

Dieses Modulhandbuch gilt für Studierende die im Zeitraum vom 01.10.2021 – 30.09.2024 immatrikuliert wurden.

Modulhandbuch

Studienbereich Technik

School of Engineering

Studiengang

Embedded Systems

Embedded Systems

Studienrichtung

Aerospace Engineering

Aerospace Engineering

Studienakademie

FRIEDRICHSHAFEN

Curriculum (Pflicht und Wahlmodule)

Aufgrund der Vielzahl unterschiedlicher Zusammenstellungen von Modulen können die spezifischen Angebote hier nicht im Detail abgebildet werden. Nicht jedes Modul ist beliebig kombinierbar und wird möglicherweise auch nicht in jedem Studienjahr angeboten. Die Summe der ECTS aller Module inklusive der Bachelorarbeit umfasst 210 Credits.

Die genauen Prüfungsleistungen und deren Anteil an der Gesamtnote (sofern die Prüfungsleistung im Modulhandbuch nicht eindeutig definiert ist oder aus mehreren Teilen besteht), die Dauer der Prüfung(en), eventuelle Einreichungsfristen und die Sprache der Prüfung(en) werden zu Beginn der jeweiligen Theoriephase bekannt gegeben.

	FESTGELEGTER MODULBEREICH		
NUMMER	MODULBEZEICHNUNG	VERORTUNG	ECTS
T3ES1001	Mathematik I	1. Studienjahr	5
T3ES1002	Elektrotechnik I	2. Studienjahr	5
T3ES1003	Technische Informatik I	1. Studienjahr	5
T3ES1004	Physik	1. Studienjahr	5
T3ES1005	Mathematik II	1. Studienjahr	5
T3ES1006	Elektrotechnik II	1. Studienjahr	5
T3ES1007	Technische Informatik II	1. Studienjahr	8
T3ES1008	Programmieren	1. Studienjahr	9
T3ES2001	Mathematik III	2. Studienjahr	5
T3ES2002	Systemtheorie	2. Studienjahr	5
T3ES2003	Regelungstechnik	2. Studienjahr	5
T3ES2004	Mikrocomputertechnik	2. Studienjahr	5
T3ES2005	Elektronik	2. Studienjahr	5
T3_3101	Studienarbeit	3. Studienjahr	10
T3_1000	Praxisprojekt I	1. Studienjahr	20
T3_2000	Praxisprojekt II	2. Studienjahr	20
T3_3000	Praxisprojekt III	3. Studienjahr	8
T3ES2101	Echtzeitsysteme und sicherheitskritische Anwendungen	3. Studienjahr	5
T3ES2102	Bussysteme in der Luft- und Raumfahrt	2. Studienjahr	5
T3ES2103	Aerospace Software Engineering I	2. Studienjahr	9
T3ES2104	Vertiefung Programmieren	2. Studienjahr	5
T3ES3101	Elektrische und elektronische Systeme	3. Studienjahr	5
T3ES3102	Aerospace Software Engineering II	3. Studienjahr	5
T3ES3103	Modellbasierter Systementwurf in der Luft- und Raumfahrttechnik	3. Studienjahr	5
T3ES3104	Hardware-/Software Codesign	3. Studienjahr	5
T3ES9000	FPGA und VHDL-Programmierung	2. Studienjahr	5
T3ES9003	Sensorik und Aktorik	3. Studienjahr	5
T3ES9004	Signalverarbeitung	3. Studienjahr	5
T3ES9005	Software-/Hardware-Projekt	3. Studienjahr	4
T3ES9010	Systems Engineering in der Luft- und Raumfahrt	3. Studienjahr	5
T3ES9011	Funknetze und Car2X	3. Studienjahr	5

Stand vom 01.10.2025 Curriculum // Seite 2

	FESTGELEGTER MODULBEREICH		
NUMMER	MODULBEZEICHNUNG	VERORTUNG	ECTS
T3_3300	Bachelorarbeit	-	12

Stand vom 01.10.2025 Curriculum // Seite 3

Mathematik I (T3ES1001)

Mathematics I

FORMALE ANGABEN ZUM MODUL

MODULNUMMERVERORTUNG IM STUDIENVERLAUFMODULDAUER (SEMESTER)MODULVERANTWORTUNGSPRACHET3ES10011. Studienjahr1Prof. Dr. Gerhard GötzDeutsch

EINGESETZTE LEHRFORMEN

 LEHRFORMEN
 LEHRMETHODEN

 Vorlesung
 Lehrvortrag, Diskussion, Gruppenarbeit

EINGESETZTE PRÜFUNGSFORMEN

PRÜFUNGSLEISTUNGPRÜFUNGSUMFANG (IN MINUTEN)BENOTUNGKlausur120ja

WORKLOAD UND ECTS-LEISTUNGSPUNKTE

WORKLOAD INSGESAMT (IN H)DAVON PRÄSENZZEIT (IN H)DAVON SELBSTSTUDIUM (IN H)ECTS-LEISTUNGSPUNKTE15072785

QUALIFIKATIONSZIELE UND KOMPETENZEN

FACHKOMPETENZ

Die Studierenden sind in der Lage, mit den in den Modulinhalten genannten mathematischen Theoremen und Modelle zielgerichtete Berechnungen anzustellen.

METHODENKOMPETENZ

Die Studierenden kennen mit Abschluss des Moduls die in den Modulinhalten aufgeführten wissenschaftlichen Methoden und sind in der Lage, unter Einsatz dieser Methoden relevante Lösungen zu erarbeiten und unter Berücksichtigung wissenschaftlicher Erkenntnisse den Fachstandards entsprechend zu interpretieren.

PERSONALE UND SOZIALE KOMPETENZ

_

ÜBERGREIFENDE HANDLUNGSKOMPETENZ

-

LERNEINHEITEN UND INHALTE

LEHR- UND LERNEINHEITENPRÄSENZZEITSELBSTSTUDIUMMathematik 17278

Lineare Algebra

- Mathematische Grundbegriffe
- Vektorrechnung
- Matrizen
- Komplexe Zahlen

Analysis I

- Funktionen mit einer Veränderlichen
- Standardfunktionen und deren Umkehrfunktionen

BESONDERHEITEN

Stand vom 01.10.2025 T3ES1001 // Seite 4

LITERATUR

- Papula, Lothar: Mathematik für Ingenieure und Naturwissenschaftler, Bände 1 u. 2, Vieweg Verlag
- Papula, Lothar: Mathematische Formelsammlung für Ingenieure und Naturwissenschaftler, Vieweg Verlag
- Neumayer; Kaup: Mathematik für Ingenieure, Bände 1 bis 3, Shaker Verlag
- Leupold: Mathematik, ein Studienbuch für Ingenieure, Bände 1 bis 3, Hanser Verlag
- Preuss; Wenisch; Schmidt: Lehr- und Übungsbuch Mathematik, Bände 1 bis 3, Hanser Fachbuchverlag
- Fetzer; Fränkel: Mathematik, Lehrbuch für İngenieurwissenschaftliche Studiengänge, Bände 1 und 2, Springer-Verlag
- Engeln-Müllges, Gisela; Schäfer, Wolfgang; Trippler, Gisela: Kompaktkurs Ingenieurmathematik mit Wahrscheinlichkeitsrechnung und Statistik, Fachbuchverlag Leipzig - Rießinger, Thomas: Mathematik für Ingenieure, Springer Verlag - Stry, Yvonne; Schwenkert, Rainer: Mathematik kompakt für Ingenieure und Informatiker, Springer Verlag
- Bronstein;Semendjajew;Musiol;Mühlig: Taschenbuch der Mathematik, Harri Deutsch Verlag

Stand vom 01.10.2025 T3ES1001 // Seite 5

Elektrotechnik I (T3ES1002)

Electrical Engineering I

FORMALE ANGABEN ZUM MODUL

MODULNUMMER	VERORTUNG IM STUDIENVERLAUF	MODULDAUER (SEMESTER)	MODULVERANTWORTUNG	SPRACHE
T3ES1002	2. Studienjahr	1	Prof. Dr. Karl Trottler	Deutsch/Englisch

EINGESETZTE LEHRFORMEN

LEHRFORMEN	LEHRMETHODEN
Vorlesung, Übung	Lehrvortrag, Diskussion

EINGESETZTE PRÜFUNGSFORMEN

PRÜFUNGSLEISTUNG	PRÜFUNGSUMFANG (IN MINUTEN)	BENOTUNG
Klausur	120	ja

WORKLOAD UND ECTS-LEISTUNGSPUNKTE

WORKLOAD INSGESAMT (IN H)	DAVON PRÄSENZZEIT (IN H)	DAVON SELBSTSTUDIUM (IN H)	ECTS-LEISTUNGSPUNKTE
150	72	78	5

QUALIFIKATIONSZIELE UND KOMPETENZEN

FACHKOMPETENZ

Die Studierenden können nach Abschluss des Moduls

- mathematische und physikalische Methoden nutzen und diese auf Problemstellungen in der Luft- und Raumfahrttechnik auf den Gebieten der Elektrotechnik anwenden
- das Fachwissen der Luft- und Raumfahrttechnik auf die Analyse elektrotechnischer Grundschaltungen anwenden, um technische Lösungen zu entwickeln und zu implementieren, deren Auswirkungen zu erkennen und zu bewerten

METHODENKOMPETENZ

Die Studierenden können nach Abschluss des Moduls

- die Grenzen und Unsicherheiten des eigenen Wissens und der Fähigkeiten erkennen
- technische Literatur, Kongresse und andere Informationsquellen effektiv nutzen, um lebenslang ihr Wissen und ihre Kompetenzen auf dem Gebiet der elektrotechnischen Grundlagen zu aktualisieren
- fachübergreifendes Wissen unter Beachtung ökonomischer Auswirkungen einbringen

PERSONALE UND SOZIALE KOMPETENZ

ÜBERGREIFENDE HANDLUNGSKOMPETENZ

Die Studierenden können nach Abschluss des Moduls

- Projektaufgaben bzw. Projekte zur Berechnung und Analyse von Gleichstromnetzwerken übernehmen und durchführen
- das ingenieurmäßige Vorgehen insbesondere auch unter Nutzung informationstechnischer Werkzeuge und Simulationen anwenden
- elektrotechnische Aufgaben beschreiben, analysieren und verschiedene Lösungen hierfür selbständig entwickeln und die Verantwortung dafür übernehmen

LERNEINHEITEN UND INHALTE

LERNE LITTLE OND THEFALLE		
LEHR- UND LERNEINHEITEN	PRÄSENZZEIT	SELBSTSTUDIUM
Elektrotechnik 1	72	78

Stand vom 01.10.2025 T3ES1002 // Seite 6

LEHR- UND LERNEINHEITEN **PRÄSENZZEIT SELBSTSTUDIUM**

Elektrotechnik 1:

- Ohmsches Gesetz und Kirchhoffsche Regeln
- Strom- und Spannungsteilerregel
- Berechnung von Netzwerken mit einer Strom- bzw. spannungsquelle
- Formale Berechnungsverfahren (Knotenpotential- und Maschenstromanalyse) bei Gleichstromnetzen
- Spule, Kondensator und Ausgleichsvorgänge Komplexe Wechselstromrechnung

BESONDERHEITEN

Der Lehrinhalt wird durch praktische Beispiele im Labor veranschaulicht.

VORAUSSETZUNGEN

LITERATUR

- Führer, A.; Heidemann, K.; Nerreter, W.: Grundgebiete der Elektrotechnik, Bd. 1 und 2. Carl Hanser Verlag München
- Clausert, H.; Wiesemann, G.: Grundgebiete der Elektrotechnik, Bd. 1: Gleichstromnetze, Operationsverstärkerschaltungen, elektrische und magnetische Felder. Oldenbourg Verlag München, Wien
- Hagmann, G.: Grundlagen der Elektrotechnik. Aula Verlag Graz
- Hagmann, G.: Aufgabensammlung zu den Grundlagen der Elektrotechnik. Aula Verlag Graz

Stand vom 01.10.2025 T3ES1002 // Seite 7

Technische Informatik I (T3ES1003)

Computer Engineering I

FORMALE ANGABEN ZUM MODUL

MODULNUMMERVERORTUNG IM STUDIENVERLAUFMODULDAUER (SEMESTER)MODULVERANTWORTUNGSPRACHET3ES10031. Studienjahr1Prof. Dr.-Ing. Thomas NeidlingerDeutsch

EINGESETZTE LEHRFORMEN

LEHRFORMENLEHRMETHODENVorlesung, ÜbungLehrvortrag, Diskussion

EINGESETZTE PRÜFUNGSFORMEN

PRÜFUNGSLEISTUNGPRÜFUNGSUMFANG (IN MINUTEN)BENOTUNGKlausur120ja

WORKLOAD UND ECTS-LEISTUNGSPUNKTE

WORKLOAD INSGESAMT (IN H)DAVON PRÄSENZZEIT (IN H)DAVON SELBSTSTUDIUM (IN H)ECTS-LEISTUNGSPUNKTE150481025

QUALIFIKATIONSZIELE UND KOMPETENZEN

FACHKOMPETENZ

Die Studierenden bekommen ein grundlegendes Basiswissen vermittelt über die Arbeitsweise digitaler Schaltelemente und den Aufbau digitaler Schaltkreise. Diese Kenntnisse bilden die Grundlage zum Verständnis von Rechnerbaugruppen.

METHODENKOMPETENZ

Die Studierenden sind mit Abschluss des Moduls in der Lage, für weitgehend standardisierte Anwendungsfälle in der Praxis die angemessene Methode auszuwählen und anzuwenden.

PERSONALE UND SOZIALE KOMPETENZ

-

ÜBERGREIFENDE HANDLUNGSKOMPETENZ

_

LERNEINHEITEN UND INHALTE

LEHR- UND LERNEINHEITENPRÄSENZZEITSELBSTSTUDIUMDigitaltechnik48102

- Zahlensysteme und Codes
- Logische Verknüpfungen und ihre Darstellung
- Schaltalgebra
- Schaltnetze
- Schaltwerke
- Schaltkreistechnik und Interfacing
- Halbleiterspeicher

BESONDERHEITEN

-

VORAUSSETZUNGEN

-

Stand vom 01.10.2025 T3ES1003 // Seite 8

LITERATUR

- Elektronik 4: Digitaltechnik, K. Beuth, Vogel Fachbuch Digitaltechnik, K. Fricke, Springer Vieweg Digitaltechnik, R. Woitowitz, Springer Grundlagen der Digitaltechnik, G. W. Wöstenkühler, Hanser

Stand vom 01.10.2025 T3ES1003 // Seite 9

ja

Physik (T3ES1004)

Physics

FORMALE ANGABEN ZUM MODUL

MODULNUMMERVERORTUNG IM STUDIENVERLAUFMODULDAUER (SEMESTER)MODULVERANTWORTUNGSPRACHET3ES10041. Studienjahr1Prof. Dr. Karl TrottlerDeutsch

EINGESETZTE LEHRFORMEN

LEHRFORMEN LEHRMETHODEN

Vorlesung Lehrvortrag, Diskussion, Gruppenarbeit

EINGESETZTE PRÜFUNGSFORMEN

PRÜFUNGSLEISTUNG PRÜFUNGSUMFANG (IN MINUTEN) BENOTUNG

Klausur 120

WORKLOAD UND ECTS-LEISTUNGSPUNKTE

WORKLOAD INSGESAMT (IN H)

DAVON PRÄSENZZEIT (IN H)

DAVON SELBSTSTUDIUM (IN H)

ECTS-LEISTUNGSPUNKTE

150

48

102

5

QUALIFIKATIONSZIELE UND KOMPETENZEN

FACHKOMPETENZ

Die Studierenden verstehen die physikalischen Grundprinzipien der Optik und können diese im Rahmen von zugehörigen Bauelementen bewerten. Sie verstehen die Grundlagen der Strömungslehre und der Technischen Mechanik und können diese auf einfache technische Systeme anwenden. Sie verstehen die Grundprinzipien der Thermodynamik und können diese zur rechnerischen Bewertung von technischen Problemstellungen heranziehen und ggf. anwenden.

METHODENKOMPETENZ

Die Studierenden sind mit Abschluss des Moduls in der Lage, für weitgehend standardisierte Anwendungsfälle in der Praxis die angemessene Methode auszuwählen und anzuwenden. Sie kennen die Stärken und Schwächen der Methode in ihrem beruflichen Anwendungsfeld und können diese in konkreten Handlungssituationen gegeneinander abwägen.

PERSONALE UND SOZIALE KOMPETENZ

ÜBERGREIFENDE HANDLUNGSKOMPETENZ

Die Studierenden sind in der Lage, sich im Verlaufe ihrer beruflichen Tätigkeit in weiterführende Problemstellungen der Thermodynamik, Technischen Mechanik, Optik und Strömungslehre selbstständig einzuarbeiten.

LERNEINHEITEN UND INHALTE

LEHR- UND LERNEINHEITEN	PRÄSENZZEIT	SELBSTSTUDIUM
Physik	48	102

Stand vom 01.10.2025 T3ES1004 // Seite 10

LEHR- UND LERNEINHEITEN PRÄSENZZEIT SELBSTSTUDIUM

Grundzüge der Thermodynamik

- Grundbegriffe, Hauptsätze der Thermodynamik
- Zustandsgleichungen idealer Gase, Energiebilanzen
- Formulierungen des 2. Hauptsatzes, Entropie
- Kreisprozesse und Anwendungsbeispiele
- Einführung in den Wärmetransport

Grundzüge der Technischen Mechanik

- Grundbegriffe der Technischen Mechanik
- Einführung in die Statik
- Einführung in die Dynamik
- Einführung in die Festigkeitslehre

Grundbegriffe der Optik (kann optional angeboten werden)

- Einführung in die geometrische Optik
- Einführung in die Wellenoptik und Schwingungen

Grundbegriffe der Strömungslehre (kann optional angeboten werden!)

- Einführung in die grundlegenden Begriffe (Druck, Viskosität) und Einheiten
- Kurze Einführung in die Hydrostatik
- Einführung in die Kontinuitätsströmungen
- Energetische Strömungsansätze (Bernoulli) und ihre Beschränkungen

BESONDERHEITEN

Dieses Modul beinhaltet zusätzlich bis zu 12h begleitetes Lernen in Form von Übungsstunden.

VORAUSSETZUNGEN

LITERATUR

- Harten, Physik eine Einführung für Ingenieure, Springer
- Böge, Physik für technische Berufe, Vieweg-Teubner
- Schröder, Treiber, Technische Optik, Kamprath
- Heidemann, Kompaktkurs Thermodynamik, Wiley
- Langheinecke, Jani, Thermodynamik für Ingenieure, Vieweg-Teubner
- Cerbe, Wilhelm, Technische Thermodynamik, Hanser (Übungsbuch auch erhältlich)
- Piltz, Becker, Einführung technische Strömungslehre, Teubner
- Böswirth, Technische Strömungslehre, Springer
- Gross, Hauger, Technische Mechanik Bd. 4: Hydromechanik, Springer

Stand vom 01.10.2025 T3ES1004 // Seite 11

Mathematik II (T3ES1005)

Mathematics II

FORMALE ANGABEN ZUM MODUL

MODULNUMMERVERORTUNG IM STUDIENVERLAUFMODULDAUER (SEMESTER)MODULVERANTWORTUNGSPRACHET3ES10051. Studienjahr1Prof. Dr. Gerhard GötzDeutsch

EINGESETZTE LEHRFORMEN

LEHRFORMENLEHRMETHODENVorlesungLehrvortrag, Diskussion

EINGESETZTE PRÜFUNGSFORMEN

PRÜFUNGSLEISTUNGPRÜFUNGSUMFANG (IN MINUTEN)BENOTUNGKlausur120ja

WORKLOAD UND ECTS-LEISTUNGSPUNKTE

WORKLOAD INSGESAMT (IN H)
DAVON PRÄSENZZEIT (IN H)
DAVON SELBSTSTUDIUM (IN H)
ECTS-LEISTUNGSPUNKTE
78
5

QUALIFIKATIONSZIELE UND KOMPETENZEN

FACHKOMPETENZ

Die Studierenden sind in der Lage, mit den in den Modulinhalten genannten mathematischen Theoremen und Modellen zielgerichtete Berechnungen anzustellen.

METHODENKOMPETENZ

Die Studierenden kennen mit Abschluss des Moduls die in den Modulinhalten aufgeführten wissenschaftlichen Methoden und sind in der Lage, unter Einsatz dieser Methoden relevante Informationen zu sammeln und unter Berücksichtigung wissenschaftlicher Erkenntnisse den Fachstandards entsprechend zu interpretieren.

