKTE

WORKLOAD INSGESAMT (IN H)DAVON PRÄSENZZEIT (IN H)DAVON SELBSTSTUDIUM (IN H)ECTS-LEISTUNGSPUNKTE150481025

QUALIFIKATIONSZIELE UND KOMPETENZEN

FACHKOMPETENZ

Die Studierenden sind mit Abschluss des Moduls in der Lage, komplexe hochspannungstechnische Probleme aus den Modulinhalten zu lösen.

METHODENKOMPETENZ

Die Absolventen verfügen über das in den Modulinhalten aufgeführte Spektrum an Methoden und Techniken zur Bearbeitung komplexer, wissenschaftlicher Probleme in ihrem Studienfach, aus denen sie angemessene Methoden auswählen und anwenden, um neue Lösungen zu erarbeiten.

PERSONALE UND SOZIALE KOMPETENZ

-

ÜBERGREIFENDE HANDLUNGSKOMPETENZ

-

LERNEINHEITEN UND INHALTE

LEHR- UND LERNEINHEITENPRÄSENZZEITSELBSTSTUDIUMHochspannungstechnik3679

- Beanspruchungsarten von Isoliersystemen, Isolationskoordination (Einführung), Isolationspegel
- Ausgleichsvorgänge in Netzen, Grundlagen zur Berechnung von Ausgleichsvorgängen auf Leitungen, Anwendung auf Energieübertragungssysteme, äußere/innere Überspannungen
- Überspannungsschutz im Hochspannungsnetz, Ableiter: Wirkungsweise und Kennwerte, Schutzbereich von Ableitern
- Elektrische Felder in Hochspannungsbetriebsmitteln , Feldgüte technischer Anordnungen, Dimensionierungsbeispiele, Felder mit Mischdielektrika, Potentialsteuerung in Durchführungen
- Elektrische Festigkeit, Durchschlag von Isolierstoffen, Gasdurchschlag, Beispiele zur Isolationskoordination
- Grundlagen der Hochspannungsprüf- und Messtechnik

Stand vom 01.10.2025 T3ELE3712 // Seite 67

LEHR- UND LERNEINHEITENPRÄSENZZEITSELBSTSTUDIUMLabor Hochspannungstechnik1223

- Einführung in die Hochspannungs-Mess- und Prüftechnik
- Erzeugung hoher Gleich-, Wechsel- und Stoßspannungen mit Prüftransformatoren, Kaskaden, Serienresonanzanlagen
- Hochspannungsteiler zur Messung von Wechsel- und Impulsspannungen, EMV-Probleme bei Impuls-Spannungsmessungen, Hochspannungsimpulsmesssysteme und Gütebewertung,
- Teilentladungen in Isolationen, Merkmale

BESONDERHEITEN

VORAUSSETZUNGEN

LITERATUR

- Küchler, A. Hochspannungstechnik. Springer
- Beyer, M., Boeck, W., Müller, K., Zaengl, W. Hochspannungstechnik. Springer
- Hilgarth, G. Hochspannungstechnik. Teubner
- Schwab, A. Hochspannungsmesstechnik. Springer
- Kind/Feser: Hochspannungsversuchstechnik, ViewegVerlag
- Schwab, A. Hochspannungsmesstechnik. Springer
- Kind/Feser: Hochspannungsversuchstechnik, Vieweg Verlag

Stand vom 01.10.2025 T3ELE3712 // Seite 68

Studienbereich Technik // School of Engineering
Elektrotechnik // Electrical Engineering
Energie- und Umwelttechnik // Energy and Environmental Engineering
MANNHEIM

Energienetze und -anlagen (T3ELU3704)