PERSONALE UND SOZIALE KOMPETENZ

_

ÜBERGREIFENDE HANDLUNGSKOMPETENZ

-

LERNEINHEITEN UND INHALTE

LEHR- UND LERNEINHEITEN	PRÄSENZZEIT	SELBSTSTUDIUM
Mathematik 2	72	78

Analysis I (Fortsetzung)

- Folgen und Reihen, Konvergenz, Grenzwerte
- Differenzialrechnung einer Variablen
- Integralrechnung einer Variablen
- Gewöhnliche Differenzialgleichungen
- Numerische Verfahren der Integralrechnung und zur Lösung von Differenzialgleichungen

BESONDERHEITEN

-

VORAUSSETZUNGEN

-

Stand vom 01.10.2025 T3ES1005 // Seite 12

LITERATUR

- Papula, Lothar: Mathematik für Ingenieure und Naturwissenschaftler, Bände 1 u. 2, Vieweg Verlag
- Papula, Lothar: Mathematische Formelsammlung für Ingenieure und Naturwissenschaftler, Vieweg Verlag
- Neumayer; Kaup: Mathematik für Ingenieure, Bände 1 bis 3, Shaker Verlag
- Leupold: Mathematik, ein Studienbuch für Ingenieure, Bände 1 bis 3, Hanser Verlag
- Preuss; Wenisch; Schmidt: Lehr- und Übungsbuch Mathematik, Bände 1 bis 3, Hanser Fachbuchverlag
 Fetzer; Fränkel: Mathematik, Lehrbuch für ingenieurwissenschaftliche Studiengänge, Bände 1 und 2, Springer-Verlag
- Engeln-Müllges, Gisela; Schäfer, Wolfgang; Trippler, Gisela: Kompaktkurs Ingenieurmathematik mit Wahrscheinlichkeitsrechnung und Statistik, Fachbuchverlag
- Rießinger, Thomas: Mathematik für Ingenieure, Springer Verlag Stry, Yvonne; Schwenkert, Rainer: Mathematik kompakt für Ingenieure und Informatiker, Springer Verlag
- Bronstein; Semendjajew; Musiol; Mühlig: Taschenbuch der Mathematik, Harri Deutsch Verlag

Stand vom 01.10.2025 T3ES1005 // Seite 13

Elektrotechnik II (T3ES1006)

Electrical Engineering II

FORMALE ANGABEN ZUM MODUL

MODULNUMMER	VERORTUNG IM STUDIENVERLAUF	MODULDAUER (SEMESTER)	MODULVERANTWORTUNG	SPRACHE
T3ES1006	1. Studienjahr	1	Prof. Dr. Karl Trottler	Deutsch/Englisch

EINGESETZTE LEHRFORMEN

LEHRFORMEN	LEHRMETHODEN
Labor, Vorlesung, Übung	Gruppenarbeit, Lehrvortrag, Diskussion

EINGESETZTE PRÜFUNGSFORMEN

PRÜFUNGSLEISTUNG	PRÜFUNGSUMFANG (IN MINUTEN)	BENOTUNG
Klausur	120	ja

WORKLOAD UND ECTS-LEISTUNGSPUNKTE

WORKLOAD INSGESAMT (IN H)	DAVON PRÄSENZZEIT (IN H)	DAVON SELBSTSTUDIUM (IN H)	ECTS-LEISTUNGSPUNKTE
150	72	78	5

QUALIFIKATIONSZIELE UND KOMPETENZEN

FACHKOMPETENZ

Die Studierenden können nach Abschluss des Moduls

- mathematische und physikalische Methoden nutzen und diese auf Problemstellungen in der Luft- und Raumfahrttechnik auf den Gebieten der Elektrotechnik anwenden
- das Fachwissen der Luft- und Raumfahrttechnik auf die Analyse elektrotechnischer Grundschaltungen anwenden, um technische Lösungen zu entwickeln und zu implementieren, deren Auswirkungen zu erkennen und zu bewerten

METHODENKOMPETENZ

Die Studierenden können nach Abschluss des Moduls

- die Grenzen und Unsicherheiten des eigenen Wissens und der Fähigkeiten erkennen
- technische Literatur, Kongresse und andere Informationsquellen effektiv nutzen, um lebenslang ihr Wissen und ihre Kompetenzen auf dem Gebiet der elektrotechnischen Grundlagen zu aktualisieren
- fachübergreifendes Wissen unter Beachtung ökonomischer Auswirkungen einbringen

PERSONALE UND SOZIALE KOMPETENZ

ÜBERGREIFENDE HANDLUNGSKOMPETENZ

Die Studierenden können nach Abschluss des Moduls

- Projektaufgaben bzw. Projekte zur Berechnung und Analyse von Gleichstromnetzwerken übernehmen und durchführen
- das ingenieurmäßige Vorgehen insbesondere auch unter Nutzung informationstechnischer Werkzeuge und Simulationen anwenden
- elektrotechnische Aufgaben beschreiben, analysieren und verschiedene Lösungen hierfür selbständig entwickeln und die Verantwortung dafür übernehmen

LERNEINHEITEN UND INHALTE

LEHR- UND LERNEINHEITEN	PRÄSENZZEIT	SELBSTSTUDIUM
Elektrotechnik 2	48	42

Elektrotechnik 2:

- Leistung im Wechselstromkreis
- Berechnung von Netzwerken mit einer Quelle
- Formale Berechnungsverfahren (Knotenpotential- und Maschenstromanalyse) bei

Wechselstromkreisen

- Transformatoren
- Drehstromsysteme

Stand vom 01.10,2025 T3ES1006 // Seite 14

LERNEINHEITEN UND INHALTE

LEHR- UND LERNEINHEITEN	PRÄSENZZEIT	SELBSTSTUDIUM
Labor Elektrotechnik	24	36

Labor Elektrotechnik

- Messung mit Oszilloskop und Multimeter
- Diodenkennlinie, Gleichrichterschaltungen
- RC- und RL-Glieder im geschalteten Gleichstromkreis
- Transistor-Grundschaltungen
- Schaltungen mit Operationsverstärkern

BESONDERHEITEN

Der Lehrinhalt wird durch praktische Beispiele im Labor veranschaulicht.

VORAUSSETZUNGEN

LITERATUR

- Führer, A.; Heidemann, K.; Nerreter, W.: Grundgebiete der Elektrotechnik, Bd. 1 und 2. Carl Hanser Verlag München
- Clausert, H.; Wiesemann, G.: Grundgebiete der Elektrotechnik, Bd. 1: Gleichstromnetze, Operationsverstärkerschaltungen, elektrische und magnetische Felder. Oldenbourg Verlag München, Wien
- Hagmann, G.: Grundlagen der Elektrotechnik. Aula Verlag Graz
- Hagmann, G.: Aufgabensammlung zu den Grundlagen der Elektrotechnik. Aula Verlag Graz

Stand vom 01.10.2025 T3ES1006 // Seite 15

Technische Informatik II (T3ES1007)

Computer Engineering II

FORMALE ANGABEN ZUM MODUL

MODULNUMMER	VERORTUNG IM STUDIENVERLAUF	MODULDAUER (SEMESTER)	MODULVERANTWORTUNG	SPRACHE
T3ES1007	1. Studienjahr	2	DrIng. Alfred Strey	Deutsch

EINGESETZTE LEHRFORMEN

LEHRFORMEN	LEHRMETHODEN
Vorlesung, Übung	Lehrvortrag, Diskussion

EINGESETZTE PRÜFUNGSFORMEN

PRÜFUNGSLEISTUNG	PRÜFUNGSUMFANG (IN MINUTEN)	BENOTUNG
Klausur	120	ja

WORKLOAD UND ECTS-LEISTUNGSPUNKTE

WORKLOAD INSGESAMT (IN H)	DAVON PRÄSENZZEIT (IN H)	DAVON SELBSTSTUDIUM (IN H)	ECTS-LEISTUNGSPUNKTE
240	96	144	8

QUALIFIKATIONSZIELE UND KOMPETENZEN

FACHKOMPETENZ

Die Studierenden gewinnen ein grundlegendes Verständnis von den Aufgaben, der Funktionsweise und der Architektur moderner Rechnersysteme. In einem Übungsteil wird ihnen die systemnahe Programmierung anhand eines Beispielprozessors vermittelt. Abgerundet wird dieses hardwarenahe Wissen durch die Unit "Betriebssysteme", welche die Arbeitsweise von Rechenanlagen aus Sicht der Systemsoftware beleuchtet. Die Studierenden sind somit in der Lage, das Zusammenwirken von Hard- und Software in einem Rechner im Detail zu verstehen.

METHODENKOMPETENZ

Die Studierenden kennen mit Abschluss des Moduls die wissenschaftlichen Methoden aus den Bereichen der Rechnerarchitektur und der Betriebssysteme. Sie sind in der Lage, unter Einsatz dieser Methoden die Hard- und Systemsoftware moderner Rechnersysteme zu interpretieren und zu bewerten. Ferner können sie einfache maschinennahe Programme entwerfen und analysieren.

PERSONALE UND SOZIALE KOMPETENZ

ÜBERGREIFENDE HANDLUNGSKOMPETENZ

Die Studierenden sind in der Lage, die Leistungsfähigkeit eines Rechnersystems für eine Anwendung aus der Praxis zu beurteilen. Ferner ist es Ihnen möglich, die rasche Weiterentwicklung auf dem Gebiet der Rechnerhardware mitzuverfolgen und zu verstehen, welche Vor- bzw. Nachteile die Enführung einer neuen IT-Technologie hat. Auch sind sie in der Lage zu verstehen, wie die neue Technologie arbeitet bzw. sie können sich das dazu notwendige neue Wissen jederzeit selbst erarbeiten.

LERNEINHEITEN UND INHALTE

LEHR- UND LERNEINHEITEN	PRÄSENZZEIT	SELBSTSTUDIUM
Rechnerarchitekturen 1	36	54

Stand vom 01.10.2025 T3ES1007 // Seite 16

LEHR- UND LERNEINHEITEN PRÄSENZZEIT SELBSTSTUDIUM

- Einführung
- Historie (mechanisch, analog, digital)
- Architektur nach von Neumann
- Systemkomponenten im Überblick
- Grobstruktur der Prozessorinterna
- Rechenwerk
- Addition: Halbaddierer, Volladdierer, Wortaddierer, Bedeutung des Carrybits, Carry Ripple und

Саггу

Look-Ahead Addierer

- Subtraktion: Transformation aus Addition, Bedeutung des Carrybits
- Multiplikation: Parallel- und Seriell-Multiplizierer
- Division: Konzept
- Arithmetische-logische Einheit (ALU)
- Datenpfad: ALU mit Rechenregister und Ergebnisflags (CCR, Statusbits)
- Steuerwerk: Aufbau, Komponenten und Funktionswiese
- Befehlsdekodierung und Mikroprogrammierung
- Struktur von Prozessorbefehlssätzen
- Klassifizierung und Anwendung von Prozessorregistern (Daten-, Adress- und Status-Register)
- Leistungsbewertung und Möglichkeiten der Leistungssteigerung (z.B. Pipelining)
- Businterface: Daten-, Adress- und Steuerleitungen
- Buskomponenten
- Buszyklen: Lese- und Schreib-Zugriff, Handshaking (insbesondere Waitstates)
- Busarbitrierung und Busmultiplexing
- Fundamentalarchitekturen
- Konzept Systemaufbau und Komponenten: CPU, Hauptspeicher, I/O: Diskussion Anbindung externer

Geräte (Grafik, Tastatur, Festplatten, DVD, ...)

- Halbleiterspeicher
- Wahlfreie Speicher: Aufbau, Funktion, Adressdekodierung, interne Matrixorganisation
- RAM: statisch, dynamisch, aktuelle Entwicklungen
- ROM: Maske, Fuse, EPROM, EEPROM, FEPROM, aktuelle Entwicklungen
- Systemaufbau
- Aufteilung des Adressierungsraumes
- Entwerfen von Speicherschemata und der zugehörigen Adress-Dekodierlogik
- Vitale System-Komponenten: Stromversorgung, Rücksetzlogik, Systemtakt, Chipsatz
- Schaltkreise: Interrupt- und DMA-Controller, Zeitgeber- und Uhrenbausteine
- Schnittstellen: Parallel und seriell, Standards (RS232, USB, ...)

Betriebssysteme 36 54

- Einführung
- Historischer Überblick
- Betriebssystemkonzepte
- Prozesse und Threads
- Einführung in das Konzept der Prozesse
- Prozesskommunikation
- Übungen zur Prozesskommunikation: Klassische Probleme
- Scheduling von Prozessen
- Threads
- Speicherverwaltung
- Einfache Speicherverwaltung ohne Swapping und Paging
- Swapping
- Virtueller Speicher
- Segmentierter Speicher
- Dateisysteme
- Dateien und Verzeichnisse
- Implementierung von Dateisystemen
- Sicherheit von Dateisystemen
- Schutzmechanismen
- Neue Entwicklungen: Log-basierte Dateisysteme
- Ein- und Ausgabe: Grundlegende Eigenschaften der E/A- Festplatten
- Anwendung der Grundlagen auf reale Betriebssysteme: UNIX/Linux und Windows (NT, 2000,

XP, Windows7)

Stand vom 01.10,2025 T3ES1007 // Seite 17

LERNEINHEITEN UND INHALTE

LEHR- UND LERNEINHEITEN	PRÄSENZZEIT	SELBSTSTUDIUM
Systemnahe Programmierung 1	24	36

- Programmiermodell für die Maschinenprogrammierung: Befehlssatz, Registersatz und Adressierungsarten
- Umsetzung von Kontrollstrukturen, Auswertung von Ergebnisflags
- Unterprogrammaufruf mit Hilfe des Stacks
- Konventionen
- Konzept und Umsetzung von HW- und SW-Interrupts: Diskussion von HW- und

SW-Mechanismen und Automatismen, Interrupt-Vektortabelle, Spezialfall: Bootvorgang

- Diskussion User- und Supervisor-Modus von Prozessoren
- Praktische Übungen
- Einführung eines Beispielprozessors
- Aufbau des Übungsrechners
- Einarbeitung und Softwareentwicklungs- und Testumgebung für den Übungsrechner
- Selbständige Entwicklung von Maschinenprogrammen mit steigendem Schwierigkeits- und

Strukturierungsgrad

BESONDERHEITEN

-

VORAUSSETZUNGEN

-

LITERATUR

- D. A. Patterson, J. L. Hennessy: Rechnerorganisation und Rechnerentwurf: Die Hardware/Software-Schnittstelle, Oldenbourg Wissenschaftsverlag
- H. Müller, L. Walz: Elektronik 5: Mikroprozessortechnik, Vogel Fachbuch
- A. S. Tanenbaum: Computerarchitektur, Strukturen Konzepte Grundlagen, Pearson Studium
- W. Oberschelp, G. Vossen: Rechneraufbau und Rechnerstrukturen, Oldenbourg Wissenschaftsverlag
- T. Flik: Mikroprozessortechnik und Rechnerstrukturen, Springer
- W. Schiffmann, R. Schmitz: Technische Informatik 2, Springer
- A. Fertig: Rechnerarchitektur, Books on Demand
- Dieterich, E.-W.: Assembler: Grundlagen der PC-Programmierung, Oldenbourg Wissenschaftsverlag
- Kusswurm, D.: Modern x86 Assembly Language Programming, APress
- Patterson, D. A./ Hennessy, J. L.: Computer Organization and Design, Morgan Kaufmann Series in Computer Architecture
- Tanenbaum A.S.: Moderne Betriebssysteme, Pearson Studium
- Mandl P.: Grundkurs Betriebssysteme, Springer Vieweg
- Glatz E.: Betriebssysteme: Grundlagen, Konzepte, Systemprogrammierung, dpunkt Verlag
- Stallings W.: Operating Systems: Internals and Design Principles, Prentice Hall

Stand vom 01.10.2025 T3ES1007 // Seite 18

Programmieren (T3ES1008)

Programming

FORMALE ANGABEN ZUM MODUL

MODULNUMMERVERORTUNG IM STUDIENVERLAUFMODULDAUER (SEMESTER)MODULVERANTWORTUNGSPRACHET3ES10081. Studienjahr2Dr. -Ing. Alfred StreyDeutsch

EINGESETZTE LEHRFORMEN

 LEHRFORMEN
 LEHRMETHODEN

 Vorlesung, Übung
 Lehrvortrag, Diskussion, Gruppenarbeit

EINGESETZTE PRÜFUNGSFORMEN

PRÜFUNGSLEISTUNGPRÜFUNGSUMFANG (IN MINUTEN)BENOTUNGProgrammentwurfSiehe Pruefungsordnungja

WORKLOAD UND ECTS-LEISTUNGSPUNKTE

WORKLOAD INSGESAMT (IN H)DAVON PRÄSENZZEIT (IN H)DAVON SELBSTSTUDIUM (IN H)ECTS-LEISTUNGSPUNKTE270961749

QUALIFIKATIONSZIELE UND KOMPETENZEN

FACHKOMPETENZ

Die Studierenden kennen die Grundelemente der prozeduralen und der objektorientierten Programmierung. Sie können die Syntax und Semantik dieser Sprachen und können ein Programmdesign selbstständig entwerfen, codieren und ihr Programm auf Funktionsfähigkeit testen. Sie kennen verschiedene Strukturierungsmöglichkeiten und Datenstrukturen und können diese exemplarisch anwenden.

METHODENKOMPETENZ

Die Studierenden sind in der Lage, einfache Programme selbständig zu erstellen und auf Funktionsfähigkeit zu testen, sowie einfache Entwurfsmuster in ihren Programmentwürfen einzusetzen. Die Studierenden können eine Entwicklungsumgebung verwenden um Programme zu erstellen, zu strukturieren und auf Fehler hin zu untersuchen (inkl. Debugger).

PERSONALE UND SOZIALE KOMPETENZ

Die Studierenden können ihren Programmentwurf sowie dessen Codierung im Team erläutern und begründen. Sie können existierenden Code analysieren und beurteilen. Sie können sich selbstständig in Entwicklungsumgebungen einarbeiten und diese zur Programmierung und Fehlerbehebung einsetzen.

ÜBERGREIFENDE HANDLUNGSKOMPETENZ

Die Studierenden können eigenständig Problemstellungen der Praxis analysieren und zu deren Lösung Programme entwerfen, programmieren und testen.

LERNEINHEITEN UND INHALTE

LEHR- UND LERNEINHEITEN	PRÄSENZZEIT	SELBSTSTUDIUM
Programmieren	96	174

Stand vom 01.10.2025 T3ES1008 // Seite 19

LEHR- UND LERNEINHEITEN PRÄSENZZEIT SELBSTSTUDIUM

Kenntnisse in prozeduraler Programmierung:

- Algorithmenbeschreibung
- Datentypen
- E/A-Operationen und Dateiverarbeitung
- Operatoren
- Kontrollstrukturen
- Funktionen
- Stringverarbeitung
- Strukturierte Datentypen
- dynamische Datentypen
- Zeiger
- Speicherverwaltung

Kenntnisse in objektorientierter Programmierung:

- objektorientierter Programmentwurf
- Idee und Merkmale der objektorientierten Programmierung
- Klassenkonzept
- Operatoren
- Überladen von Operatoren und Methoden
- Vererbung und Überschreiben von Operatoren
- Polymorphismus
- Templates oder Generics
- Klassenbibliotheken
- Speicherverwaltung, Grundverständnis Garbage Collection

BESONDERHEITEN

Dieses Modul beinhaltet zusätzlich bis zu 24h begleitetes Selbststudium in Form von Übungsstunden, Laboren oder Projekten. Hierbei werden Übungsaufgaben und/oder vertiefende Aufgabenstellungen von den Studierenden bearbeitet.