Energy Networks and Systems

FORMALE ANGABEN ZUM MODUL

 MODULNUMMER
 VERORTUNG IM STUDIENVERLAUF
 MODULDAUER (SEMESTER)
 MODULVERANTWORTUNG
 SPRACHE

 T3ELU3704
 3. Studienjahr
 2
 Prof. Dr.-Ing. Nicole Möhring
 Deutsch/Englisch

EINGESETZTE LEHRFORMEN

LEHRFORMENLEHRMETHODENVorlesungLehrvortrag, Diskussion

EINGESETZTE PRÜFUNGSFORMEN

PRÜFUNGSLEISTUNGPRÜFUNGSUMFANG (IN MINUTEN)BENOTUNGKlausur120ja

WORKLOAD UND ECTS-LEISTUNGSPUNKTE

WORKLOAD INSGESAMT (IN H)DAVON PRÄSENZZEIT (IN H)DAVON SELBSTSTUDIUM (IN H)ECTS-LEISTUNGSPUNKTE15072785

QUALIFIKATIONSZIELE UND KOMPETENZEN

FACHKOMPETENZ

Die Studierenden sind mit Abschluss des Moduls in der Lage, grundlegende automationstechnische Probleme und komplexe Probleme der Kurzschlussstromberechnung zu lösen.

METHODENKOMPETENZ

Die Absolventinnen und Absolventen verfügen über das in den Modulinhalten aufgeführte Spektrum an Methoden und Techniken zur Bearbeitung komplexer, wissenschaftlicher Probleme in ihrem Studienfach, aus denen sie angemessene Methoden auswählen und anwenden, um neue Lösungen zu erarbeiten. Bein einzelnen Methoden verfügen Sie über vertieftes Fach- und Anwendungswissen.

PERSONALE UND SOZIALE KOMPETENZ

ÜBERGREIFENDE HANDLUNGSKOMPETENZ

-

LERNEINHEITEN UND INHALTE

LEHR- UND LERNEINHEITENPRÄSENZZEITSELBSTSTUDIUMNetze und Anlagen4852

- Drehstromtransformatoren
- Synchrongeneratoren
- Kurzschlussstromberechnung
- Sternpunktbehandlung

Stand vom 01.10.2025 T3ELU3704 // Seite 69

LEHR- UND LERNEINHEITEN	PRÄSENZZEIT	SELBSTSTUDIUM
Automationssysteme	24	26

- Begriffe, Ziele, Prozesse, Arten von Automationssystemen und Realisierungen
- Komponenten und Aufgaben
- Strukturen der Prozess- und Fertigungsautomation, Industrie 4.0
- Systemkommunikation in Automationssystemen
- Anforderungen: Zuverlässigkeit, Verfügbarkeit, Sicherheit, EMV, Explosionsschutz
- Kennzeichnung und Dokumentation
- Engineering von Automationssystemen:
- Abläufe, Dokumente, Entwurfsstrategien
- Handhabung Feldbusgeräte
- Programmiersprachen (DIN61131 und DIN60848)
- Anwendungen in der Produktionstechnik

Energienetze 24 26

- Energieverteilung allgemein (Mineralöltransporte, Erdgastransporte, Wärmetransporte;
- Schwerpunkt Elektrische Verbundnetze)
- Lastfluss- und Kurzschlussstromberechnung (Mitsystem / Gegensystem)
- Netzschutz (vom Hausanschluss bis zum Hochspannungsnetz)
- Mess- und Zähltechnik
- Überwachung von elektrischen Netzen (Schwerpunkt Netzleittechnik, GIS, Innovativer Einsatz
- von IKT im Smart Grid der Zukunft)
- Netzrückwirkungen und Oberschwingungen
- Netzwirtschaft (Bilanzkreise, Asset Management im Netzbetrieb, Netzentgeltkalkulation)

BESONDERHEITEN

Das Modul besteht aus einer Pflichtunit (T3ELE3004.1 – Netze und Anlagen) und mehreren Wahlunits. Von diesen ist eine zu absolvieren.

VORAUSSETZUNGEN

LITERATUR

- Crastan, V.: Elektrische Energieversorgung, Berlin: Springer
- Heuck, K:: Elektrische Energieversorgung, Wiesbaden: Vieweg+Teubner
- Küchler, A.: Hochspannungstechnik, Berlin: Springer
- Oeding, D.: Elektrische Kraftwerke und Netze, Berlin: Springer
- Spring, E.: Elektrische Energienetze, Berlin: VDE Verlag
- Flossdorf/Hilgrath: Elektrische Energieverteilung, Wiesbaden: Springer Vieweg
- Heuck: Elektrische Energieversorgung, Wiesbaden: Vieweg+Teubner
- Oeding, D.: Elektrische Kraftwerke und Netze, Berlin: Springer Vieweg
- Schlabbach, J.: Elektroenergiesysteme VDE-Verlag
- Schwab: Elektroenergiesysteme, Berlin: Springer Verlag
- Spring, E.: Elektrische Energienetze, Berlin: VDE Verlag
- Früh, K.-F.:Handbuch der Prozessautomatisierung, OldenbourgVerlag
- Langmann, R. (Hrsg.) Taschenbuch der Automatisierung, München: Fachbuchverl. Leipzig im Carl-Hanser-Verlag
- Strohmann, G.: Automatisierungstechnik (2 Bände), Oldenbourg-Verlag
- Taschenbuch der Automatisierung, VDE Verlag

Stand vom 01.10.2025 T3ELU3704 // Seite 70

Energienetze (T3ELU3841)

Energy Networks

FORMALE ANGABEN ZUM MODUL

MODULNUMMERVERORTUNG IM STUDIENVERLAUFMODULDAUER (SEMESTER)MODULVERANTWORTUNGSPRACHET3ELU38413. Studienjahr1Prof. Dr.-Ing. Konrad ReifDeutsch/Englisch

EINGESETZTE LEHRFORMEN

LEHRFORMEN LEHRMETHODEN

Vorlesung, Übung Lehrvortrag, Diskussion, Fallstudien

EINGESETZTE PRÜFUNGSFORMEN

PRÜFUNGSLEISTUNGPRÜFUNGSUMFANG (IN MINUTEN)BENOTUNGKlausur oder Kombinierte Prüfung90ja

WORKLOAD UND ECTS-LEISTUNGSPUNKTE

WORKLOAD INSGESAMT (IN H)DAVON PRÄSENZZEIT (IN H)DAVON SELBSTSTUDIUM (IN H)ECTS-LEISTUNGSPUNKTE15072785

QUALIFIKATIONSZIELE UND KOMPETENZEN

FACHKOMPETENZ

Die Studierenden sind mit den erworbenen Kenntnissen über die Energienetze Strom, Gas und Wärme in der Lage, komplexe Problemstellungen aus der Praxis der Energienetze zu analysieren und aufzuarbeiten, so dass sie zu diesen entsprechende Auslegungen und Berechnungen erstellen können. Die wichtigsten Netzelemente werden in Theorie und praktischer Anwendung untersucht. Mit dieser Kenntnis werden Netze gebildet und deren Wirkung in technischer Hinsicht untersucht. Die Studierenden sind somit in der Lage, technische Anforderungen des Netzbetriebs unter Berücksichtigung von betriebswirtschaftlichen Aspekten zu verstehen. Sie gewinnen die für die Lösung relevanten Informationen, führen die Berechnung und Analyse selbständig durch und geben kritische Hinweise zur Belastbarkeit ihrer Ergebnisse.

METHODENKOMPETENZ

Die Studierenden sind mit Abschluss des Moduls in der Lage, für komplexe Praxisanwendungen eine angemessene Methode auszuwählen und anzuwenden. Sie können die Möglichkeiten, Praktikabilität und Grenzen der eingesetzten Methode einschätzen und sind in der Lage, Handlungsalternativen aufzuzeigen.