VORAUSSETZUNGEN

LITERATUR

- B.W. Kerninghan, D.M Richie: Programmieren in C, Hanser
- R. Klima, S. Selberherr: Programmieren in C, Springer
- Prinz, Crawford: C in a Nutshell, O'Reilly
- Günster: Einführung in Java, Rheinwerk Computing
- Habelitz: Programmieren lernen mit Java, Rheinwerk Computing
- Ullenboom: Java ist auch eine Insel, Rheinwerk Computing
- McConnell: Code Complete: A Practical Handbook of Software Construction, Microsoft Press

Stand vom 01.10.2025 T3ES1008 // Seite 20

Studienbereich Technik // School of Engineering Embedded Systems // Embedded Systems Aerospace Engineering // Aerospace Engineering FRIEDRICHSHAFEN

Mathematik III (T3ES2001)

Mathematics III

FORMALE ANGABEN ZUM MODUL

MODULNUMMERVERORTUNG IM STUDIENVERLAUFMODULDAUER (SEMESTER)MODULVERANTWORTUNGSPRACHET3ES20012. Studienjahr1Prof. Dr. Karl TrottlerDeutsch

EINGESETZTE LEHRFORMEN

LEHRFORMENLEHRMETHODENVorlesung, Vorlesung, ÜbungLehrvortrag, Diskussion, Gruppenarbeit

EINGESETZTE PRÜFUNGSFORMEN

PRÜFUNGSLEISTUNGPRÜFUNGSUMFANG (IN MINUTEN)BENOTUNGKlausur120ja

WORKLOAD UND ECTS-LEISTUNGSPUNKTE

WORKLOAD INSGESAMT (IN H)
DAVON PRÄSENZZEIT (IN H)
DAVON SELBSTSTUDIUM (IN H)
ECTS-LEISTUNGSPUNKTE
75
78
5

QUALIFIKATIONSZIELE UND KOMPETENZEN

FACHKOMPETENZ

Die Studierenden sind in der Lage, mit den in den Modulinhalten genannten mathematischen Theoremen und Modellen zielgerichtete Berechnungen anzustellen.

METHODENKOMPETENZ

Die Studierenden kennen mit Abschluss des Moduls die in den Modulinhalten aufgeführten wissenschaftlichen Methoden und sind in der Lage, unter Einsatz dieser Methoden relevante Informationen zu sammeln und unter Berücksichtigung wissenschaftlicher Erkenntnisse den Fachstandards entsprechend zu interpretieren.

PERSONALE UND SOZIALE KOMPETENZ

-

ÜBERGREIFENDE HANDLUNGSKOMPETENZ

_

LERNEINHEITEN UND INHALTE

LEHR- UND LERNEINHEITEN	PRÄSENZZEIT	SELBSTSTUDIUM
Mathematik 3	48	52

Analysis II

- Funktionen mit mehreren unabhängigen Variablen
- Skalarfelder, Vektorfelder
- Differentialrechnung bei Funktionen mehrerer unabhängiger Variabler
- Integralrechnung bei Funktionen mehrerer unabhängiger Variable
- Vektoranalysis Wahrscheinlichkeitsrechnung und Statistik
- Kombinatorik (Überblick, Beispiele)
- Grundbegriffe der Wahrscheinlichkeitsrechnung, Zufallsprozesse
- Zufallsvariable, Dichte- und Verteilungsfunktionen, Erwartungswerte
- Einführung in die beschreibende Statistik
- Schätzverfahren, Konfidenzintervalle
- statistische Prüfverfahren/Tests

Stand vom 01.10.2025 T3ES2001 // Seite 21

LERNEINHEITEN UND INHALTE

LEHR- UND LERNEINHEITEN	PRÄSENZZEIT	SELBSTSTUDIUM
Mathematische Anwendungen	24	26

Mathematische Anwendungen (mit Hilfe mathematischer Software)

- Berechnungen und Umformungen durchführen
- Grafische Darstellung von Daten in unterschiedlichen Diagrammen
- Gleichungen und lineare Gleichungssysteme lösen
- Probleme mit Vektoren und Matrizen lösen
- Funktionen differenzieren (symbolisch, numerisch)
- Integrale lösen (symbolisch, numerisch)
- Gewöhnliche Differentialgleichungen lösen (symbolisch, numerisch)
- Approximation mit der Fehlerquadrat-Methode (z.B. mit algebraischen Polynomen)
- Interpolation (z.B. linear, mit algebraischen Polynomen, mit kubischen Splines)
- Messdaten einlesen und statistisch auswerten, statistische Tests durchführen
- Lösen von Aufgaben mit Inhalten aus Studienfächern des Grundstudiums (z.B.

Regelungstechnik, Signale und Systeme, Messtechnik, Elektronik)

RESONDERHEITEN

Dieses Modul beinhaltet zusätzlich bis zu 24h begleitetes Lernen in Form von Übungsstunden oder Laboren. Hierbei werden Übungsaufgaben und/oder vertiefende Aufgabenstellungen zusammen mit den Studierenden erarbeitet.

VORAUSSETZUNGEN

LITERATUR

- Bronstein; Semendjajew; Musiol; Mühlig: Taschenbuch der Mathematik, Verlag Harri Deutsch
- Fleischhauer: Excel in Naturwissenschaft und Technik, Verlag Addison-Wesley
- Westermann, Thomas: Mathematik für Ingenieure mit MAPLE, Bände 1 und 2, Springer Verlag
- Westermann, Thomas: Mathematische Probleme lösen mit MAPLE Ein Kurzeinstieg, Springer Verlag Benker, Hans: Ingenieurmathematik kompakt
- Problemlösungen mit MATLAB, Springer Verlag
- Ziya Sanat: Mathematik fur Ingenieure Grundlagen, Anwendungen in Maple und C++, Vieweg + Teubner Verlag
- Schott: Ingenieurmathematik mit MATLAB, Hanser Fachbuchverlag
- Papula, Lothar: Mathematik für Ingenieure und Naturwissenschaftler, Bände 1 bis 3, Vieweg Verlag
- Papula, Lothar: Mathematische Formelsammlung für Ingenieure und Naturwissenschaftler, Vieweg Verlag
- Neumayer; Kaup: Mathematik für Ingenieure, Bände 1 bis 3, Shaker Verlag
- Leupold: Mathematik, ein Studienbuch für Ingenieure, Bände 1 bis 3, Hanser Fachbuchverlag
- Preuss; Wenisch; Schmidt: Lehr- und Übungsbuch Mathematik, Bände 1 bis 3, Hanser Fachbuchverlag
- Fetzer; Fränkel: Mathematik, Lehrbuch für ingenieurwissenschaftliche Studiengänge, Bände 1 und 2, Springer-Verlag
- Engeln-Müllges, Gisela; Schäfer, Wolfgang; Trippler, Gisela: Kompaktkurs Ingenieurmathematik mit Wahrscheinlichkeitsrechnung und Statistik, Hanser Fachbuchverlag
- Rießinger, Thomas: Mathematik für Ingenieure, Springer Verlag
- Stry, Yvonne / Schwenkert, Rainer: Mathematik kompakt für Ingenieure und Informatiker, Springer Verlag
- Gramlich; Werner: Numerische Mathematik mit MATLAB, dpunkt Verlag
- Bourier, Günther: Wahrscheinlichkeitsrechnung und schließende Statistik Praxisorientierte Einführung, Gabler Verlag
- Bourier, Günther: Statistik-Übungen, Gabler Verlag
- Bronstein; Semendjajew; Musiol; Mühlig: Taschenbuch der Mathematik, Verlag Harri Deutsch

Stand vom 01.10.2025 T3ES2001 // Seite 22

Systemtheorie (T3ES2002)

Systems Theory

FORMALE ANGABEN ZUM MODUL

MODULNUMMERVERORTUNG IM STUDIENVERLAUFMODULDAUER (SEMESTER)MODULVERANTWORTUNGSPRACHET3ES20022. Studienjahr1Prof. Dr. Karl TrottlerDeutsch

EINGESETZTE LEHRFORMEN

LEHRFORMENLEHRMETHODENVorlesung, ÜbungLehrvortrag, Diskussion

EINGESETZTE PRÜFUNGSFORMEN

PRÜFUNGSLEISTUNGPRÜFUNGSUMFANG (IN MINUTEN)BENOTUNGKlausur120ja

WORKLOAD UND ECTS-LEISTUNGSPUNKTE

WORKLOAD INSGESAMT (IN H)DAVON PRÄSENZZEIT (IN H)DAVON SELBSTSTUDIUM (IN H)ECTS-LEISTUNGSPUNKTE150481025

QUALIFIKATIONSZIELE UND KOMPETENZEN

FACHKOMPETENZ

Die Studierenden können nach Abschluss des Moduls

- die mathematischen Methoden der Systemtheorie für die unterschiedlichen Anwendungsfälle der Systembeschreibung auswählen und einsetzen
- die Begriffe Zeit-Frequenz-Bildbereich unterscheiden und entscheiden, wann sie in welchem Bereich am Besten ihre systemtheoretischen Überlegungen durchführen
- die wichtigsten Funktionaltransformationen der Systemtheorie verstehen und an Beispielen in der Elektrotechnik anwenden
- das Übertragungsverhalten von Systemen im Bildbereich verstehen und regelgerecht anwenden

METHODENKOMPETENZ

Die Studierenden können nach Abschluss des Moduls

- ihr abstraktes Denken in der Systemtheorie wesentlich erweitern und dessen Bedeutung für das Lösen nicht anschaulicher Probleme erkennen
- die Möglichkeiten und Grenzen von mathematischen systemtheoretischen Berechnungen sowie von Simulationen erfassen und in ihrer Bedeutung bewerten
- Lösungsstrategien entwickeln, um allgemeine komplexe Systeme zu abstrahieren, zu modularisieren und zu analysieren

PERSONALE UND SOZIALE KOMPETENZ

ÜBERGREIFENDE HANDLUNGSKOMPETENZ

Die Studierenden können nach Abschluss des Moduls

- die Verfahren der Systemtheorie in einer Vielzahl von Problemen der Elektrotechnik anwenden und daher in weiten Bereichen Zusammenhänge veranschaulichen und das dortige Systemverhalten gestalten
- in einfachen Aufgabenbereichen der Systemsimulation und Systemtheorie unter Bezug auf spezielle Anwendungen in der Elektrotechnik arbeiten und relevante Methoden sowie konventionelle Techniken auswählen und anwenden
- unter Anleitung innerhalb vorgegebener Schwerpunkte der Systemtheorie handeln
- ihre Fähigkeiten und Kenntnisse in der Simulation, der Analyse und Beschreibung von Systemen auf komplexe Beispiele der Elektrotechnik anwenden und vertiefen

LERNEINHEITEN UND INHALTE

LEHR- UND LERNEINHEITEN	PRÄSENZZEIT	SELBSTSTUDIUM
Signale und Systeme	48	102

Stand vom 01.10.2025 T3ES2002 // Seite 23

LEHR- UND LERNEINHEITEN PRÄSENZZEIT SELBSTSTUDIUM

- Grundlegende Begriffe und Definitionen zu "Signalen" und "Systemen"
- Systemantwort auf ein beliebiges Eingangssignal
- Zeitkontinuierliche Signale und ihre Funktionaltransformationen
- Fourier-Reihe, Fourier-Transformation, Grundlagen der Spektralanalyse
- Laplace-Transformation
- Zeitdiskrete Signale
- z-Transformation
- Abtasttheorem
- Systembeschreibung im Funktionalbereich
- Übertragungsfunktion linearer, zeitinvarianter Systeme
- Differenzialgleichungen und Laplace-Transformation
- Differenzengleichungen und z-Transformation
- Einführung in zeitdiskrete, rekursive und nicht-rekursive Systeme

BESONDERHEITEN

Es werden auf der Basis der Mathematik-Grundvorlesungen die einschlägigen Funktionaltransformationen behandelt. Simulationsbeispiele basierend auf einer Simulationssoftware (z.B. MATLAB, SIMULINK) sollen die theoretischen Inhalte praktisch darstellen. Dieses Modul beinhaltet zusätzlich bis zu 24h begleitetes Lernen in Form von Übungsstunden. Hierbei werden Übungsaufgaben zusammen mit den Studierenden erarbeitet.

VORAUSSETZUNGEN

LITERATUR

- Werner, M.: Signale und Systeme. Vieweg-Teubner Verlag Wiesbaden
- Girod, B; Rabenstein, R; Stenger, A.: Einführung in die Systemtheorie. Vieweg-Teubner Verlag Wiesbaden
- Kiencke, U.; Jäkel, H.: Signale und Systeme. Oldenbourg Verlag München, Wien
- Unbehauen, R.: Systemtheorie 1. Oldenbourg Verlag München, Wien
- Oppenheim, A. V.; Schafer, R. W., Padgett, W. T.; Yoder, M. A.: Discrete-Time Signal Processing. Prentice Hall Upper Saddle River, New Jersey

Stand vom 01.10.2025 T3ES2002 // Seite 24

Regelungstechnik (T3ES2003)

Control Technology

FORMALE ANGABEN ZUM MODUL

MODULNUMMERVERORTUNG IM STUDIENVERLAUFMODULDAUER (SEMESTER)MODULVERANTWORTUNGSPRACHET3ES20032. Studienjahr1Prof. Dipl.-Ing. Hans-Rüdiger WeissDeutsch

EINGESETZTE LEHRFORMEN

LEHRFORMENLEHRMETHODENVorlesung, ÜbungLehrvortrag, Diskussion

EINGESETZTE PRÜFUNGSFORMEN

PRÜFUNGSLEISTUNGPRÜFUNGSUMFANG (IN MINUTEN)BENOTUNGKlausur120ja

WORKLOAD UND ECTS-LEISTUNGSPUNKTE

WORKLOAD INSGESAMT (IN H)
DAVON PRÄSENZZEIT (IN H)
DAVON SELBSTSTUDIUM (IN H)
ECTS-LEISTUNGSPUNKTE
78
5

QUALIFIKATIONSZIELE UND KOMPETENZEN

FACHKOMPETENZ

Die Studierenden sind in der Lage, mit den in den Modulinhalten genannten technisch-mathematischen Theoremen Berechnungen durchzuführen. Sie analysieren einfache Problemstellungen aus der Praxis treffsicher, nutzen die für die Lösung relevanten Informationen und führen die Berechnung und Analyse selbstständig durch.

METHODENKOMPETENZ

Die Studierenden sind mit Abschluss des Moduls in der Lage, für weitgehend standardisierte Anwendungsfälle in der Praxis die angemessene Methode auszuwählen und anzuwenden. Sie kennen die Stärken und Schwächen der Methode in ihrem beruflichen Anwendungsfeld und können diese in konkreten Handlungssituationen gegeneinander abwägen.

PERSONALE UND SOZIALE KOMPETENZ

Die Studierenden können sowohl eigenständig als auch im Team zielorientiert und nachhaltig handeln.

ÜBERGREIFENDE HANDLUNGSKOMPETENZ

-

LERNEINHEITEN UND INHALTE

LEHR- UND LERNEINHEITENPRÄSENZZEITSELBSTSTUDIUMRegelungstechnik 17278

- Einführung
- Beschreibung dynamischer Systeme
- Lineare Übertragungsglieder
- Regelkreis und Systemeigenschaften
- Führungsregelung und Störgrößenregelung
- Klassische Regler
- Frequenzkennlinienverfahren
- Wurzelortsverfahren bzw. Kompensationsverfahren
- Simulation des Regelkreises

BESONDERHEITEN

Die Übungen können mit Hife von Simulationen und Laboren im Umfang von bis zu 24 UE ergänzt werden.

Stand vom 01.10.2025 T3ES2003 // Seite 25

LITERATUR

- H. Unbehauen: Regelungstechnik 1, Vieweg-Verlag
 H.-W. Philippsen: Einstieg in die Regelungstechnik, Hanser Fachbuchverlag
 H. Lutz, W. Wendt, Taschenbuch der Regelungstechnik, Harri Deutsch Verlag
 O. Föllinger: Regelungstechnik, Hüthig Verlag
 J. Lunze: Regelungstechnik 1, 5. Aufl., Springer-Verlag, Berlin
 Gerd Schulz: Regelungstechnik 1, Oldenbourg-Verlag
 Heinz Mann, Horst Schiffelgen, Rainer Froriep: Einführung in die Regelungstechnik, Hanser Verlag

Stand vom 01.10.2025 T3ES2003 // Seite 26 Studienbereich Technik // School of Engineering Embedded Systems // Embedded Systems Aerospace Engineering // Aerospace Engineering FRIEDRICHSHAFEN

Mikrocomputertechnik (T3ES2004)

Introduction to Microcomputers

FORMALE ANGABEN ZUM MODUL

MODULNUMMERVERORTUNG IM STUDIENVERLAUFMODULDAUER (SEMESTER)MODULVERANTWORTUNGSPRACHET3ES20042. Studienjahr2Prof. Dr.-Ing. Ralf StiehlerDeutsch

EINGESETZTE LEHRFORMEN

LEHRFORMENLEHRMETHODENVorlesung, Labor, Vorlesung, ÜbungLehrvortrag, Diskussion, Lehrvortrag, Diskussion, Gruppenarbeit

EINGESETZTE PRÜFUNGSFORMEN

PRÜFUNGSLEISTUNGPRÜFUNGSUMFANG (IN MINUTEN)BENOTUNGKlausurarbeit oder Kombinierte Prüfung120ja

WORKLOAD UND ECTS-LEISTUNGSPUNKTE

WORKLOAD INSGESAMT (IN H)DAVON PRÄSENZZEIT (IN H)DAVON SELBSTSTUDIUM (IN H)ECTS-LEISTUNGSPUNKTE15072785

QUALIFIKATIONSZIELE UND KOMPETENZEN

FACHKOMPETENZ

Die Studierenden kennen die in den Inhalten des Moduls genannten Strukturen, Theorien und Modelle. Sie können diese beschreiben und systematisch darstellen. Sie sind in der Lage, unterschiedliche Ansätze miteinander zu vergleichen und können mit Hilfe ihres Wissens plausible Argumentationen und Schlüsse ableiten.

METHODENKOMPETENZ

Die Studierenden sind mit Abschluss des Moduls in der Lage, für komplexe Praxisanwendungen eine angemessene Methode auszuwählen und anzuwenden. So können die Möglichkeiten, Praktikabilität und Grenzen der eingesetzten Methode einschätzen und sind in der Lage, Handlungsalternativen aufzuzeigen.

PERSONALE UND SOZIALE KOMPETENZ

-

ÜBERGREIFENDE HANDLUNGSKOMPETENZ

_

LERNEINHEITEN UND INHALTE

LEHR- UND LERNEINHEITEN	PRÄSENZZEIT	SELBSTSTUDIUM
Mikrocomputertechnik 1	36	39

- Einführung und Überblick über Geschichte, Stand der Technik und aktuelle Trends
- Grundlegender Aufbau eines Rechners (CPU, Speicher, E/A-Einheiten, Busstruktur)
- Abgrenzung von Neumann/Harvard , CISC/RISC, Mikro-Prozessor / Mikro-Computer / Mikro-ContController
- Oberer Teil des Schichtenmodells : Maschinensprache, Assembler und höhere Programmiersprachen
- Unterer Teil des Schichtenmodells : Betriebssystemebene, Registerebene, Gatter- und Transistorebene
- Computeraritmetik und Rechenwerk (Addierer, Multiplexer, ALU, Flags)
- Steuerwerk (Aufbau und Komponenten)

Stand vom 01.10.2025 T3ES2004 // Seite 27

LERNEINHEITEN UND INHALTE

LEHR- UND LERNEINHEITENPRÄSENZZEITSELBSTSTUDIUMMikrocomputertechnik 23639

- Befehlsablauf im Prozessor (Maschinenzyklen, Timing, Speicherzugriff, Datenfluss)
- Vertiefte Betrachtung des Steuerwerks
- Ausnahmeverarbeitung (Exceptions, Traps, Interrupts)
- Überblick über verschiedene Arten von Speicherbausteinen
- Funktionsweise paralleler und serieller Schnittstellen
- Übersicht über System- und Schnittstellenbausteine

BESONDERHEITEN

Zur Vetiefung des Vorlesungsstoffs wird empfohlen, das studentische Eigenstudium mit praktischen Programmierübungen an einem handelsüblichen Mikrocontroller mit einem Gesamtumfang von bis zu 24h zu unterstützen. Die Prüfungsdauer bezieht sich auf die Klausur.

VORAUSSETZUNGEN

LITERATUR

- Walter: Mikrocomputertechnik mit der 8051-Familie, Springer
- Schmitt: Mikrocomputertechnik mit Controllern der Atmel-AVR-RISC-Familie, Oldenburg
- Schaaf: Mikrocomputertechnik, Hanser
- Beierlein/Hagenbruch: Taschenbuch Mikroprozessortechnik, Fachbuchverlag Leipzig
- Bähring : Mikrorechner-Technik 1+2, Springer
- Brinkschulte, Ungerer: Mikrocontroller und Mikroporzessoren
- Patterson/Hennessy: Computer Organization and Design The Hardware/Software Interface, Morgan-Kaufmann
- Wittgruber : Digitale Schnittstellen und Bussysteme, Vieweg
- Walter: Mikrocomputertechnik mit der 8051-Familie, Springer
- Schmitt : Mikrocomputertechnik mit Controllern der Atmel-AVR-RISC-Familie, Oldenburg
- Schaaf : Mikrocomputertechnik, Hanser
- Beierlein/Hagenbruch: Taschenbuch Mikroprozessortechnik, Fachbuchverlag Leipzig
- Bähring : Mikrorechner-Technik 1+2, Springer
- Brinkschulte, Ungerer: Mikrocontroller und Mikroprozessoren
- Patterson/Hennessy : Computer Organization and Design The Hardware/Software Interface, Morgan-Kaufmann
- Wittgruber : Digitale Schnittstellen und Bussysteme, Vieweg

Stand vom 01.10.2025 T3ES2004 // Seite 28

Elektronik (T3ES2005)

Electronics

FORMALE ANGABEN ZUM MODUL

MODULNUMMERVERORTUNG IM STUDIENVERLAUFMODULDAUER (SEMESTER)MODULVERANTWORTUNGSPRACHET3ES20052. Studienjahr1Prof. Dr. Karl TrottlerDeutsch

EINGESETZTE LEHRFORMEN

LEHRFORMENLEHRMETHODENVorlesung, Übung, LaborLehrvortrag, Diskussion, Gruppenarbeit

EINGESETZTE PRÜFUNGSFORMEN

PRÜFUNGSLEISTUNGPRÜFUNGSUMFANG (IN MINUTEN)BENOTUNGKlausur120ja

WORKLOAD UND ECTS-LEISTUNGSPUNKTE

WORKLOAD INSGESAMT (IN H)DAVON PRÄSENZZEIT (IN H)DAVON SELBSTSTUDIUM (IN H)ECTS-LEISTUNGSPUNKTE150481025

QUALIFIKATIONSZIELE UND KOMPETENZEN

FACHKOMPETENZ

Die Studierenden können nach Abschluss des Moduls

- Grundkenntnisse der Elektronik nutzen und diese auf die Analyse und Realisierung elektronischer Systeme anwenden
- das Fachwissen über elektronische Bauteile, Systeme und Subsysteme anwenden, um technische Lösungen zu entwickeln und zu implementieren, deren Auswirkungen zu erkennen und zu bewerten

METHODENKOMPETENZ

Die Studierenden können nach Abschluss des Moduls

- Aufgaben der Elektronik beschreiben, analysieren und verschiedene Lösungen hierfür selbständig entwickeln und die Verantwortung dafür übernehmen
- Informationen, Annahmen und Begründungen über elektronische Produkte aus verschiedenen Informationsquellen sammeln und nach technischen sowie wirtschaftlichen Gesichtspunkten bewerten
- die Grenzen und Unsicherheiten des eigenen Wissens und der Fähigkeiten erkennen

PERSONALE UND SOZIALE KOMPETENZ

ÜBERGREIFENDE HANDLUNGSKOMPETENZ

Die Studierenden können nach Abschluss des Moduls

- technische Literatur und andere Informationsquellen effektiv nutzen, um ihr Wissen und ihre Kompetenzen in der Elektronik und deren Anwendungen in Systemen aufzubauen und zu aktualisieren
- fachübergreifendes Wissen unter Beachtung technischer und ökonomischer Auswirkungen einbringen
- elektronische Systeme und Subsysteme beschreiben, analysieren, simulieren, realisieren und anwenden
- das ingenieurmäßige Vorgehen insbesondere auch unter Nutzung informationstechnischer Werkzeuge und Schaltungssimulationen anwenden

LERNEINHEITEN UND INHALTE

LEHR- UND LERNEINHEITEN	PRÄSENZZEIT	SELBSTSTUDIUM
Elektronik	48	102

Stand vom 01.10.2025 T3ES2005 // Seite 29

LEHR- UND LERNEINHEITEN PRÄSENZZEIT SELBSTSTUDIUM

Inhalte der Unit:

- Physikalische Grundlagen von Halbleitern, PN-Übergang, Halbleiterwerkstoffe
- Dioden, Z Dioden: Eigenschaften, Anwendungen, Beispielschaltungen
- Bipolare Transistoren: Eigenschaften, Kennlinien, Kleinsignalverstärker, Schalter, Impedanzwandler, Beispielschaltungen
- Feldeffekt-Transistor: Eigenschaften, Kennlinien, Kleinsignalverstärker, Schalter, Impedanzwandler, Beispielschaltungen, Differenzverstärker
- Operationsverstärker: Idealer Operationsverstärker, Frequenzgänge, Drift, Grundschaltungen, Verstärker, Gegen- und Mitkopplung, Integrierer, Differenzierer, Komparator, Impedanzwandler, Beispiele
- Schaltungsentwurf auf der Basis eines CAE Werkzeuges

BESONDERHEITEN

Dieses Modul beinhaltet zusätzlich bis zu 24h begleitetes Lernen in Form von Übungsstunden. Hierbei werden Übungsaufgaben und Beispiele zum Schaltungsentwurf mit einem einschlägigen Entwurfstool zusammen mit den Studierenden erarbeitet.

VORAUSSETZUNGEN

-

LITERATUR

- Hering, E.; Bressler, K.; Gutekunst, J.: Elektronik für Ingenieure und Naturwissenschaftler. Springer Verlag Berlin, Heidelberg, New York
- Böhmer, E.; Ehrhardt, D.; Oberschelp, W.: Elemente der angewandten Elektronik. Vieweg-Teubner Verlag Wiesbaden
- Tietze, U.; Schenk, C.: Halbleiter-Schaltungstechnik. Springer Verlag Berlin, Heidelberg, New York
- Koß, G.; Reinhold, W.; Hoppe, F.: Lehr- und Übungsbuch Elektronik. Carl Hanser Verlag München
- Kories, R.; Schmidt-Walter, H.: Taschenbuch der Elektrotechnik: Grundlagen und Elektronik.
- Verlag Harri Deutsch Frankfurt a. M.
- Lindner, H., Brauer, H.; Lehmann, C.: Taschenbuch der Elektrotechnik und Elektronik. Carl Hanser Verlag München

Stand vom 01.10.2025 T3ES2005 // Seite 30

Studienarbeit (T3 3101)

Student Research Projekt

FORMALE ANGABEN ZUM MODUL

MODULNUMMERVERORTUNG IM STUDIENVERLAUFMODULDAUER (SEMESTER)MODULVERANTWORTUNGSPRACHET3_31013. Studienjahr2Prof. Dr.-Ing. Joachim FrechDeutsch

EINGESETZTE LEHRFORMEN

LEHRFORMENLEHRMETHODENIndividualbetreuungProjekt

EINGESETZTE PRÜFUNGSFORMEN

PRÜFUNGSLEISTUNGPRÜFUNGSUMFANG (IN MINUTEN)BENOTUNGStudienarbeitSiehe Pruefungsordnungja

WORKLOAD UND ECTS-LEISTUNGSPUNKTE

WORKLOAD INSGESAMT (IN H)
DAVON PRÄSENZZEIT (IN H)
DAVON SELBSTSTUDIUM (IN H)
ECTS-LEISTUNGSPUNKTE
288
10

QUALIFIKATIONSZIELE UND KOMPETENZEN

FACHKOMPETENZ

Die Studierenden können sich unter begrenzter Anleitung in ein komplexes, aber eng umgrenztes Gebiet vertiefend einarbeiten und den allgemeinen Stand des Wissens erwerben.

Sie können selbstständig Lösungen entwickeln und Alternativen bewerten. Dazu nutzen sie bestehendes Fachwissen und bauen es selbständig im Thema der Studienarbeit aus.

Die Studierenden kennen und verstehen die Notwendigkeit des wissenschaftlichen Recherchierens und Arbeitens. Sie sind in der Lage eine wissenschaftliche Arbeit effizient zu steuern und wissenschaftlich korrekt und verständlich zu dokumentieren.

METHODENKOMPETENZ

Die Studierenden haben die Kompetenz erworben, relevante Informationen mit wissenschaftlichen Methoden zu sammeln und unter der Berücksichtigung wissenschaftlicher Erkenntnisse zu interpretieren.

PERSONALE UND SOZIALE KOMPETENZ

Die Studierenden können ausdauernd und beharrlich auch größere Aufgaben selbstständig ausführen. Sie können sich selbst managen und Aufgaben zum vorgesehenen Termin erfüllen.

Sie können stichhaltig und sachangemessen argumentieren, Ergebnisse plausibel darstellen und auch komplexe Sachverhalte nachvollziehbar begründen.

ÜBERGREIFENDE HANDLUNGSKOMPETENZ

LERNEINHEITEN UND INHALTE

LEHR- UND LERNEINHEITEN	PRÄSENZZEIT	SELBSTSTUDIUM
Studienarbeit	12	288

Stand vom 01.10.2025 T3_3101 // Seite 31

BESONDERHEITEN

Es wird auf die "Leitlinien für die Bearbeitung und Dokumentation der Module Praxisprojekt I bis III, Studienarbeit und Bachelorarbeit" der Fachkommission Technik der Dualen Hochschule Baden-Württemberg hingewiesen.

Die "Große Studienarbeit" kann nach Vorgaben der Studien- und Prüfungsordnung als vorgesehenes Modul verwendet werden. Ergänzend kann die "Große Studienarbeit" auch nach Freigabe durch die Studiengangsleitung statt der Module "Studienarbeit II" und "Studienarbeit II" verwendet werden.

VORAUSSETZUNGEN

LITERATUR

Kornmeier, M., Wissenschaftlich schreiben leicht gemacht für Bachelor, Master und Dissertation, Bern

Stand vom 01.10.2025 T3_3101 // Seite 32

Praxisprojekt I (T3_1000)

Work Integrated Project I

FORMALE ANGABEN ZUM MODUL

MODULNUMMERVERORTUNG IM STUDIENVERLAUFMODULDAUER (SEMESTER)MODULVERANTWORTUNGSPRACHET3_10001. Studienjahr2Prof. Dr.-Ing. Joachim FrechDeutsch

EINGESETZTE LEHRFORMEN

LEHRFORMENLEHRMETHODENPraktikum, SeminarLehrvortrag, Diskussion, Projekt

EINGESETZTE PRÜFUNGSFORMEN

PRÖFUNGSLEISTUNGPRÖFUNGSUMFANG (IN MINUTEN)BENOTUNGProjektarbeitSiehe PruefungsordnungBestanden/ Nicht-BestandenAblauf- und ReflexionsberichtSiehe PruefungsordnungBestanden/ Nicht-Bestanden

WORKLOAD UND ECTS-LEISTUNGSPUNKTE

WORKLOAD INSGESAMT (IN H)DAVON PRÄSENZZEIT (IN H)DAVON SELBSTSTUDIUM (IN H)ECTS-LEISTUNGSPUNKTE600459620

QUALIFIKATIONSZIELE UND KOMPETENZEN

FACHKOMPETENZ

Die Absolventinnen und Absolventen erfassen industrielle Problemstellungen in ihrem Kontext und in angemessener Komplexität. Sie analysieren kritisch, welche Einflussfaktoren

zur Lösung des Problems beachtet werden müssen und beurteilen, inwiefern einzelne theoretische Modelle einen Beitrag zur Lösung des Problems leisten können.

Die Studierenden kennen die zentralen manuellen und maschinellen Grundfertigkeiten des jeweiligen Studiengangs, sie

können diese an praktischen Aufgaben anwenden und haben deren Bedeutung für die Prozesse im Unternehmen kennen gelernt.

Sie kennen die wichtigsten technischen und organisatorischen Prozesse in Teilbereichen ihres Ausbildungsunternehmens und können deren Funktion darlegen.

Die Studierenden können grundsätzlich fachliche Problemstellungen des jeweiligen Studiengangs beschreiben und fachbezogene Zusammenhänge erläutern.

METHODENKOMPETENZ

Absolventinnen und Absolventen kennen übliche Vorgehensweisen der industriellen Praxis und können diese selbstständig umsetzen. Dabei bauen sie auf ihr theoretisches Wissen sowie ihre Berufserfahrung auf.

PERSONALE UND SOZIALE KOMPETENZ

Die Relevanz von Personalen und Sozialen Kompetenz ist den Studierenden für den reibungslosen Ablauf von industriellen Prozessen bewusst und sie können eigene Stärken und Schwächen benennen. Den Studierenden gelingt es, aus Erfahrungen zu lernen, sie übernehmen Verantwortung für die übertragene Aufgaben, mit denen sie sich auch persönlich identifizieren. Die Studierenden übernehmen Verantwortung im Team, integrieren und tragen durch ihr Verhalten zur gemeinsamen Zielerreichung bei.

ÜBERGREIFENDE HANDLUNGSKOMPETENZ

Die Studierenden zeigen Handlungskompetenz, indem sie

ihr theoretisches Fachwissen nutzen, um in berufspraktischen Situationen angemessen, authentisch und erfolgreich zu agieren.

Dazu gehören auch das eigenständige kritische Beobachten, das systematische Suchen alternativer Lösungsansätze sowie eine erste Einschätzung der Anwendbarkeit von Theorien für Praxis.

LERNEINHEITEN UND INHALTE

LEHR- UND LERNEINHEITEN	PRÄSENZZEIT	SELBSTSTUDIUM
Projektarbeit 1	0	560

Stand vom 01.10.2025 T3_1000 // Seite 33

LERNEINHEITEN UND INHALTE

LEHR- UND LERNEINHEITEN	PRÄSENZZEIT	SELBSTSTUDIUM
Es wird auf die jeweiligen Praxispläne der Studiengänge der Fakultät Technik verwiesen		
Wissenschaftliches Arbeiten 1	4	36

Das Seminar "Wissenschaftliches Arbeiten I" findet während der Theoriephase statt. Eine Durchführung im gesamten Umfang in einem Semester oder die Aufteilung auf zwei Semester ist möglich. Für einige Grundlagen kann das WBT "Wissenschaftliches Arbeiten" der DHBW genutzt werden.

- Leitlinien des wissenschaftlichen Arbeitens
- Themenwahl und Themenfindung bei der T1000 Arbeit
- Typische Inhalte und Anforderungen an eine T1000 Arbeit
- Aufbau und Gliederung einer T1000 Arbeit
- Literatursuche, -beschaffung und -auswahl
- Nutzung des Bibliotheksangebots der DHBW
- Form einer wissenschaftlichen Arbeit (z.B. Zitierweise, Literaturverzeichnis)
- Hinweise zu DV-Tools (z.B. Literaturverwaltung und Generierung von Verzeichnissen in der Textverarbeitung)

BESONDERHEITEN

Es wird auf die "Leitlinien für die Bearbeitung und Dokumentation der Module Praxisprojekt I bis III, Studienarbeit und Bachelorarbeit" der Fachkommission Technik der Dualen Hochschule Baden-Württemberg hingewiesen.

Der Absatz "1.2 Abweichungen" aus Anlage 1 zur Studien- und Prüfungsordnung für die Bachelorstudiengänge im Studienbereich Technik der Dualen Hochschule Baden-Württemberg

(DHBW) bei den Prüfungsleistungen dieses Moduls keine Anwendung.

VORAUSSETZUNGEN

LITERATUR

- Web-based Training "Wissenschaftliches Arbeiten"
- Kornmeier, M., Wissenschaftlich schreiben leicht gemacht für Bachelor, Master und Dissertation, Bern

Stand vom 01.10.2025 T3_1000 // Seite 34

Praxisprojekt II (T3_2000)

Work Integrated Project II

FORMALE ANGABEN ZUM MODUL

MODULNUMMER	VERORTUNG IM STUDIENVERLAUF	MODULDAUER (SEMESTER)	MODULVERANTWORTUNG	SPRACHE
T3_2000	2. Studienjahr	2	Prof. DrIng. Joachim Frech	Deutsch

EINGESETZTE LEHRFORMEN

LEHRFORMEN	LEHRMETHODEN
Praktikum, Vorlesung	Lehrvortrag, Diskussion, Gruppenarbeit, Projekt

EINGESETZTE PRÜFUNGSFORMEN

PRÜFUNGSLEISTUNG	PRÜFUNGSUMFANG (IN MINUTEN)	BENOTUNG
Projektarbeit	Siehe Pruefungsordnung	ja
Ablauf- und Reflexionsbericht	Siehe Pruefungsordnung	Bestanden/ Nicht-Bestanden
Mündliche Prüfung	30	ja

WORKLOAD LIND ECTS-LEISTLINGSPLINKTE

WORKLOAD INSGESAMT (IN H)	DAVON PRÄSENZZEIT (IN H)	DAVON SELBSTSTUDIUM (IN H)	ECTS-LEISTUNGSPUNKTE
600	5	595	20

QUALIFIKATIONSZIELE UND KOMPETENZEN

FACHKOMPETENZ

Die Studierenden erfassen industrielle Problemstellungen in einem angemessenen Kontext und in angemessener Komplexität. Sie analysieren kritisch, welche Einflussfaktoren zur Lösung des Problems beachtet werden müssen und können beurteilen, inwiefern theoretische Modelle einen Beitrag zur Lösung des Problems leisten können.

METHODENKOMPETENZ

Die Studierenden kennen die im betrieblichen Umfeld üblichen Methoden, Techniken und Fertigkeiten und können bei der Auswahl deren Stärken und Schwächen einschätzen, so dass sie die Methoden sachangemessen und situationsgerecht auswählen. Die ihnen übertragenen Aufgaben setzen die Studierenden durch durchdachte Konzepte, fundierte Planung und gutes Projektmanagement erfolgreich um. Dabei bauen sie auf ihr theoretisches Wissen sowie ihre wachsende Berufserfahrung auf.

PERSONALE UND SOZIALE KOMPETENZ

Den Studierenden ist die Relevanz von Personalen und Sozialen Kompetenz für den reibungslosen Ablauf von industriellen Prozessen sowie ihrer eigenen Karriere bewusst; sie können eigene Stärken und Schwächen benennen. Den Studierenden gelingt es, aus Erfahrungen zu lernen, sie übernehmen selbstständig Verantwortung für die übertragene Aufgaben, mit denen sie sich auch persönlich identifizieren. Die Studierenden übernehmen Verantwortung im Team, integrieren andere und tragen durch ihr überlegtes Verhalten zur gemeinsamen Zielerreichung bei.

ÜBERGREIFENDE HANDLUNGSKOMPETENZ

Die Studierenden zeigen wachsende Handlungskompetenz, indem sie ihr theoretisches Fachwissen und ihr wachsendes Erfahrungswissen nutzen, um in sozialen berufspraktischen Situationen angemessen und erfolgreich zu agieren.

Dazu gehören auch das eigenständige kritische Beobachten, das systematische Suchen alternativer Denk- und Lösungsansätze sowie das Hinterfragen von bisherigen Vorgehensweisen. Die Studierenden zeichnen sich durch Eigenverantwortung und Tatkraft aus, sie sind auch im Kontext einer globalisierten Arbeitswelt handlungsfähig.

LERNEINHEITEN UND INHALTE

LEHR- UND LERNEINHEITEN	PRÄSENZZEIT	SELBSTSTUDIUM
Projektarbeit 2	0	560

Es wird auf die jeweiligen Praxispläne der Studiengänge der Fakultät Technik verwiesen.

Stand vom 01.10.2025 T3_2000 // Seite 35

LERNEINHEITEN UND INHALTE

LEHR- UND LERNEINHEITEN	PRÄSENZZEIT	SELBSTSTUDIUM
Wissenschaftliches Arbeiten 2	4	26

Das Seminar "Wissenschaftliches Arbeiten II" findet während der Theoriephase statt. Eine Durchführung im gesamten Umfang in einem Semester oder die Aufteilung auf zwei Semester ist möglich. Für einige Grundlagen kann das WBT "Wissenschaftliches Arbeiten" der DHBW genutzt werden.

- Leitlinien des wissenschaftlichen Arbeitens
- Themenwahl und Themenfindung bei der T2000 Arbeit
- Typische Inhalte und Anforderungen an eine T2000 Arbeit
- Aufbau und Gliederung einer T2000 Arbeit
- Vorbereitung der Mündlichen T2000 Prüfung

Mündliche Prüfung	1	9

BESONDERHEITEN

Entsprechend der jeweils geltenden Studien- und Prüfungsordnung für die Bachelorstudiengänge im Studienbereich Technik der Dualen Hochschule Baden-Württemberg (DHBW) sind die mündliche Prüfung und die Projektarbeit separat zu bestehen. Die Modulnote wird aus diesen beiden Prüfungsleistungen mit der Gewichtung 50:50 berechnet.