PERSONALE UND SOZIALE KOMPETENZ

-

ÜBERGREIFENDE HANDLUNGSKOMPETENZ

-

LERNEINHEITEN UND INHALTE

LEHR- UND LERNEINHEITEN	PRÄSENZZEIT	SELBSTSTUDIUM
Energienetze	72	78

Stand vom 01.10.2025 T3ELU3841 // Seite 71

LEHR- UND LERNEINHEITEN **PRÄSENZZEIT** SELBSTSTUDIUM

- Energieverteilung allgemein (Mineralöltransporte, Erdgastransporte, Wärmetransporte;
- Schwerpunkt Elektrische Verbundnetze)
- Elektrische Betriebsmittel (Kabel, Transformatoren, Schaltanlagen, Drosseln, Freileitungen,
- Überspannungsableiter)
- Erzeugungsanlagen (Kraftwerksarten), Exkurs: Motoren und Generatoren
- Lastfluss- und Kurzschlussstromberechnung (Mitsystem / Gegensystem)
- Netzschutz (vom Hausanschluss bis zum Hochvoltnetz)
- Sternpunktbehandlung und Erdungsverhältnisse
- Mess- und Zähltechnik
- Überwachung von elektrischen Netzen (Schwerpunkt Netzleittechnik, GIS, Innovativer Einsatz
- von IKT im Smart Grid der Zukunft)
- Netzrückwirkungen und Oberschwingungen
- Exkurs Gasnetze, Wassernetze, Wärmenetze
- Netzentwicklung und Netzplanung
- Netzberechnung am Rechner
- Zuverlässigkeit und Ausfallsicherheit von Energienetzen
- Netzwirtschaft (Bilanzkreise, Asset Management im Netzbetrieb, Netzentgeltkalkulation)

BESONDERHEITEN

VORAUSSETZUNGEN

LITERATUR

- Oeding, D., Oswald, B.R.: Elektrische Kraftwerke und Netze, Springer
- Zahoransky, R.: Energietechnik, Springer Vieweg
- Spring, E.: Elektrische Energienetze, Energieübertragung- und verteilung, VDE Verlag
- Heuck, K.: Elektrische Energieversorgung, Erzeugung, Übertragung und Verteilung elektrischer Energie für Studium und Praxis, Springer Vieweg
- Crastan, V.: Elektrische Energieversorgung 1, Springer Vieweg
- Crastan, V.: Elektrische Energieversorgung 2, Springer Vieweg
- Küchler, A.: Hochspannungstechnik, Grundlagen Technologie Anwendungen, Springer

Stand vom 01.10.2025 T3ELU3841 // Seite 72

Energiewirtschaft (T3ELU3844)

Power Industry

FORMALE ANGABEN ZUM MODUL

MODULNUMMERVERORTUNG IM STUDIENVERLAUFMODULDAUER (SEMESTER)MODULVERANTWORTUNGSPRACHET3ELU38443. Studienjahr1Prof. Dr.-Ing. Konrad ReifDeutsch

EINGESETZTE LEHRFORMEN

LEHRFORMENLEHRMETHODENVorlesung, ÜbungLehrvortrag, Diskussion

EINGESETZTE PRÜFUNGSFORMEN

PRÜFUNGSLEISTUNGPRÜFUNGSUMFANG (IN MINUTEN)BENOTUNGKlausur oder Kombinierte Prüfung90ja

WORKLOAD UND ECTS-LEISTUNGSPUNKTE

WORKLOAD INSGESAMT (IN H)DAVON PRÄSENZZEIT (IN H)DAVON SELBSTSTUDIUM (IN H)ECTS-LEISTUNGSPUNKTE15072785

QUALIFIKATIONSZIELE UND KOMPETENZEN

FACHKOMPETENZ

Die Studierenden sind in der Lage, aufgrund des erworbenen Wissens der Grundlagen der Energiewirtschaft und des Energierechts komplexe Problemstellungen aus der Praxis so zu analysieren und aufzuarbeiten, dass sie diese im betriebswirtschaftlichen, volkswirtschaftlichen und rechtlichen Sinne einordnen und deren Auswirkungen nachvollziehen können. Sie gewinnen die für die Lösung relevanten Informationen, führen die Berechnung, Analyse und die Finanzaufstellung selbständig durch und geben kritische Hinweise zur Belastbarkeit ihrer Ergebnisse.

METHODENKOMPETENZ

Die Studierenden sind mit Abschluss des Moduls in der Lage, für komplexe Praxisanwendungen eine angemessene Methode auszuwählen und anzuwenden. Sie können die Möglichkeiten, Praktikabilität und Grenzen der eingesetzten Methode einschätzen und sind in der Lage, Handlungsalternativen aufzuzeigen.

PERSONALE UND SOZIALE KOMPETENZ

Durch eine gezielte Bewertung von Informationen können die Studierenden verantwortungsbewusst und kritisch denken.

ÜBERGREIFENDE HANDLUNGSKOMPETENZ

Die Studierenden können die erlernten Kompetenzen interdisziplinär einsetzen.