Es wird auf die "Leitlinien für die Bearbeitung und Dokumentation der Module Praxisprojekt I bis III, Studienarbeit und Bachelorarbeit" der Fachkommission Technik der Dualen Hochschule Baden-Württemberg hingewiesen.

VORAUSSETZUNGEN			
-			
LITERATUR			

-

Stand vom 01.10.2025 T3_2000 // Seite 36

Praxisprojekt III (T3_3000)

Work Integrated Project III

FORMALE ANGABEN ZUM MODUL

MODULNUMMER	VERORTUNG IM STUDIENVERLAUF	MODULDAUER (SEMESTER)	MODULVERANTWORTUNG	SPRACHE
T3_3000	3. Studienjahr	1	Prof. DrIng. Joachim Frech	Deutsch

EINGESETZTE LEHRFORMEN

LEHRFORMEN	LEHRMETHODEN
Praktikum, Seminar	Lehrvortrag, Diskussion, Projekt

EINGESETZTE PRÜFUNGSFORMEN

PRÜFUNGSLEISTUNG	PRÜFUNGSUMFANG (IN MINUTEN)	BENOTUNG
Hausarbeit	Siehe Pruefungsordnung	Bestanden/ Nicht-Bestanden
Ablauf- und Reflexionsbericht	Siehe Pruefungsordnung	Bestanden/ Nicht-Bestanden

WORKLOAD UND ECTS-LEISTUNGSPUNKTE

WORKLOAD INSGESAMT (IN H)	DAVON PRÄSENZZEIT (IN H)	DAVON SELBSTSTUDIUM (IN H)	ECTS-LEISTUNGSPUNKTE
240	4	236	8

QUALIFIKATIONSZIELE UND KOMPETENZEN

FACHKOMPETENZ

Die Studierenden erfassen industrielle Problemstellungen in einem breiten Kontext und in moderater Komplexität. Sie haben ein gutes Verständnis von organisatorischen und inhaltlichen Zusammenhängen sowie von Organisationsstrukturen, Produkten, Verfahren, Maßnahmen, Prozessen, Anforderungen und gesetzlichen Grundlagen. Sie analysieren kritisch, welche Einflussfaktoren zur Lösung des Problems beachtet werden müssen und können beurteilen, inwiefern theoretische Modelle einen Beitrag zur Lösung des Problems leisten können.

METHODENKOMPETENZ

Die Studierenden kennen die im betrieblichen Umfeld üblichen Methoden, Techniken und Fertigkeiten und können bei der Auswahl deren Stärken und Schwächen einschätzen, so dass sie die Methoden sachangemessen, situationsgerecht und umsichtig auswählen. Die ihnen übertragenen Aufgaben setzen die Studierenden durch durchdachte Konzepte, fundierte Planung und gutes Projektmanagement auch bei sich häufig ändernden Anforderungen systematisch und erfolgreich um. Dabei bauen sie auf ihr theoretisches Wissen sowie ihre wachsende Berufserfahrung auf.

PERSONALE UND SOZIALE KOMPETENZ

Die Studierenden weisen auch im Hinblick auf ihre persönlichen personalen und sozialen Kompetenzen einen hohen Grad an Reflexivität auf, was als Grundlage für die selbstständige persönliche Weiterentwicklun genutzt wird.

Den Studierenden gelingt es, aus Erfahrungen zu lernen, sie übernehmen selbstständig Verantwortung für die übertragene Aufgaben, mit denen sie sich auch persönlich identifizieren.

Die Studierenden übernehmen Verantwortung für sich und andere. Sie sind konflikt und kritikfähig.

ÜBERGREIFENDE HANDLUNGSKOMPETENZ

Die Studierenden zeigen umfassende Handlungskompetenz, indem sie ihr theoretisches Fachwissen und ihr wachsendes Erfahrungswissen nutzen, um in berufspraktischen Situationen angemessen und erfolgreich zu agieren.

Dazu gehören auch das eigenständige kritische Beobachten, das systematische Suchen alternativer Denk- und Lösungsansätze sowie das Hinterfragen von bisherigen Vorgehensweisen. Die Studierenden zeichnen sich durch Eigenverantwortung und Tatkraft aus, sie sind auch im Kontext einer globalisierten Arbeitswelt handlungsfähig. Sie weisen eine reflektierte Haltung zu gesellschaftlichen, soziale und ökologischen Implikationen des eigenen Handelns auf.

LERNEINHEITEN UND INHALTE

LEHR- UND LERNEINHEITEN	PRÄSENZZEIT	SELBSTSTUDIUM
Projektarbeit 3	0	220

Es wird auf die jeweiligen Praxispläne der Studiengänge der Fakultät Technik verwiesen

Stand vom 01.10.2025 T3_3000 // Seite 37

LERNEINHEITEN UND INHALTE

LEHR- UND LERNEINHEITENPRÄSENZZEITSELBSTSTUDIUMWissenschaftliches Arbeiten 3416

Das Seminar "Wissenschaftliches Arbeiten III" findet während der Theoriephase statt. Eine Durchführung im gesamten Umfang in einem Semester oder die Aufteilung auf zwei Semester ist möglich. Für einige Grundlagen kann das WBT "Wissenschaftliches Arbeiten" der DHBW genutzt werden.

- Was ist Wissenschaft?
- Theorie und Theoriebildung
- Überblick über Forschungsmethoden (Interviews, etc.)
- Gütekriterien der Wissenschaft
- Wissenschaftliche Erkenntnisse sinnvoll nutzen (Bezugssystem, Stand der Forschung/Technik)
- Aufbau und Gliederung einer Bachelorarbeit
- Projektplanung im Rahmen der Bachelorarbeit
- Zusammenarbeit mit Betreuern und Beteiligten

BESONDERHEITEN

Es wird auf die "Leitlinien für die Bearbeitung und Dokumentation der Module Praxisprojekt I bis III, Studienarbeit und Bachelorarbeit" der Fachkommission Technik der Dualen Hochschule Baden-Württemberg hingewiesen.

VORAUSSETZUNGEN

LITERATUR

- Web-based Training "Wissenschaftliches Arbeiten"
- Kornmeier, M., Wissenschaftlich schreiben leicht gemacht für Bachelor, Master und Dissertation,, Bern
- Minto, B., The Pyramid Principle: Logic in Writing, Thinking and Problem Solving, London
- Zelazny, G., Say It With Charts: The Executives's Guide to Visual Communication, Mcgraw-Hill Professional.

Kornmeier, M., Wissenschaftlich schreiben leicht gemacht für Bachelor, Master und Dissertation, Bern

Stand vom 01.10.2025 T3_3000 // Seite 38

Echtzeitsysteme und sicherheitskritische Anwendungen (T3ES2101)

Real Time Systems and Safety Applications

FORMALE ANGABEN ZUM MODUL

MODULNUMMERVERORTUNG IM STUDIENVERLAUFMODULDAUER (SEMESTER)MODULVERANTWORTUNGSPRACHET3ES21013. Studienjahr1Prof. Dr.-Ing. Thomas KiblerDeutsch

EINGESETZTE LEHRFORMEN

LEHRFORMEN LEHRMETHODEN

Vorlesung, Labor, Vorlesung, Übung, Labor Lehrvortrag, Diskussion, Gruppenarbeit

EINGESETZTE PRÜFUNGSFORMEN

PRÜFUNGSLEISTUNGPRÜFUNGSUMFANG (IN MINUTEN)BENOTUNGKlausur120ja

WORKLOAD UND ECTS-LEISTUNGSPUNKTE

WORKLOAD INSGESAMT (IN H)DAVON PRÄSENZZEIT (IN H)DAVON SELBSTSTUDIUM (IN H)ECTS-LEISTUNGSPUNKTE15072785

QUALIFIKATIONSZIELE UND KOMPETENZEN

FACHKOMPETENZ

Die Studierenden können nach Abschluss des Moduls Echtzeitsysteme unter Berücksichtigung von Betriebssystemen und Spracheigenschaften entwerfen und implementieren, die Komplexität von parallelen Programmen prüfen, kritisch vergleichen und darstellen. Anwendungen für ein sicherheitskritisches Umfeld planen, analysieren und steuern.

METHODENKOMPETENZ

Die Studierenden können nach Abschluss des Moduls Fachleuten gegenüber fachlich adäquat kommunizieren und sicherheitskritische, echtzeitfähige Anwendungen im Team konzipieren und Lösungen, Analysen und Steuerungen implementieren, sowie Verantwortung übernehmen.

PERSONALE UND SOZIALE KOMPETENZ

ÜBERGREIFENDE HANDLUNGSKOMPETENZ

Die Studierenden können nach Abschluss des Moduls Schnittstellen zu anderen Echtzeitkomponenten und sicherheitskritischen Anwendungen spezifizieren und implementieren, bei der Lösung von Aufgaben unter Nutzung weiterer Kompetenzen, wie z.B. Zeitmanagement, Lern- und Arbeitstechniken mithelfen.

LERNEINHEITEN UND INHALTE

LEHR- UND LERNEINHEITENPRÄSENZZEITSELBSTSTUDIUMEchtzeitsysteme3639

- Prozesslehre
- Parallelität
- Synchronisationsmechanismen
- Schritthaltende Verarbeitung
- Echtzeitsystem-Entwicklung
- Echtzeitsprachen
- Echtzeitbetriebssysteme
- Leitsysteme
- Zuverlässigkeit und Sicherheit
- Echtzeitkommunikation (Zeitserver, NTP, PTP, etc.)

Stand vom 01.10.2025 T3ES2101 // Seite 39

LERNEINHEITEN UND INHALTE

LEHR- UND LERNEINHEITEN	PRÄSENZZEIT	SELBSTSTUDIUM
Sicherheitskritische Anwendungen	36	39

- -Harte Echtzeitsysteme -Softwarearchitekturen für sicherheitskritische Systeme
- -Beitriebssysteme für

harte Echtzeitanwendungen -Planung, Entwurf und Entwicklung von Kommunikationssystemen

-Zuverlässigkeit von Softwaresystemen aktueller Anwendungsgebiete Ü

BESONDERHEITEN

VORAUSSETZUNGEN

-

LITERATUR

- Giorgio C Buttazzo: Hard Real-Time Computing Systems: Predictable Scheduling Algorithms and Applications, Springer
- Clifton A. Ericson, II: Concise Encyclopedia of System Safety: Definition of Terms and Concepts, Wiley
- Vera Gebhardt, Gerhard M. Rieger, Jürgen Mottok und Christian Gießelbach: Funktionale Sicherheit nach ISO 26262: Ein Praxisleitfaden zur Umsetzung, dpunkt Verlag
- Josef Börcsök: Funktionale Sicherheit: Grundzüge sicherheitstechnischer Systeme, VDE Verlag
- Leanna Rierson: Developing Safety-Critical Software: A Practical Guide for Aviation Software and Do-178c Compliance, Crc Pr Inc
- Britta Herbig, André Büssing: Informations- und Kommunikationstechnologien im Krankenhaus: Grundlagen, Umsetzung, Chancen und Risiken, Schattauer
- -Lehmann et. al.: Handbuch der Medizinischen Informatik, Hanser Verlag
- -Gevatter, H.-J. (Hrsg.): Handbuch der Mess- und Automatisierungstechnik. Springer Verlag, aktuellste Auflage
- Wörn, H.; Brinkschulte, U.: Echtzeitsysteme. eXamen.press, Springer Verlag, aktuellste Auflage
- Cheng, Albert M. K.: Real-Time Systems. John Wiley & amp; amp; Sons, Inc., aktuellste Auflage

Stand vom 01.10.2025 T3ES2101 // Seite 40

Bussysteme in der Luft- und Raumfahrt (T3ES2102)

Bus Systems

FORMALE ANGABEN ZUM MODUL

MODULNUMMERVERORTUNG IM STUDIENVERLAUFMODULDAUER (SEMESTER)MODULVERANTWORTUNGSPRACHET3ES21022. Studienjahr1Prof. Dr. Karl TrottlerDeutsch

EINGESETZTE LEHRFORMEN

LEHRFORMEN LEHRMETHODEN

Vorlesung, Übung, Labor Lehrvortrag, Diskussion, Gruppenarbeit

EINGESETZTE PRÜFUNGSFORMEN

PRÜFUNGSLEISTUNGPRÜFUNGSUMFANG (IN MINUTEN)BENOTUNGKlausur120ja

WORKLOAD UND ECTS-LEISTUNGSPUNKTE

WORKLOAD INSGESAMT (IN H)DAVON PRÄSENZZEIT (IN H)DAVON SELBSTSTUDIUM (IN H)ECTS-LEISTUNGSPUNKTE15060905

QUALIFIKATIONSZIELE UND KOMPETENZEN

FACHKOMPETENZ

Die Studierenden sind nach Abschluss des Moduls mit den vermittelten Modulinhalten in der Lage, Anforderungen an elektronische Systeme mit integrierten Bussystemen zu analysieren, diese Systeme zu entwerfen und in Hard- und Software zu realisieren.

METHODENKOMPETENZ

Die Studierenden sind mit Abschluss des Moduls in der Lage, für komplexe Praxisanwendungen eine angemessene Methode auszuwählen und anzuwenden. Sie können die Möglichkeiten, sind in der Lage, Handlungsalternativen aufzuzeigen.

PERSONALE UND SOZIALE KOMPETENZ

-

ÜBERGREIFENDE HANDLUNGSKOMPETENZ

Die Studierenden sind mit Abschluss des Moduls in der Lage, die gelernten Methoden der Bussysteme interdisziplinär einzusetzen.

LERNEINHEITEN UND INHALTE

LEHR- UND LERNEINHEITEN	PRÄSENZZEIT	SELBSTSTUDIUM
Bussysteme	60	90

Stand vom 01.10.2025 T3ES2102 // Seite 41

Grundbegriffe

- Das ISO/OSI-Referenzmodell
- Kommunikationsprinzipien
- Protokollprinzipien
- Netzwerktopologien
- Buszugriffsverfahren
- Datensicherung und Fehlerkontrolle

Datenübertragung zwischen digitalen Baugruppen

- Differentielle und massebezogene Übertragung, bidirektionale Übertragung
- Codierung und Taktrückgewinnung, Datensicherung, Parity, Interleaving, Handshake

Protokolle auf Schnittstellen und Bussystemen

- RS232 Schnittstelle als Beispiel für asynchrone Datenübertragung
- Physikalische und logische Adressierung, Blockübertragung, Packaging
- Zugriff zum Medium, Arbitrierung, Collision Detection, Fehlermodellierung, Topologie Adressierung und Vermittlungstechniken

Moderne Bussysteme

- als Gerätenetzwerke (USB)
- als lokale Netzwerke (Ethernet)
- für den industriellen Einsatz (CAN, Real-Time Ethernet, Feldbusse)

Systemlösungen

- in Fahrzeugen (MOST, Flexray, LIN)
- in der Luftfahrt (ARINC 429)

Kurzstreckenfunksysteme

- RFID
- IEEE802.15.4 / ZigBee
- Bluetooth
- WLAN

BESONDERHEITEN

Für ein besseres Verständnis des Stoffs sollten Vorlesungsinhalte im Umfang von bis zu 24 h durch begleitete Simulationen und Laborübungen vertieft werden.

VORAUSSETZUNGEN

LITERATUR

- Dembrowski, K.: Computerschnittstellen und Bussysteme. 2. Auflage, Heidelberg, Hüthig Verlag, 2001
- Zimmermann, W., Schmidgall R.: Bussysteme in der Fahrzeugtechnik. 4. Auflage, Wiesbaden, Vieweg+Teubner, 2010
- Klasen, F., Oestreich V., Volz M.: Industrielle Kommunikation mit Feldbus und Ethernet. Berlin, Offenbach, VDE Verlag, 2010
- Sikora, A.: Wireless LAN. Addison-Wesley, 2001
- Wittgruber, F.: Digitale Schnittstellen und Bussysteme. 2. Auflage, Wiesbaden, Vieweg Verlag, 2002

Stand vom 01.10.2025 T3ES2102 // Seite 42

Aerospace Software Engineering I (T3ES2103)

Aerospace Software-Engineering I

FORMALE ANGABEN ZUM MODUL

MODULNUMMERVERORTUNG IM STUDIENVERLAUFMODULDAUER (SEMESTER)MODULVERANTWORTUNGSPRACHET3ES21032. Studienjahr1Prof. Dr. Karl TrottlerDeutsch

EINGESETZTE LEHRFORMEN

LEHRFORMEN LEHRMETHODEN

Vorlesung, Übung Lehrvortrag, Diskussion, Gruppenarbeit

EINGESETZTE PRÜFUNGSFORMEN

PRÜFUNGSLEISTUNG PRÜFUNGSUMFANG (IN MINUTEN) BENOTUNG

Programmentwurf Siehe Pruefungsordnung ja

WORKLOAD UND ECTS-LEISTUNGSPUNKTE

WORKLOAD INSGESAMT (IN H)

DAVON PRÄSENZZEIT (IN H)

DAVON SELBSTSTUDIUM (IN H)

ECTS-LEISTUNGSPUNKTE

270

96

174

9

QUALIFIKATIONSZIELE UND KOMPETENZEN

FACHKOMPETENZ

Die Studierenden kennen die Grundlagen des Softwareerstellungsprozesses. Sie können eine vorgegebene Problemstellung analysieren und rechnergestützt Lösungen entwerfen, umsetzen, qualitätssichern und dokumentieren. Sie kennen die

Methoden der jeweiligen Projektphasen und können sie anwenden. Sie können Lösungsvorschläge für ein gegebenes Problem konkurrierend bewerten und korrigierende Anpassungen vornehmen.

METHODENKOMPETENZ

Die Studierenden können sich mit Fachvertretern über Problemanalysen und Lösungsvorschläge, sowie über die Zusammenhänge der einzelnen Entwicklungsphasen austauschen. Sie können einfache Softwareprojekte autonom entwickeln oder bei komplexen Projekten effektiv in einem Team mitwirken. Sie können ihre Entwürfe und Lösungen präsentieren und begründen. In der Diskussion im Team können sie sich kritisch mit verschiedenen Sichtweisen auseinandersetzen und diese bewerten.

PERSONALE UND SOZIALE KOMPETENZ

Die Studierenden können nach Abschluss des Moduls sowohl eigenständig als auch im Team zielorientiert und nachhaltig handeln.

ÜBERGREIFENDE HANDLUNGSKOMPETENZ

Die Studierenden können sich selbständig in Werkzeuge einarbeiten. Sie verbinden den Softwareentwicklungsprozess mit Techniken des Projektmanagement und beachten während des Projekts Zeit- und Kostenfaktoren. Sie kennen die ersten Anforderungen aus dem Aerospace Umfeld bezogen auf die Software-Entwicklung.

LERNEINHEITEN UND INHALTE

LEHR- UND LERNEINHEITEN	PRÄSENZZEIT	SELBSTSTUDIUM
Aerospace Software-Engineering 1	96	174

Stand vom 01.10.2025 T3ES2103 // Seite 43

- Vorgehensmodelle
- Phasen des SW-Engineering und deren Zusammenhänge
- Lastenheft und Pflichtenheft, Anwendungsfälle
- Software-Planung
- Analyse- und Entwurfsmodelle (z.B. Modellierungstechniken von UML)
- Softwarearchitekturen, Schnittstellenentwurf
- Coderichtlinien (z.B. MISRA) und Codequalität: Reviewing und Testplanung, -durchführung und –bewertung
- Grundlagen der Safety Betrachtung in der Aerospace SW Entwicklung (ARP4754A/RTCA/D0-178C)
- Continuous Integration
- Versionsverwaltung
- Betrieb und Wartung
- Phasenspezifisch werden verschiedene Arten der Dokumentation behandelt
- $Durchführung\ eines\ konkreten\ Software entwicklungsprojektes\ in\ Projektteams\ mittlerer\ Gr\"{o}ße$

(z.B. eine Web Service / Web App, eine stand-alone Anwendung oder eine Steuerung)

BESONDERHEITEN

Die einzelnen Inhalte der Lehrveranstaltung sollen anhand eines Projektes vertieft werden. In den einzelnen Projektphasen soll auf den Einsatz von geeigneten Methoden, die Dokumentation sowie die Qualitätssicherung eingegangen werden. Geeignete Werkzeuge sollen zum Einsatz kommen. Bei den gruppenorientierten Laborübungen werden außerfachliche Qualifikationen geübt und (Teil-) Ergebnisse präsentiert. Dieses Modul beinhaltet zusätzlich bis zu 24h begleitetes Selbststudium in Form von Übungsstunden, Laboren oder Projekten. Hierbei werden Übungsaufgaben und/oder vertiefende Aufgabenstellungen von den Studierenden bearbeitet.

VORAUSSETZUNGEN

LITERATUR

- Helmut Balzert: Lehrbuch der Softwaretechnik: Entwurf, Implementierung, Installation und Betrieb, Spektrum akademischer Verlag
- Helmut Balzert: Lehrbuch der Softwaretechnik: Softwaremanagement, Spektrum akademischer Verlag
- Ian Sommerville: Software Engineering, Pearson Studium
- Peter Liggesmeyer: Software Qualität: Testen, Analysieren und Verifizieren von Software, Spektrum Akademischer Verlag
- Chris Rupp: Requirements-Engineering und -Management: Aus der Praxis von klassisch bis agil, Carl Hanser Verlag GmbH & Co. KG
- RTCA DO-178C: Software Considerations in Airborne Systems. RTCA Inc. 2011.

Stand vom 01.10.2025 T3ES2103 // Seite 44

Vertiefung Programmieren (T3ES2104)

Specialisation in Programming

FORMALE ANGABEN ZUM MODUL

MODULNUMMERVERORTUNG IM STUDIENVERLAUFMODULDAUER (SEMESTER)MODULVERANTWORTUNGSPRACHET3ES21042. Studienjahr2Prof. Dr. Karl TrottlerDeutsch

EINGESETZTE LEHRFORMEN

LEHRFORMEN LEHRMETHODEN

Vorlesung, Übung, Labor Lehrvortrag, Diskussion, Laborarbeit

EINGESETZTE PRÜFUNGSFORMEN

PRÜFUNGSLEISTUNGPRÜFUNGSUMFANG (IN MINUTEN)BENOTUNGProgrammentwurfSiehe Pruefungsordnungja

WORKLOAD UND ECTS-LEISTUNGSPUNKTE

WORKLOAD INSGESAMT (IN H)
DAVON PRÄSENZZEIT (IN H)
DAVON SELBSTSTUDIUM (IN H)
ECTS-LEISTUNGSPUNKTE
78
5

QUALIFIKATIONSZIELE UND KOMPETENZEN

FACHKOMPETENZ

Die Absolventen des Moduls sind in der Lage lauffähige, systemnahe Programme zu erstellen und können kleinere Projektaufgaben konzipieren, entwerfen, umsetzen, dokumentieren und verifizieren.

METHODENKOMPETENZ

Die Studierenden können nach Abschluss des Moduls

- Vorgaben zur Softwareerstellung verstehen und umsetzen
- Strategien zur Umsetzung von Anforderungen in geeignete Architekturen und Strukturen entwerfen
- Nachweise und Dokumentationen effizient erstellen

PERSONALE UND SOZIALE KOMPETENZ

ÜBERGREIFENDE HANDLUNGSKOMPETENZ

Die Studierenden können nach Abschluss des Moduls

- fachübergreifendes Wissen unter Beachtung ökonomischer Auswirkungen einbringen
- System- und Software-Projektaufgaben bzw. Projekte zur Analyse, Konzeption und Design komplexer elektronischer und informationstechnischer Systeme und Subsysteme übernehmen und durchführen
- das ingenieursmäßige Vorgehen insbesondere auch unter Nutzung informationstechnischer Werkzeuge anwenden
- mit Mitarbeitern, Vorgesetzten, Kunden, Lieferanten und Behörden kommunizieren und erfolgreich zusammenarbeiten

LERNEINHEITEN UND INHALTE

LEHR- UND LERNEINHEITEN	PRÄSENZZEIT	SELBSTSTUDIUM
Vertiefung Programmieren	72	78

Stand vom 01.10.2025 T3ES2104 // Seite 45

- Erstellung von lauffähigen, systemnahen Programmen in funktionalen und objektorientierten Sprachen wie C und C++ / Java nach Designvorgabe gemäß Kodierungsrichtlinien (unter anderem MISRA)
- Nachweise des Tests der Implementierung
- Einhaltung von Vorgaben und Richtlinien
- Systemnahes Programmieren in funktionalen und objekt-orientierten Sprachen, debuggen, kompilieren, laden und Ausführen von systemnahen Programmen auf eingebetteten Systemen
- Beherrschung von Speicherverwaltung und Laufzeitorganisation
- Erstellung, Verwendung und Anbindung von eigenen und fremden Bibliotheken
- Dokumentation und Verifikation der erstellten Programme
- Einhalten und Nachweisführung der Vorgaben und Kodierungsrichtlinien
- Statische und dynamische Verfahren zur Überprüfung der erstellten Programme (Statische Code Analyzer, Profiling der Programme) anwenden, analysieren und die Abweichungen zu begründen und dokumentieren
- Autocoding
- Instrumentierung und Ausführung des erstellten Source Codes, Sammeln und Analyse der Source Code Coverage, Begründung und Dokumentation der Abweichungen

BESONDERHEITEN

Durch praktische Übungsbeispiele und kleinere Projekte im Team soll der Umgang mit und das Wissen über die Anforderungen, die Systemanalyse, den Entwurf, den Test und die Integration vertieft werden. Die Erschließung komplexerer Softwareanforderungen und deren Umsetzung kann durch begleitetes Selbststudium von bis zu 24h vertieft werden.

VORAUSSETZUNGEN

LITERATUR

- Darnell. P. A.; Margolis, P. E.: C. A software Engineering Approach. Springer Verlag Berlin, Heidelberg, New York
- Balzert, H.: Lehrbuch der Software-Technik, Bd. 1 und 2. Spektrum Akademischer Verlag Heidelberg
- Sommerville, I.: Software Engineering. Pearson Studium München
- Myers, G. J.; Pieper, M.: Methodisches Testen von Programmen. Oldenbourg Verlag München, Wien
- Kaner, C.; Falk, J.; Nguyen, H. Q.: Testing Computer Software. John Wiley and Sons New York, London
- Oestereich, B.: Analyse und Design mit UML 2.1: Objektorientierte Softwareentwicklung. Oldenbourg Verlag München, Wien
- Schmidt, D.; Stal, M.; Rohnert, H.; Buschmann, F.: Pattern-orientierte Software-Architektur. dpunkt.verlag Heidelberg
- Cockburn, A.; Dieterle, R.: UseCases effektiv erstellen. Mitp-Verlag Frechen

Stand vom 01.10.2025 T3ES2104 // Seite 46

Elektrische und elektronische Systeme (T3ES3101)

Electrical and Electronic Systems

FORMALE ANGABEN ZUM MODUL

MODULNUMMERVERORTUNG IM STUDIENVERLAUFMODULDAUER (SEMESTER)MODULVERANTWORTUNGSPRACHET3ES31013. Studienjahr1Prof. Dr. Karl TrottlerDeutsch/Englisch

EINGESETZTE LEHRFORMEN

 LEHRFORMEN
 LEHRMETHODEN

 Vorlesung, Übung
 Lehrvortrag, Diskussion, Gruppenarbeit

EINGESETZTE PRÜFUNGSFORMEN

PRÜFUNGSLEISTUNGPRÜFUNGSUMFANG (IN MINUTEN)BENOTUNGKlausur120ja

WORKLOAD UND ECTS-LEISTUNGSPUNKTE

WORKLOAD INSGESAMT (IN H)DAVON PRÄSENZZEIT (IN H)DAVON SELBSTSTUDIUM (IN H)ECTS-LEISTUNGSPUNKTE15060905

QUALIFIKATIONSZIELE UND KOMPETENZEN

FACHKOMPETENZ

Die Studierenden können nach Abschluss des Moduls

- Grundkenntnisse aus den Bereichen Leistungselektronik und Leistungsverteilung nutzen und diese auf Problemstellungen in der Luft- und Raumfahrttechnik anwenden.
- das Fachwissen anwenden, um technische Lösungen in ihren speziellen Arbeitsfeldern der Luft- und Raumfahrttechnik zu entwickeln und zu implementieren, deren Auswirkungen zu erkennen und zu bewerten.

METHODENKOMPETENZ

Die Studierenden können nach Abschluss des Moduls

- Aufgaben beschreiben, analysieren und verschiedene Lösungen hierfür selbständig entwickeln und die Verantwortung dafür übernehmen.
- Informationen, Annahmen und Begründungen über Produkte, Prozesse aus verschiedenen Quellen sammeln und nach technischen sowie wirtschaftlichen Gesichtspunkten bewerten.
- die Grenzen und Unsicherheiten des eigenen Wissens und der Fähigkeiten erkennen.

PERSONALE UND SOZIALE KOMPETENZ

ÜBERGREIFENDE HANDLUNGSKOMPETENZ

Die Studierenden können nach Abschluss des Moduls

- technische Literatur und andere Informationsquellen effektiv nutzen, um ihr Wissen und ihre Kompetenzen in dem Fachgebiet zu aktualisieren.
- fachübergreifendes Wissen unter Beachtung technischer und ökonomischer Auswirkungen einbringen.
- motorische Antriebe und die dazu notwendige Leistungselektronik unter Beachtung der Zulassbarkeit derselben spezifizieren und auslegen.
- das ingenieurmäßige Vorgehen insbesondere z.B. unter Nutzung informationstechnischer Werkzeuge und Simulationen anwenden.

LERNEINHEITEN UND INHALTE

LEHR- UND LERNEINHEITEN	PRÄSENZZEIT	SELBSTSTUDIUM
Motorische Antriebe, Leistungselektronik	36	64

Stand vom 01.10.2025 T3ES3101 // Seite 47

Motorische Antriebe

- Antriebstechnische Aufgabenstellungen und Grundlagen
- Grundprinzipien der elektrischen Maschinen
- Bauformen: Gleichstrommaschine, Asynchronmaschine, Synchronmotor
- Steuerung von Motoren durch leistungselektronische Stellglieder
- Elektronisch gesteuerte Motoren: Schrittmotor, Brushless DC, 'Switched Reluctance' Motoren
- Spezielle Anforderung der Luft- und Raumfahrttechnik an Antriebsysteme und Vorstellung von Systemlösungen

Leistungselektronik

- Grundprinzipien der Leistungselektronik, Grundschaltungen für Gleichrichter, Wechselrichter,

Inverter und Konverter

- Elektrische Bauteile der Leistungselektronik, Kennlinien und dynamisches Verhalten
- Netzgeführte und selbstgeführte Schaltungen
- Mehrquadrantenbetrieb
- Schutz von leistungselektronischen Schaltungen
- Simulation von Schaltungen der Leistungselektronik, Mittelwertmodelle
- Grundlagen der Regelung von Antrieben (Stromregelung, Drehzahlregelung)
- Messtechnik an Antrieben

Power Supply, Power Distribution

24

26

Power Supply, Power Distribution:

Stromversorgung

- DC-Generatoren
- Batterien
- Wechselstromnetz
- Konverter-Einheiten
- Bodenstromversorgung
- Messinstrumente, Warnungen Anzeigen und Beleuchtung

Stromverteilung

- Stromverteilung
- Schaltkreis-Kontrolleinheiten
- Schaltkreis-Schutzeinrichtungen
- Klassische Stromverbraucher eines Fluggerätes
- Auslegung und Energiebilanz eine Bordnetzes

BESONDERHEITEN

An einer praxisnahen antriebstechnischen Aufgabenstellung (z.B. Positionierantrieb mit bürstenlosem Gleichstrommotor) werden die einzelnen Themen, z.B. antriebstechnische Grundlagen, Motorkennlinien, Auslegung des Stellgliedes (Leistungselektronik), dynamisches Verhalten, Reglerauslegung, Stabilität des Antriebs, Messtechnik, EMV-Verhalten, Netzrückwirkungen behandelt. Durch diesen roten Faden soll der Zusammenhang der behandelten Themen verdeutlicht werden. Neben dem Verständnis der Grundlagen wird auch der Blick auf die Systemaspekte erreicht.

VORAUSSETZUNGEN

LITERATUR

- Basso. C.R.: Switch-Mode Power Supplies, McGraw-Hill Professional
- Design Guidance for Aircraft Electrical Power Systems. ARINC Report 609, Aeronautical Radio, Inc.
- Lenk, R.: Practical Design of Power Supplies, New York, London: John Wiley and Sons

Motorische Antriebe

- Riefenstahl, U.: Elektrische Antriebstechnik. Vieweg-Teubner Verlag Wiesbaden
- Fischer, R.: Elektrische Maschinen. Carl Hanser Verlag München
- Schlienz, U.: Schaltnetzteile und ihre Peripherie. Vieweg-Teubner Verlag Wiesbaden
- Mohan, N.; Undeland, T. M.; Robbins, W. P.: Power Electronics, Converters, Applications and Design. John Wiley and Sons New York, London

Stand vom 01.10.2025 T3ES3101 // Seite 48

Aerospace Software Engineering II (T3ES3102)

Aerospace Software-Engineering II

FORMALE ANGABEN ZUM MODUL

MODULNUMMER	VERORTUNG IM STUDIENVERLAUF	MODULDAUER (SEMESTER)	MODULVERANTWORTUNG	SPRACHE
T3ES3102	3. Studienjahr	1	Prof. Dr. Karl Trottler	Deutsch

EINGESETZTE LEHRFORMEN

LEHRFORMEN	LEHRMETHODEN
Vorlesung, Übung	Lehrvortrag, Diskussion, Gruppenarbeit

EINGESETZTE PRÜFUNGSFORMEN

PRÜFUNGSLEISTUNG	PRÜFUNGSUMFANG (IN MINUTEN)	BENOTUNG
Programmentwurf	Siehe Pruefungsordnung	ja

WORKLOAD UND ECTS-LEISTUNGSPUNKTE

WORKLOAD INSGESAMT (IN H)	DAVON PRÄSENZZEIT (IN H)	DAVON SELBSTSTUDIUM (IN H)	ECTS-LEISTUNGSPUNKTE
150	48	102	5

QUALIFIKATIONSZIELE UND KOMPETENZEN

FACHKOMPETENZ

Die Studierenden sind in der Lage, komplexe Problemstellungen aus der Praxis so zu analysieren und aufzuarbeiten. Sie gewinnen die für die Lösung relevanten Informationen, können eine geeignete Softwarearchitektur mit relevanten Techniken entwickeln und nach aktuellen Verfahren und Standards entsprechend den Aerospace-Richtlinien zertifizieren.

METHODENKOMPETENZ

Die Studierenden sind mit Abschluss des Moduls in der Lage, für komplexe Praxisanwendungen eine angemessene Methode auszuwählen und anzuwenden. So können die Möglichkeiten, Praktikabilität und Grenzen der eingesetzten Methode einschätzen und sind in der Lage, Handlungsalternativen aufzuzeigen und technisch sowie wirtschaftlich zu bewerten.

PERSONALE UND SOZIALE KOMPETENZ

Die Studierenden sind sich Ihrer Rolle und Verantwortung im Unternehmen bewusst. Sie können technische, theoretische und wirtschaftliche Fragestellungen gegeneinander abwiegen und lösungsorientiert umsetzen.

ÜBERGREIFENDE HANDLUNGSKOMPETENZ

Die Studierenden haben gelernt, sich schnell in neuen Situationen zurechtzufinden und sich in neue Aufgaben und Teams zu integrieren. Die Studierenden überzeugen als selbstständig denkende und verantwortlich handelnde Persönlichkeiten mit kritischer Urteilsfähigkeit. Sie zeichnen sich aus durch fundiertes fachliches Wissen, Verständnis für übergreifende Zusammenhänge sowie die Fähigkeit, theoretisches Wissen in die Praxis zu übertragen. Sie lösen Probleme im beruflichen Aerospace Umfeld methodensicher und zielgerichtet und handeln dabei teamorientiert.

LERNEINHEITEN UND INHALTE

LEHR- UND LERNEINHEITEN	PRÄSENZZEIT	SELBSTSTUDIUM
Aerospace Software-Engineering 2	48	102

Stand vom 01.10,2025 T3ES3102 // Seite 49

- Unified Process mit Phasen- und Prozesskomponenten
- Anwendungsfälle
- Entwurfsmuster
- Refactoring und Refactorings
- Design-Heuristiken und –Regeln
- Methoden der Softwarequalitätssicherung
- Requirements Engineering
- Usability/SW-Ergonomie
- SW Management (z.B. ITIL)
- Vertiefung der Safety Betrachtungen in der Aerospace SW Entwicklung (ARP4754A;

RTCA-D0/178C)

- Verschiedene Kritikalitäts-Level (Avionik: A bis D)
- -> Auswirkungen auf Design / Requirements
- -> Auswirkungen auf Test / Code Coverage / Analysen
- Software Erosion

BESONDERHEITEN

Bei den Laborübungen werden außerfachliche Qualifikationen geübt und Ergebnisse präsentiert. Dieses Modul beinhaltet zusätzlich bis zu 24h begleitetes Selbststudium in Form von Übungsstunden, Laboren oder Projekten. Hierbei werden Übungsaufgaben und/oder vertiefende Aufgabenstellungen von den Studierenden bearbeitet.

VORAUSSETZUNGEN

LITERATUR

- Martin Fowler, Refactoring: Improving the Design of Existing Code, Addison-Wesley
- Erich Gamma, Richard Helm, Ralph Johnson und John Vlissides, Design Patterns, Addison-Wesley
- Ivar Jacobson, Magnus Christerson, Patrik Jonsson und ITIL Service Lifecycle Publication Suite: German Translation, TSO Verlag
- Pohl/Rupp. Basiswissen Requirements Engineering: Aus- und Weiterbildung nach IREB-Standard zum Certified Professional for Requirements Engineering Foundation Level, dpunkt.verlag GmbH
- Nielsen. Usability Engineering (Interactive Technologies), Morgan Kaufmann
- Richter und Flückiger. Usability Engineering kompakt: Benutzbare Produkte gezielt entwickeln (IT kompakt) , Springer Vieweg
- RTCA DO-178C: Software Considerations in Airborne Systems. RTCA Inc. 2011.