LERNEINHEITEN UND INHALTE

LEHR- UND LERNEINHEITENPRÄSENZZEITSELBSTSTUDIUMEnergiewirtschaft7278

- Fossile und erneuerbare Ressourcen
- Wertschöpfungskette in der Energiewirtschaft
- Klimaschutz
- Stromwirtschaft
- Gaswirtschaft
- Energiedienstleistungen
- Rolle der Bundesnetzagentur
- regulierter Markt und freier Wettbewerb
- Strompreisbildung/-zusammensetzung
- Energierecht
- Regulierung
- Haftung
- EnWG und EEG

Stand vom 01.10.2025 T3ELU3844 // Seite 73

LEHR- UND LERNEINHEITEN PRÄSENZZEIT SELBSTSTUDIUM

BESONDERHEITEN

VORAUSSETZUNGEN

LITERATUR

- Konstantin, P.: Praxisbuch Energiewirtschaft, Springer Dratwa, F.A. (Hrsg.): Energiewirtschaft in Europa, Springe Ströbele, W.: Energiewirtschaft: Einführung in Theorie und Politik, Oldenbourg Erdmann, G.: Energieökonomik: Theorie und Anwendungen, Springer

Stand vom 01.10.2025 T3ELU3844 // Seite 74

Nachhaltige Energiesysteme (T3_9007)

Sustainable Energy Systems

FORMALE ANGABEN ZUM MODUL

MODULNUMMERVERORTUNG IM STUDIENVERLAUFMODULDAUER (SEMESTER)MODULVERANTWORTUNGSPRACHET3_90073. Studienjahr1Prof. Dr.-Ing. Alexandra DunzDeutsch

EINGESETZTE LEHRFORMEN

LEHRFORMEN LEHRMETHODEN

Vorlesung, Labor Lehrvortrag, Diskussion, Gruppenarbeit

EINGESETZTE PRÜFUNGSFORMEN

PRÜFUNGSLEISTUNGPRÜFUNGSUMFANG (IN MINUTEN)BENOTUNGKlausurt oder Kombinierte Prüfung120ja

WORKLOAD UND ECTS-LEISTUNGSPUNKTE

WORKLOAD INSGESAMT (IN H)DAVON PRÄSENZZEIT (IN H)DAVON SELBSTSTUDIUM (IN H)ECTS-LEISTUNGSPUNKTE15060905

QUALIFIKATIONSZIELE UND KOMPETENZEN

FACHKOMPETENZ

Die Studierenden sind in der Lage, mit den in den Modulinhalten genannten Techniken ingenieurmäßige Fragestellungen in ihrem Arbeitsumfeld zu diesem Thema zu erkennen, sie methodisch grundlagenorientiert zu analysieren und zu lösen.

METHODENKOMPETENZ

Die Studierenden sind mit Abschluss des Moduls in der Lage, für weitgehend standardisierte Anwendungsfälle in der Praxis die angemessene Methode auszuwählen und anzuwenden. Sie kennen die Stärken und Schwächen der Methode in ihrem beruflichen Anwendungsfeld und können diese in konkreten Handlungssituationen gegeneinander abwägen.

PERSONALE UND SOZIALE KOMPETENZ

ÜBERGREIFENDE HANDLUNGSKOMPETENZ

LERNEINHEITEN UND INHALTE

LEHR- UND LERNEINHEITENPRÄSENZZEITSELBSTSTUDIUMNachhaltige Energiesysteme6090

- Einführung in die nachhaltige Energietechnik und -wirtschaft
- Grundlagen der erneuerbaren Energien wie Photovoltaik, Solarthermie, Windkraft, Wasserkraft, Brennstoffzellen und Biomasse; aufgebaut auf vorhandenem Wissen der

Thermodynamik, Strömungslehre und Elektronik

- Energieeffiziente Gebäudetechnik
- Energiewirtschaftliche Prozesse

BESONDERHEITEN

Die Prüfungsdauer bezieht sich auf die Klausur.