Stand vom 01.10.2025 T3ES3102 // Seite 50 Studienbereich Technik // School of Engineering Embedded Systems // Embedded Systems Aerospace Engineering // Aerospace Engineering **FRIEDRICHSHAFEN**

Modellbasierter Systementwurf in der Luft- und Raumfahrttechnik (T3ES3103)

Model Based System Design for Aerospace Applications

$M \in \Delta MC$	· ADENI	711RA RA	

VERORTUNG IM STUDIENVERLAUF MODULDAUER (SEMESTER) MODULVERANTWORTUNG SPRACHE Deutsch/Englisch T3ES3103 3. Studienjahr Prof. Dr. Karl Trottler

EINGESETZTE LEHRFORMEN

MODULNUMMER

LEHRFORMEN LEHRMETHODEN Vorlesung, Übung, Labor Lehrvortrag, Diskussion, Laborarbeit

EINGESETZTE PRÜFUNGSFORMEN

PRÜFUNGSUMFANG (IN MINUTEN) BENOTUNG PRÜFUNGSLEISTUNG Kombinierte Prüfung - Klausur 40 % und Laborarbeit mit Ausarbeitung 60 % Siehe Pruefungsordnung ja

WORKLOAD UND ECTS-LEISTUNGSPUNKTE

WORKLOAD INSGESAMT (IN H) DAVON PRÄSENZZEIT (IN H) DAVON SELBSTSTUDIUM (IN H) ECTS-LEISTUNGSPUNKTE 72 150 78

Stand vom 01.10.2025 T3ES3103 // Seite 51

QUALIFIKATIONSZIELE UND KOMPETENZEN

FACHKOMPETENZ

Die Studierenden können nach Abschluss des Moduls

- unterschiedliche modellbasierte Methoden anwenden
- den ausgewählten methodischen Ansatz mit einer Toolkette umsetzen
- die Auswirkung des Einsatzes eines Tools zur Modellierung bewerten
- das Fachwissen nutzen und auf Problemstellungen des System Engineerings für elektronische Systeme und Sub-Systeme in der Luft- und Raumfahrt und der Automobilbranche anwenden
- die einschlägigen System- und Software-Normen und Industriestandards für die Modellierungsansätze anwenden

METHODENKOMPETENZ

Die Studierenden können nach Abschluss des Moduls

- Problemstellungen analysieren und in einen geeigneten Modellierungsansatz überführen
- aufgrund der Kenntnis vieler der wesentlichen Modellierungsmethoden die rRrichtige für das bestehende Problem bzw. die /Aufgabenstellung auswählen
- die Auswahl des Modellder Modellierungsmethode begründen
- ein System und dessen Schnittstellen modellieren
- die funktionalen Anforderungen an das System festlegen (definieren) und ein Spezifikationsmodell erstellen.
- zwischen einem Spezifikations- und einem Design-Modell unterscheiden
- den Übergang eines "System"-Modells in ein "Software"-Modell zulassungskonform begleiten
- nicht-funktionale Anforderungen an das System identifizieren und in das Modell einfügen

komplexe Anforderungen hinsichtlich Safety und Security identifizieren, analysieren und modellieren

- das Modell in Sub-Artefakte (Komponenten) und Schnittstellen der Sub-Artefakte zerlegen (Dekomposition des Modells)
- Modelle manuell und/oder automatisch (toolgestützt) validieren. Bei automatischer Validierung wird die Qualifizierung des Tools sichergestellt. (Validierung bedeutet: Validierung des Modell ggü. textuellen Anforderungen und Validierung zwischen verschiedenen Versionen der Modelle (z. B. zwischen Spezifikations- und Design-Modell))
- eineindeutige Modelle erstellen, um den geforderten Determinismus zu unterstützen; z.B. durch Definition einer "Modeling Library" und eines "Modeling Standards"
- die Modelle auf die vorgegebene Aufgabenstellung beschränken
- Modelle unter Konfigurationskontrolle nehmen

PERSONALE UND SOZIALE KOMPETENZ

Offenheit für Ideen der Modellierung entwickeln

ÜBERGREIFENDE HANDLUNGSKOMPETENZ

Die Studierenden können nach Abschluss des Moduls

- ihre gewählte Modellvariante begründen und erklären
- technische Literatur und andere Informationsquellen effektiv nutzen und ihre Kompetenzen auf den Gebieten der Modellierung von Systemen und Software für elektronische Systeme und Subsysteme erweitern und aktualisieren
- fachübergreifendes Wissen unter Beachtung ökonomischer Auswirkungen einbringen (z.B. durch die Differenzierung zwischen Spezifikations- und Design-Modell die IP Rechte wahren)
- System- und Software- Projektaufgaben bzw. Projekte zur Analyse, Konzeption und Design komplexer elektronischer Systeme und Subsysteme übernehmen und durchführen
- $das ingenieurs m\"{a} \\ \emph{Sige Vorgehen ins besondere auch unter Nutzung information stechnischer Werkzeuge anwenden}$
- mit Mitarbeitenden, Vorgesetzten, Kund*innen, Lieferanten und Behörden kommunizieren und erfolgreich zusammenarbeiten

LERNEINHEITEN UND INHALTE

LERNEIMHEITEN OND INHAELE		
LEHR- UND LERNEINHEITEN	PRÄSENZZEIT	SELBSTSTUDIUM
Modellbasierter Systementwurf in der Luft- und Raumfahrttechnik	72	78

Stand vom 01.10.2025 T3ES3103 // Seite 52

- Definition der Begriffe (Model Based Development, Model Driven Architecture, usw.) [Theorie]
- Übersicht, Vorteile, Nachteile der Modellierungsmethoden (Data Flow, Control Flow, State Flow, Statemachines, etc.) (Theorie)
- Übersicht, Vorteile, Nachteile Modellierungssprachen (DSML, SYSML, UML) (Theorie)

Übersicht, Vorteile, Nachteile Modellierungsmethodologien: (SYSMOD, ARCADIA) (Theorie)

- Gegenüberstellung von Modellierungssprachen, Methoden, Methodologien,
- Modellierungstools (Matlab, Papyrus, Capella, Scade, Eclipse Modelling Framework) (Theorie)
- Vorgehensweise von der Problemstellung zur Problemlösung mittels Modellierungsmethoden, -sprachen, -tools (Theorie, Labor)
- Schichten (Verfeinerungen) des Systementwurfs (Theorie, Labor)]

Sichten (Viewpoints) auf ein Modell (Diagramm, Tabelle, Baum, Struktur, ...) (Theorie, Labor)

- Analyse, Validierung, Verifikation, Simulation von Modellen (Theorie, Labor)

Validierung von Anforderungen mit einem Modell (Theorie, Labor)

- Methoden zur Identifizierung von Anforderungen / Annahmen in einem Modell (Theorie, Labor)
- Erstellen von der Traceability zwischen Modellelementen und Anforderungen (Theorie, Labor)
- Konfigurationsmanagement und Änderungsnachverfolgung in einem Modell (Theorie, Labor)
- Beispiele für Anwendungen in der Flugzeugentwicklung (Theorie, Labor):

Models for functional decomposition and dependencies visualisation:

- Example: architecture models (aircraft/multi-systems/systems/equipment)
- Tool example: tools based on formal language SysML, e.g. MagicDraw

Models for state charts and sequence

- Example: eCIDS
- Tool example: tools based on formal language SysML, e.g. IBM Rhapsody

Models for software generation

- Example: Flight control, Flight Warning, Cockpit Display, Cabin Pressure Control
- Tool example: either derived from formal languages (UML) or from simulation (Scade, Simulink)

Models for dynamic controls

- Example: Flight control, Flight Warning, Cockpit Display, Cabin Pressure Control
- Tool example: Scade, Simulink

Models for dynamic physics

- Example: all systems with flows, fluids, thermodynamics, vibrations... requesting small and/or variable simulation step
- Tool example: Dymola, AmeSim, finite elements tools (e.g. Ansys)

Models for RAMS (Reliability, Availability, Maintainability, safety)

- Example: model from failure injection to cockpit effects

Models for Graphical User Interface

- Example: Human/Machine interface

BESONDERHEITEN

VORAUSSETZUNGEN

Stand vom 01.10.2025 T3ES3103 // Seite 53

LITERATUR

- Kecher, C., Salvanos, A.: UML 2.5: Das umfassende Handbuch inkl. DIN A2-Poster mit allen Diagrammtypen, Bonn: Rheinwerk Verlag
- Weilkiens, T.: Systems Engineering mit SysML/UML, Dpunkt Verlag
- Weilkiens, T.: SYSMOD The Systems Modeling Toolbox Pragmatic MBSE with SysML, Taschenbuch MBSEU4
 Radomyselski, A: SysML/SYSMOD in der Praxis: Modellierung, Analyse und Design an einem praktischen Beispiel, VDM Verlag
- Gajski, D.D. et al.: Embedded System Design: Modeling, Synthesis and Verification, Springer Verlag
- Kordon, F.: Embedded Systems: Analysis and Modeling with SysML, UML and AADL, New York: Wiley Verlag
- Völter, M.: DSL Engineering: Designing, Implementing and Using Domain-Specific Languages, CreateSpace Independent Publishing
- RTCA DO-331: Model-Based Development and Verification Supplement to DO-178C and DO-278A
- SAE ARP4754A/B
- Rauscher et al.: Permanente geometrische Digitalisierung der Flugzeugkabine zur Änderungsnachverfolgung. Deutscher Luft- und Raumfahrtkongress 2020

Stand vom 01.10.2025 T3ES3103 // Seite 54

Hardware-/Software Codesign (T3ES3104)

Hardware-/Software Codesign

FORMALE ANGABEN ZUM MODUL

MODULNUMMERVERORTUNG IM STUDIENVERLAUFMODULDAUER (SEMESTER)MODULVERANTWORTUNGSPRACHET3ES31043. Studienjahr1Prof. Dr. Karl TrottlerDeutsch

EINGESETZTE LEHRFORMEN

LEHRFORMENLEHRMETHODENVorlesung, Übung, LaborLehrvortrag, Diskussion, Gruppenarbeit

EINGESETZTE PRÜFUNGSFORMEN

PRÜFUNGSLEISTUNGPRÜFUNGSUMFANG (IN MINUTEN)BENOTUNGKlausur120ja

WORKLOAD UND ECTS-LEISTUNGSPUNKTE

WORKLOAD INSGESAMT (IN H)DAVON PRÄSENZZEIT (IN H)DAVON SELBSTSTUDIUM (IN H)ECTS-LEISTUNGSPUNKTE15060905

QUALIFIKATIONSZIELE UND KOMPETENZEN

FACHKOMPETENZ

Die Studierenden können nach Abschluss des Moduls

- Embedded Systeme auf der Basis von Mikroprozessoren und FPGAs für Standardfälle der Praxis entwickeln
- die Aufgabenstellung aus der Praxis mit Randbedingungen analysieren
- das hybride Gesamtsystem entwerfen implementieren und testen

METHODENKOMPETENZ

Die Studierenden können nach Abschluss des Moduls

- für weitgehend standardisierte Anwendungsfälle in der Praxis die Methoden auswählen und anwenden
- die Stärken und Schwächen von Mikroprozessoren und FPGAs in ihrem beruflichen Anwendungsfeld einordnen und diese in konkreten Handlungssituationen gegeneinander abwägen

PERSONALE UND SOZIALE KOMPETENZ

Die Studierenden können nach Abschluss des Moduls sowohl eigenständig als auch im Team zielorientiert und nachhaltig handeln

ÜBERGREIFENDE HANDLUNGSKOMPETENZ

Die Studierenden können nach Abschluss des Moduls

- Projektaufgaben bzw. Projekte zur Analyse, Konzeption und Entwurf von embedded Systemen übernehmen und durchführen
- das ingenieursmäßige Vorgehen insbesondere auch unter Nutzung informationstechnischer Werkzeuge anwenden
- mit Mitarbeitern, Vorgesetzten, Kunden, Lieferanten und Behörden kommunizieren und erfolgreich zusammenarbeiten

I FRNFINHFITEN UND INHALTE

LEHR- UND LERNEINHEITEN	PRÄSENZZEIT	SELBSTSTUDIUM
Hardware-/Software Codesign	60	90

Stand vom 01.10.2025 T3ES3104 // Seite 55

LERNEINHEITEN UND INHALTE

LEHR- UND LERNEINHEITEN PRÄSENZZEIT SELBSTSTUDIUM

Einführung Eingebettete Systeme

- Mikroprozessoren
- FPGAs
- Verteilte Systeme

Entwicklungs-Prozesse

Vergleichende Entwicklung

- Hardware
- Rechnerarchitektur
- Rechenmaschinen
- Software
- Implementierungsprozess
- Grundelemente
- Fallstudie

Auswahlkriterien

Trends

BESONDERHEITEN

-

VORAUSSETZUNGEN

-

LITERATUR

- Gessler, R.: Entwicklung Eingebetteter Systeme. Springer Vieweg, 2014
- Gessler, R.: Mahr, T.: Hardware-Software-Codesign. Vieweg+Teubner, 2007
- Lacamera, D.: Embedded Systems Architecture. Packt Publishing, 2018
- Noergaard, T.: Embedded Systems Architecture. Newnes, 2013

Stand vom 01.10.2025 T3ES3104 // Seite 56

FPGA und VHDL-Programmierung (T3ES9000)

FPGA and VHDL Programming

FORMALE ANGABEN ZUM MODUL

MODULNUMMERVERORTUNG IM STUDIENVERLAUFMODULDAUER (SEMESTER)MODULVERANTWORTUNGSPRACHET3ES90002. Studienjahr1Prof. Dr. Karl TrottlerDeutsch

EINGESETZTE LEHRFORMEN

LEHRFORMEN LEHRMETHODEN

Vorlesung, Übung, Labor Lehrvortrag, Diskussion, Gruppenarbeit

EINGESETZTE PRÜFUNGSFORMEN

PRÜFUNGSLEISTUNGPRÜFUNGSUMFANG (IN MINUTEN)BENOTUNGProgrammentwurf oder Kombinierte Prüfung (Klausur < 50 % und
Programmentwurf)Siehe Pruefungsordnungja

WORKLOAD UND ECTS-LEISTUNGSPUNKTE

WORKLOAD INSGESAMT (IN H)DAVON PRÄSENZZEIT (IN H)DAVON SELBSTSTUDIUM (IN H)ECTS-LEISTUNGSPUNKTE15060905

QUALIFIKATIONSZIELE UND KOMPETENZEN

FACHKOMPETENZ

Die Studierenden können nach Abschluss des Moduls

- digitale Schaltungen mittels FPGA und VHDL für Standardfälle der Praxis entwickeln
- Aufgabenstellungen aus der Praxis mit Randbedingungen analysieren und entwerfen
- die digitalen Schaltungen implementieren und testen

METHODENKOMPETENZ

Die Studierenden können nach Abschluss des Moduls

- für weitgehend standardisierte Anwendungsfälle in der Praxis die Methoden auswählen und anwenden
- die Stärken und Schwächen von FPGA in ihrem beruflichen Anwendungsfeld einordnen und diese in konkreten Handlungssituationen gegeneinander abwägen

PERSONALE UND SOZIALE KOMPETENZ

Die Studierenden können nach Abschluss des Moduls sowohl eigenständig als auch im Team zielorientiert und nachhaltig handeln.

ÜBERGREIFENDE HANDLUNGSKOMPETENZ

Die Studierenden können nach Abschluss des Moduls

- Projektaufgaben bzw. Projekte zur Analyse, Konzeption und Design von embedded Systemen auf der Basis von FPGA übernehmen und durchführen
- das ingenieursmäßige Vorgehen insbesondere auch unter Nutzung informationstechnischer Werkzeuge anwenden
- mit Mitarbeitern, Vorgesetzten, Kunden, Lieferanten und Behörden kommunizieren und erfolgreich zusammenarbeiten

LERNEINHEITEN UND INHALTE

LEHR- UND LERNEINHEITEN	PRÄSENZZEIT	SELBSTSTUDIUM
FPGA und VHDL-Programmierung	60	90

Stand vom 01.10.2025 T3ES9000 // Seite 57

Einführung

Grundlagen der digitalen Schaltungstechnik mit FPGAs

- Schaltnetze (Kombinatorik): Gatter
- Schaltwerke (Sequentielle Logik): Flip-Flops
- Endliche Automaten
- Zeitverhalten

FPGA

- Architektur
- Entwicklungsprozesse

VHDL

- Einführung
- Grundlagen
- Simulation
- Synthese-Modellierung

Beispielhafte Anwendung eines Tools zur Synthese und Analyse von HDL-Designs, z.B. Vivado

Design Suite

Fallstudien: Entwurf ausgewählter Schaltungen

Trends

BESONDERHEITEN

Die theoretischen Inhalte werden durch praktische Übungen und Simulationen im Labor unterstützt. Dieses Modul beinhaltet zusätzlich bis zu 24h begleitetes Lernen in Form von Übungsstunden. Hierbei werden Entwurfsbeispiele zusammen mit den Studierenden erarbeitet.

VORAUSSETZUNGEN

LITERATUR

- Gessler, R.: Entwicklung Eingebetteter Systeme. Springer Vieweg, 2014
- Gessler, R.: Mahr, T.: Hardware-Software-Codesign. Vieweg+Teubner, 2007 Hertwig, A.; Brück, R.: Entwurf digitaler Systeme. Hanser, 2002
- Siemers, Ch.: Hardwaremodellierung. Hanser, 2002

Stand vom 01.10.2025 T3ES9000 // Seite 58

Sensorik und Aktorik (T3ES9003)

Sensors and Actuators

FORMALE ANGABEN ZUM MODUL

MODULNUMMER	VERORTUNG IM STUDIENVERLAUF	MODULDAUER (SEMESTER)	MODULVERANTWORTUNG	SPRACHE
T3ES9003	3. Studienjahr	1	Prof. Dr. Karl Trottler	Deutsch

EINGESETZTE LEHRFORMEN

 LEHRFORMEN
 LEHRMETHODEN

 Vorlesung, Übung, Labor
 Lehrvortrag, Diskussion, Laborarbeit

EINGESETZTE PRÜFUNGSFORMEN

PRÜFUNGSLEISTUNGPRÜFUNGSUMFANG (IN MINUTEN)BENOTUNGKlausur oder Kombinierte Prüfung (Klausur 40 % und Laborarbeit 60 %)120ja

WORKLOAD UND ECTS-LEISTUNGSPUNKTE

WORKLOAD INSGESAMT (IN H)	DAVON PRÄSENZZEIT (IN H)	DAVON SELBSTSTUDIUM (IN H)	ECTS-LEISTUNGSPUNKTE
150	60	90	5

QUALIFIKATIONSZIELE UND KOMPETENZEN

FACHKOMPETENZ

Die Studierenden können nach Abschluss des Moduls

- mit Mess- und Wirkprinzipien umgehen und diese anwenden
- die Prinzipien der Digitalisierung von Sensorsignalen, Auflösung, Rauschen, digitale Aufbereitung, Modellierung und Systemintegration, Prinzipien elektrischer und hydraulischer Stellmotoren, Messverfahren in und an Aktoren bis hin zu regelungstechnischen Grundlagen (Position, Geschwindigkeit, Druck, usw.) anwenden
- die erlernten Prinzipien durch Simulationen in Matlab/Simulink und in praktischen Laborbeispielen weiter vertiefen und ihr Wissen in Aktorik und Sensorik festigen

METHODENKOMPETENZ

Die Studierenden können nach Abschluss des Moduls

- Sensor und Aktorkonzepte bewerten und selbst erstellen
- auf der Basis von Matlab/Simulink und anhand von Labormustern Sensor- und Aktorkonzepte praktisch erproben

PERSONALE UND SOZIALE KOMPETENZ

-

ÜBERGREIFENDE HANDLUNGSKOMPETENZ

Die Studierenden können nach Abschluss des Moduls

- komplexe technische Systeme mit Snesoren und Aktoren konzipieren, geeignete Bauteile auswählen, integrieren und testen
- fachübergreifendes Wissen in der Messtechnik unter Beachtung technischer und ökonomischer Auswirkungen einbringen
- Projektaufgaben bzw. Projekte zur Analyse, Planung und Umsetzung der Aufgabenstellungen übernehmen

LERNEINHEITEN UND INHALTE

LEHR- UND LERNEINHEITEN	PRÄSENZZEIT	SELBSTSTUDIUM
Sensorik und Aktorik	60	90

Stand vom 01.10.2025 T3ES9003 // Seite 59

- Mess- und Wirkprinzipien
- Erfassung von Messgrößen
- Digitalisierung von Sensorwerten (Auflösung, Abtastung, Rauschen, Fehler, digitale Filterung und Aufbereitung, Repräsentanz)
- Aktorprinzipien (hydraulisch, elektrisch. elektro-pneumatisch und Mischformen)
- Smarte Aktoren
- Ansteuerung von Aktoren (PWM, Low-Side-Endstufen, H-Brücken, B6-Brücken)
- Sensoren in Aktoren und Regelschleifen
- Simulationstechnik in Matlab/Simulink
- Laborübungen und Integration von Aktor- und Sensorkonzepten

BESONDERHEITEN

Die Prüfungsdauer bezieht sich auf die Klausur.

VORAUSSETZUNGEN

LITERATUR

- Janocha, H.: Actuators. Springer-Verlag 2004.
- Gevatter, H.-J.: Automatisierungstechnik 1 Meß- und Sensortechnik, Springer 2013.
- Jüttemann, H.: Einführung in das elektrische Messen nichtelektrischer Größen. VDI Verlag Düsseldorf
- Hoffmann, J.: Taschenbuch der Messtechnik. Carl Hanser Verlag München
- Parthier, R.: Messtechnik: Grundlagen und Anwendungen der elektrischen Messtechnik. Vieweg-Teubner Verlag Wiesbaden
- DIN 1319: Grundlagen der Messtechnik
- Schanz, G. W.: Sensoren Fühler der Messtechnik. Hüthig Verlag Heidelberg
- Schießle, E.: Industriesensorik: Automation, Messtechnik und Mechatronik. Vogel Verlag Würzburg
- Moir, I.; Seabridge, A.: Aircraft Systems. John Wiley & Sons, 2008.
- Moir, I.; Seabridge, A.; M. Jukes: Civil Avionics Systems. John Wiley & Sons, 2013.