VORAUSSETZUNGEN

-

Stand vom 01.10.2025 T3_9007 // Seite 75

LITERATUR

- Kaltschmitt, M; Streicher, W; Wiese, A: Erneuerbare Energien, Springer Vieweg
- Quaschning, V: Regenerative Energiesysteme, Hanser-Verlag
- Wastter, H: Nachhaltige Energiesysteme, Vieweg + Teubner
 Zahoransky, Richard A.: Energietechnik Systeme zur Energieumwandlung. Vieweg+Teubner
 Hadamovsky, Jonas: Solarstrom Solarthermie. Vogel-Verlag
 Cerbe; Hoffmann: Einführung in die Wärmelehre. Carl Hanser Verlag München Wien

- Baehr, H.D.: Thermodynamik. Springer Verlag Hau, Erich: Windkraftanlagen Grundlagen, Technik, Einsatz, Wirtschaftlichkeit. Springer Verlag
- Recknagel; Sprenger: Taschenbuch für Heizungs- und Klimatechnik. Oldenbourg-Verlag München Tiator; Schenker: Wärmepumpen und Wärmepumpenanlagen. Vogel-Verlag

Stand vom 01.10.2025 T3_9007 // Seite 76

Bachelorarbeit (T3 3300)

Bachelor Thesis

EODM	NGABEN	711N/I N	MODIII

 MODULNUMMER
 VERORTUNG IM STUDIENVERLAUF
 MODULDAUER (SEMESTER)
 MODULVERANTWORTUNG
 SPRACHE

 T3_3300
 3. Studienjahr
 1
 Prof. Dr.-Ing. Joachim Frech

EINGESETZTE LEHRFORMEN

LEHRFORMEN LEHRMETHODEN
Individualbetreuung Projekt

EINGESETZTE PRÜFUNGSFORMEN

PRÜFUNGSLEISTUNGPRÜFUNGSUMFANG (IN MINUTEN)BENOTUNGBachelor-ArbeitSiehe Pruefungsordnungja

WORKLOAD UND ECTS-LEISTUNGSPUNKTE

WORKLOAD INSGESAMT (IN H)DAVON PRÄSENZZEIT (IN H)DAVON SELBSTSTUDIUM (IN H)ECTS-LEISTUNGSPUNKTE360635412

QUALIFIKATIONSZIELE UND KOMPETENZEN

FACHKOMPETENZ

METHODENKOMPETENZ

-

PERSONALE UND SOZIALE KOMPETENZ

-

ÜBERGREIFENDE HANDLUNGSKOMPETENZ

Die Studierenden erfassen industrielle Problemstellungen in einem breiten Kontext und in realistischer Komplexität. Sie haben ein gutes Verständnis von organisatorischen und inhaltlichen Zusammenhängen sowie von Organisationsstrukturen, Produkten, Verfahren, Maßnahmen, Prozessen, Anforderungen und gesetzlichen Grundlagen. Sie analysieren kritisch, welche Einflussfaktoren zur Lösung des Problems beachtet werden müssen und können beurteilen, inwiefern theoretische Modelle einen Beitrag zur Lösung des Problems leisten können. Die Studierenden können sich selbstständig, nur mit geringer Anleitung in theoretische Grundlagen eines Themengebiets vertiefend einarbeiten und den allgemeinen Stand des Wissens erwerben. Sie können auf der Grundlage von Theorie und Praxis selbstständig Lösungen entwickeln und Alternativen bewerten. Sie sind in der Lage eine wissenschaftliche Arbeit als Teil eines Praxisprojektes effizient zu steuern und wissenschaftlich korrekt und verständlich zu dokumentieren.

Die Studierenden zeichnen sich durch Eigenverantwortung und Tatkraft aus, sie sind auch im Kontext einer globalisierten Arbeitswelt handlungsfähig. Sie weisen eine reflektierte Haltung zu gesellschaftlichen, soziale und ökologischen Implikationen des eigenen Handelns auf.

LERNEINHEITEN UND INHALTE

	LEHR- UND LERNEINHEITEN	PRASENZZEIT	SELBSTSTUDIUM
Racuetolaldeit 6	Bachelorarbeit	6	354

BESONDERHEITEN

Es wird auf die "Leitlinien für die Bearbeitung und Dokumentation der Module Praxisprojekt I bis III, Studienarbeit und Bachelorarbeit" der Fachkommission Technik der DHBW hingewiesen.

Stand vom 01.10.2025 T3_3300 // Seite 77

LITERATUR

Kornmeier, M., Wissenschaftlich schreiben leicht gemacht für Bachelor, Master und Dissertation, Bern

Stand vom 01.10.2025 T3_3300 // Seite 78

Informatik III (T3_ZELA2701)

Computer Science III

FORMALE ANGABEN ZUM MODUL

MODULNUMMERVERORTUNG IM STUDIENVERLAUFMODULDAUER (SEMESTER)MODULVERANTWORTUNGSPRACHET3_ZELA27012. Studienjahr2Prof. Dipl.-Phys. Kay WildingDeutsch/Englisch

EINGESETZTE LEHRFORMEN

 LEHRFORMEN
 LEHRMETHODEN

 Vorlesung, Übung, Vorlesung, Übung, Labor
 Lehrvortrag, Diskussion, Gruppenarbeit

EINGESETZTE PRÜFUNGSFORMEN

PRÜFUNGSLEISTUNGPRÜFUNGSUMFANG (IN MINUTEN)BENOTUNGKlausur oder Kombinierte Prüfung120ja

WORKLOAD UND ECTS-LEISTUNGSPUNKTE

WORKLOAD INSGESAMT (IN H)DAVON PRÄSENZZEIT (IN H)DAVON SELBSTSTUDIUM (IN H)ECTS-LEISTUNGSPUNKTE150481025

QUALIFIKATIONSZIELE UND KOMPETENZEN

FACHKOMPETENZ

Die Studierenden sind mit Abschluss des Moduls in der Lage, zu den in den Modulinhalten aufgeführten Theorien, Modellen und Diskursen, praktische Anwendungsfälle zu definieren und diese in ihrer Komplexität zu erfassen, zu analysieren und die wesentlichen Einflussfaktoren zu definieren, um darauf aufbauend Lösungsvorschläge zu entwickeln.

METHODENKOMPETENZ

Die Studierenden sind mit Abschluss des Moduls in der Lage, für komplexe Praxisanwendungen eine angemessene Methode auszuwählen und anzuwenden. So können die Möglichkeiten, Praktikabilität und Grenzen der eingesetzten Methode einschätzen und sind in der Lage, Handlungsalternativen aufzuzeigen

PERSONALE UND SOZIALE KOMPETENZ

ÜBERGREIFENDE HANDLUNGSKOMPETENZ

LERNEINHEITEN UND INHALTE

 LEHR- UND LERNEINHEITEN
 PRÄSENZZEIT
 SELBSTSTUDIUM

 Informatik 3 für Automation
 24
 51

Eine Objektorientierte Sprache (C++, Java):

- Klassen, Objekte und ihre Sichtbarkeit
- Vererbung (einfache, mehrfache)
- Polymorphismus, Funktionssignatur
- Relationen
- Funktionen und Operatoren
- Klassenbibliothek

Spezifikation von Klassen und Klassenrelationen (z.B. mit UML)

Stand vom 01.10.2025 T3_ZELA2701 // Seite 79

LEHR- UND LERNEINHEITENPRÄSENZZEITSELBSTSTUDIUMMikrocontrollerlabor2451

Einführung in die hardwarenahe Softwareprogrammierung

- Einarbeitung in ein vorgegebenes Mikrocontrollersystem
- Effektive Methoden zur Fehleranalyse
- Verschiedene Laboraufgaben mit $\dot{\text{dem}}$ Mikrocontroller MSP430, welche in Gruppenarbeit zu bearbeiten sind

BESONDERHEITEN

_

VORAUSSETZUNGEN

-

LITERATUR

- -Stroustrup, B.: Einführung in die Programmierung mit C++. Pearson Studium
- Lahres, B., Rayman, G.: Objektorientierte Programmierung. Galileo Computing

Texas Instruments: MSP-EXP430F5438 Experimenter Board User's Guide

- Texas Instruments: MSP430x5xx/ MSP430x6xx Family User's Guide
- Texas Instruments: MIXED SIGNAL MICROCONTROLLER MSP430F543x, MSP430F541x
- Sturm: Mikrocontrollertechnik: Am Beispiel der MSP430-Familie, Hanser
- Walter, Tappertzhofen: Das MSP430-Mikrocontroller-Buch, Elektor
- Davies: Msp430 Microcontroller Basics, Butterworth Heinemann

Stand vom 01.10.2025 T3_ZELA2701 // Seite 80