Stand vom 01.10.2025 T3ES9003 // Seite 60

Signalverarbeitung (T3ES9004)

Signal Processing

FORMALE ANGABEN ZUM MODUL

MODULNUMMERVERORTUNG IM STUDIENVERLAUFMODULDAUER (SEMESTER)MODULVERANTWORTUNGSPRACHET3ES90043. Studienjahr2Prof. Dr. Karl TrottlerDeutsch

EINGESETZTE LEHRFORMEN

 LEHRFORMEN
 LEHRMETHODEN

 Vorlesung, Übung, Labor
 Lehrvortrag, Diskussion, Gruppenarbeit

EINGESETZTE PRÜFUNGSFORMEN

PRÜFUNGSLEISTUNGPRÜFUNGSUMFANG (IN MINUTEN)BENOTUNGKlausur120ja

WORKLOAD UND ECTS-LEISTUNGSPUNKTE

WORKLOAD INSGESAMT (IN H)DAVON PRÄSENZZEIT (IN H)DAVON SELBSTSTUDIUM (IN H)ECTS-LEISTUNGSPUNKTE15084665

QUALIFIKATIONSZIELE UND KOMPETENZEN

FACHKOMPETENZ

Die Studenten können nach Abschluss des Studiums

- mathematische und physikalische Methoden nutzen und diese auf Problemstellungen in der Elektrotechnik in den Gebieten der Nachrichtentechnik anwenden
- Fachwissen der Elektrotechnik und Informationstechnik kompetent anwenden, um technische Lösungen in ihren speziellen Arbeitsfeldern der Elektrotechnik zu entwickeln und zu implementieren, deren Auswirkungen zu erkennen und zu bewerten

METHODENKOMPETENZ

Die Studenten können nach Abschluss des Studiums

- Aufgaben beschreiben, analysieren und verschiedene Lösungen hierfür entwickeln
- Informationen, Annahmen und Begründungen über Produkte, Prozesse aus verschiedenen Quellen sammeln und nach technischen, wirtschaftlichen, sozialen und weiteren Gesichtspunkten bewerten
- die Grenzen und Unsicherheiten des eigenen Wissens und der Fähigkeiten erkennen

PERSONALE UND SOZIALE KOMPETENZ

ÜBERGREIFENDE HANDLUNGSKOMPETENZ

Die Studenten können nach Abschluss des Studiums

- technische Literatur, Kongresse und andere Informationsquellen effektiv nutzen, um lebenslang ihr Wissen und ihre Kompetenzen zu aktualisieren
- in einem Team komplexe Zusammenhänge darlegen, aktiv am Informations- und Ideenaustausch teilnehmen, mit Kritik umgehen und Verantwortung übernehmen
- Projektaufgaben bzw. Projekte in ihrem Tätigkeitsgebiet selbstständig unter Beachtung von Zeit, Kosten, Qualitäts- und Kundenanforderungen übernehmen und durchführen
- ingenieurmäßige Arbeitstechniken insbesondere auch mit informationstechnischer Unterstützung anwenden

LERNEINHEITEN UND INHALTE

LEHR- UND LERNEINHEITEN	PRÄSENZZEIT	SELBSTSTUDIUM
Signalverarbeitung	84	66

Stand vom 01.10.2025 T3ES9004 // Seite 61

Beschreibung stochastischer Signale im Zeit- und Frequenzbereich

Reaktion linearer und zeitinvarianter Systeme auf stochastische Signale

Bedeutung der Übertragungsfunktion zeitkontinuierlicher Übertragungsfunktionen:

- Interpretation von Pol-/Nullstellendiagrammen
- Phasengang und Gruppenlaufzeit
- Entwurf und Simulation einfacher zeitkontinuierlicher Systeme
- Realisierung zeitkontinuierlicher Systeme in Kaskaden- und Parallelform
- Entwurf und Simulation normierter analoger Filter

Grundkonzepte der digitalen Signalverarbeitung:

- Vor- und Nachteile der analogen vs. digitalen Signalverarbeitung
- Abtastung und Quantisierung
- Eigenschaften von AD- und DA-Umsetzern

Beschreibung zeitdiskreter Systeme im Zeit- und Frequenzbereich

Digitale Filter:

- FIR- und IIR-Filter
- Kanonische Strukturen
- Spezielle zeitdiskrete Systeme (z.B. Allpass, minimalphasige und linearphasige Systeme,

bedingt stabile Systeme für die Spektralanalyse)

- Entwurf von IIR Filtern aus Standard-Analogfiltern oder aufgrund von Vorgaben im Zeitbereich (impuls- und sprunginvariante Transformation)
- Entwurf von FIR Filtern mittels Fourier-Approximation

Realisierungsaspekte bei digitalen Filtern:

- Quantisierungsfehler durch begrenzte Wortlänge (Rundungsfehler in den Koeffizienten und bei der

Arithmetik)

- Stabilitätsverhalten bei begrenzter Wortlänge
- Große und kleine Grenzzyklen
- Signalprozessoren, FPGA und ASICs als Komponenten für reale Systeme
- Abtastratenwandlung, Multiratensysteme und Filterbänke

BESONDERHEITEN

Begleitend zur Vorlesung werden Simulationen auf der Basis des Simulationsprogrammes MATLAB/SIMULINK durchgeführt. Das Kapitel Abtastratenreduktion, Filterbänke soll nur grob umrissen werden.

VORAUSSETZUNGEN

LITERATUR

- Meyer, M.: Signalverarbeitung. Vieweg-Teubner Verlag Wiesbaden

- Werner, M.: Digitale Signalverarbeitung mit MATLAB. Vieweg-Teubner Verlag Wiesbaden
- Oppenheim, A. u.a.: Zeitdiskrete Signalverarbeitung. Pearson Studium
- Kammeyer, K.D., Kroschel, K.: Digitale Signalverarbeitung. Vieweg-Teubner Verlag Wiesbaden

Stand vom 01.10.2025 T3ES9004 // Seite 62

Software-/Hardware-Projekt (T3ES9005)

Software-/Hardware Project

FORMALE ANGABEN ZUM MODUL

MODULNUMMERVERORTUNG IM STUDIENVERLAUFMODULDAUER (SEMESTER)MODULVERANTWORTUNGSPRACHET3ES90053. Studienjahr2Prof. Dr. Karl TrottlerDeutsch

EINGESETZTE LEHRFORMEN

LEHRFORMEN LEHRMETHODEN

Vorlesung, Übung, Labor Lehrvortrag, Diskussion, Laborarbeit

EINGESETZTE PRÜFUNGSFORMEN

PRÜFUNGSLEISTUNGPRÜFUNGSUMFANG (IN MINUTEN)BENOTUNGKombinierte Prüfung - Kombinierte PrüfungSiehe Pruefungsordnungja

WORKLOAD UND ECTS-LEISTUNGSPUNKTE

WORKLOAD INSGESAMT (IN H)DAVON PRÄSENZZEIT (IN H)DAVON SELBSTSTUDIUM (IN H)ECTS-LEISTUNGSPUNKTE12096244

QUALIFIKATIONSZIELE UND KOMPETENZEN

FACHKOMPETENZ

- Die Absolventen des Moduls sind in der Lage, Projekte mit einem kompletten Lifecycle eines Hardware- und Software Erstellungsprozesses durchzuführen.
- Sie können Projekte gemäß des V-Models / Agiler Methoden mit Spezifikationen, Designdokumenten, Softwarecode und entsprechenden Verifikationsspezifikationen nach Randbedingungen, geltenden Normen und Vorschriften umsetzen.
- Die Absolventen können die erstellte Software auf die Zielhardware integrieren und anschließend verifizieren.
- Sie können die möglichen, automatisierten Prozessschritte an eine Automatisierungsumgebung anbinden
- Die Absolventen gehen sicher mit Konfigurations- und Change Management Werkzeugen um.

METHODENKOMPETENZ

Die Studierenden haben nach Abschluss des Moduls folgende Methodenkompetenzen

- Praktische Erfahrungen mit Programmieren in funktionalen und objekt-orientierten Sprachen
- Praktische Erfahrungen im gesamten Life Cycle einer Software inklusive Spezifikation, Architektur, Design, Source Code, Hardware-Software Interface und anschließender Verifikation und Dokumentation
- Praktische Erfahrungen mit Konfigurations- und Change Management Werkzeugen
- Praktische Erfahrung in der Benutzung von automatischen Code Generatoren
- Praktische Erfahrungen in Software-Hardwareintegration und Verifikation bis hin zu automatisierter Verifikation

PERSONALE UND SOZIALE KOMPETENZ

ÜBERGREIFENDE HANDLUNGSKOMPETENZ

Die Studierenden können nach Abschluss des Moduls

- Praktische Erfahrungen und Beurteilungsfähigkeit über die einzelnen Schritte der Softwareprodukt Entstehung und Verständnis für die einzelnen Schritte
- Fähigkeit sich mit Ingenieuren auf Augenhöhe fachlich auszutauschen und fachliche Artikel, Bücher und weitere Literatur bezgl. Softwareerstellung zu verstehen und zu bewerten.

LERNEINHEITEN UND INHALTE

LEHR- UND LERNEINHEITEN	PRÄSENZZEIT	SELBSTSTUDIUM
Software-Hardware Projekt	96	24

Stand vom 01.10.2025 T3ES9005 // Seite 63

- Integration und Verifikation der erstellten Software auf der Zielhardware
- Anwendung von automatischen Codegeneratoren und Analysetools im Projekt
- Anbinden von automatisierten Prozessschritten an eine Automatisierungsumgebung (Continuous Integration)
- Umgang mit Konfigurations- und Change Management Werkzeugen (z.B.

ClearCase/ClearQuest, TRAC/Redmine/SVN, Git/GitLab)

- Programmieren in funktionalen und objekt-orientierten Sprachen
- Life Cycle einer Software inklusive Spezifikation, Architektur, Design, Source Code, Hardware-

Software Interface und anschließende Verifikation und Dokumentation

- Benutzung von automatischen Code Generatoren (z.B. Matlab oder SCADE)
- Software-Hardwareintegration und Verifikation
- Praktische Anwendung der Methoden aus dem Hardware-/Software Codesign

BESONDERHEITEN

Durch begleitetes Selbststudium kann das Wissen und die Erfahrung in SW-/HW-Projekten vertieft werden. Auf die Arbeit im Team ist besonderer Wert zu legen. Grundlagen eines modernen Projektmanagments sollen praktisch erprobt werden.

VORAUSSETZUNGEN

_

LITERATUR

- H. W. Wieczorrek, P. Mertens: Management von IT Projekten, Springer
- G. K. Kapur: Project Management for Information, Technology, Business and Certification, Prentice Hall
- H. W. Wieczorrek, P. Mertens: Management von IT Projekten, Springer
- G. K. Kapur: Project Management for Information, Technology, Business and Certification, Prentice Hall
- Peter Liggesmeyer: Software Qualität: Testen, Analysieren und Verifizieren von Software,

Spektrum Akademischer Verlag

- Chris Rupp: Requirements-Engineering und -Management: Aus der Praxis von klassisch bis agil, Carl Hanser Verlag GmbH & Co. KG
- Hachtel, G., Holzbaur, U.: Management für Ingenieure. Vieweg-Teubner Verlag Wiesbaden

Stand vom 01.10.2025 T3ES9005 // Seite 64

Systems Engineering in der Luft- und Raumfahrt (T3ES9010)

Systems Engineering for Aerospace Applications

FORMALE ANGABEN ZUM MODUL

MODULNUMMERVERORTUNG IM STUDIENVERLAUFMODULDAUER (SEMESTER)MODULVERANTWORTUNGSPRACHET3ES90103. Studienjahr1Prof. Dr. Karl TrottlerDeutsch

EINGESETZTE LEHRFORMEN

 LEHRFORMEN
 LEHRMETHODEN

 Vorlesung, Übung
 Lehrvortrag, Diskussion, Fallstudien

EINGESETZTE PRÜFUNGSFORMEN

PRÜFUNGSLEISTUNGPRÜFUNGSUMFANG (IN MINUTEN)BENOTUNGKlausur120ja

WORKLOAD UND ECTS-LEISTUNGSPUNKTE

WORKLOAD INSGESAMT (IN H)
DAVON PRÄSENZZEIT (IN H)
DAVON SELBSTSTUDIUM (IN H)
ECTS-LEISTUNGSPUNKTE
78
5

QUALIFIKATIONSZIELE UND KOMPETENZEN

FACHKOMPETENZ

Die Studierenden können nach Abschluss des Moduls

- Methoden des Systems-Engineerings nutzen und diese auf Problemstellungen des Software-Engineerings in elektronischen Systemen und Subsystemen der Luftund Raumfahrttechnik anwenden
- das Fachwissen auf die Analyse, Konzeption und den Entwurf elektronischer Systeme und Subsysteme anwenden, um Software zu entwickeln und zu implementieren, deren Auswirkungen zu erkennen und zu bewerten
- Software-Engineering Normen und Industriestandards der Luftfahrttechnik für vorgegebene Prozesse anwenden

METHODENKOMPETENZ

Die Studierenden können nach Abschluss des Moduls

- System- und Software Entwicklungs- und Projektaufgaben (inkl. Zulassung) in der Luft- und Raumfahrt beschreiben und analysieren
- Software-Engineering Aufgaben beschreiben, analysieren und verschiedene Lösungen hierfür selbständig entwickeln und die Verantwortung dafür übernehmen
- Unsicherheiten des eigenen Wissens und der Fähigkeiten erkennen

PERSONALE UND SOZIALE KOMPETENZ

ÜBERGREIFENDE HANDLUNGSKOMPETENZ

Die Studierenden können nach Abschluss des Moduls

- technische Literatur, Kongresse und andere Informationsquellen effektiv nutzen, um lebenslang ihr Wissen und ihre Kompetenzen auf den Gebieten des Systemsund Software-Engineerings für elektronische Systeme und Subsysteme der Luft- und Raumfahrttechnik zu aktualisieren
- fachübergreifendes Wissen unter Beachtung ökonomischer Auswirkungen einbringen
- Software Projektaufgaben bzw. Projekte zur Analyse, Konzeption und Design elektronischer Systeme und Subsysteme der Luftfahrt übernehmen und durchführen
- das ingenieursmäßige Vorgehen insbesondere auch unter Nutzung informationstechnischer Werkzeuge anwenden
- mit Mitarbeitern, Vorgesetzten, Kunden, Lieferanten und Behörden kommunizieren und erfolgreich zusammenarbeiten.

LERNEINHEITEN UND INHALTE

LEHR- UND LERNEINHEITEN	PRÄSENZZEIT	SELBSTSTUDIUM
Systems-Engineering in der Luft- undRaumfahrt	72	78

Stand vom 01.10.2025 T3ES9010 // Seite 65

Einführung, Anforderungen, Standard System Entwicklungsprozess in der Luftfahrt

Grundlagen der Fehlertoleranz

- Rekonfigurierbarkeit
- Robustheit
- Fehlererkennung
- Fehlerlokalisierung
- Fehlerisolierung
- Entwurfsfehler-Vermeidung

Qualifikation von Equipment und Systemen (Umwelttests)

System-Elemente

- Sensoren (Redundanzmanagement)
- Aktuatoren (Redundanzmanagement)
- Rechner-Systeme

Sicherheit, Verfügbarkeit, Zuverlässigkeit

- Zulassungsanforderungen
- Anforderungsgenerierung
- Standard-Nachweisverfahren

Diskussion von Beispiel-Systemen

Software-Engineering Normen und Standards in der Luftfahrt

- Normenkontext
- Industrie-Standards
- SW-Entwicklung nach RTCA DO-178C
- Entwicklungsprozesse
- Anforderungen und SW-Verifikation
- Konfigurationsmanagement und Änderungsverfolgung
- Modellbasierte Entwicklung nach RTCA DO-331
- Toolqualifizierung nach RTCA DO-330

SW-Entwicklung für IMA-Systeme

- IMA-Entwicklung nach RTCA DO-297
- ARINC 653 Avionics Application Software Standard Interface

BESONDERHEITEN

Das Modul enthält bis zu 24 h begleitetes Selbststudium in Form von Übungsstunden. Hierbei werden Übungs- und Simulationsaufgaben zusammen mit den Studierenden erarbeitet.

VORAUSSETZUNGEN

LITERATUR

- Spitzer, C. R.: Avionics Handbook. CRC Press Inc. Boca Raton
- Collinson, R. P. G.: Introduction to Avionics Systems. Springer Netherlands
- Moir, I.; Seabridge, A.: Aircraft Systems, John Wiley & Sons
- Systems Engineering Handbook, v2a. Hrsg. International Council on Systems Engineering (INCOSE)
- DO-178C: Software Considerations in Airborne Systems. RTCA Inc. 2011.
- DO-330: Software Tool Qualification Considerations. RTCA Inc. 2011.
- DO-331: Model-Based Development and Verification Supplement to DO-178C and DO-278A. RTCA Inc. 2011.
- DO-297: Integrated Modular Avionics (IMA) Development Guidance and Certification Consid- ARINC 653P0-1: Avionics Application Software Standard Interface, Part 0, Overview of ARINC 653. Aeronautical Radio Inc. 2015.erations. RTCA Inc. 2005.

Stand vom 01.10.2025 T3ES9010 // Seite 66

Funknetze und Car2X (T3ES9011)

Wireless Networks and Car2X

FORMALE ANGABEN ZUM MODUL

MODULNUMMER	VERORTUNG IM STUDIENVERLAUF	MODULDAUER (SEMESTER)	MODULVERANTWORTUNG	SPRACHE
T3ES9011	3. Studienjahr	1	Prof. DrIng. Thomas Kibler	Deutsch

EINGESETZTE LEHRFORMEN

LEHRFORMEN	LEHRMETHODEN
Vorlesung Ühung Lahor	Lehrvortrag Diskussion Fallstudien

EINGESETZTE PRÜFUNGSFORMEN

PRÜFUNGSLEISTUNG	PRÜFUNGSUMFANG (IN MINUTEN)	BENOTUNG
Klausur oder Kombinierte Prüfung	120	ja

WORKLOAD UND ECTS-LEISTUNGSPUNKTE

WORKLOAD INSGESAMT (IN H)	DAVON PRÄSENZZEIT (IN H)	DAVON SELBSTSTUDIUM (IN H)	ECTS-LEISTUNGSPUNKTE
150	60	90	5

QUALIFIKATIONSZIELE UND KOMPETENZEN

FACHKOMPETENZ

Die Studierenden sind in der Lage, komplexe Problemstellungen aus der Praxis so zu analysieren und aufzuarbeiten, dass sie zu diesen entsprechende Aufstellungen und Berechnungen erstellen können. Sie gewinnen die für die Lösung relevanten Informationen, führen die Berechnung selbständig durch und geben kritische Hinweise zur Belastbarkeit ihrer Ergebnisse.

METHODENKOMPETENZ

Die Studierenden sind mit Abschluss des Moduls in der Lage, für komplexe Praxisanwendungen eine angemessene Methode auszuwählen und anzuwenden. So können die Möglichkeiten, Praktikabilität und Grenzen der eingesetzten Methode einschätzen und sind in der Lage, Handlungsalternativen aufzuzeigen.

PERSONALE UND SOZIALE KOMPETENZ

ÜBERGREIFENDE HANDLUNGSKOMPETENZ

Sie zeichnen sich aus durch fundiertes fachliches Wissen, Verständnis für übergreifende Zusammenhänge sowie die Fähigkeit, theoretisches Wissen in die Praxis zu übertragen.

LERNEINHEITEN UND INHALTE

LEHR- UND LERNEINHEITEN	PRÄSENZZEIT	SELBSTSTUDIUM
Hochfrequenztechnik und EMV	30	45

- Wellenausbreitung auf Leitungen und Transformationseigenschaften von Leitungen
- Streuparameter und Streumatrix von Zwei- und n-Toren
- Differentielle Signale und Leitungsführung
- Signalintegrität, Jitter und Clocking
- Wellenausbreitung und AntennenHochfrequenzmesstechnik
- Elektromagnetische Verträglichkeit
- Hochfrequenz-Simulationen
- Labor Elektromagentische Verträglichkeit

Stand vom 01.10.2025 T3ES9011 // Seite 67

LERNEINHEITEN UND INHALTE

LEHR- UND LERNEINHEITEN	PRÄSENZZEIT	SELBSTSTUDIUM
Mobile Fahrzeugnetze und Car2X	30	45

- Mobilfunkkommunikation (Funk-Technologien, u.a. GSM, UMTS, LTE, 5G)
- Drahtlos-Netzwerke im Kraftfahrzeug (WLAN, Bluetooth, proprietäre Technologien und Protokolle)
- Technologien für Car2car und Car2x Kommunikation und deren Anwendungen

BESONDERHEITEN

_

VORAUSSETZUNGEN

-

LITERATUR

- B. Walke: Mobilfunknetze und ihre Protokolle, Teubner.
- M. Sauer: Grundkurs Mobile Kommunikationssysteme, Springer.
- Radu Popescu-Zeletin, Ilja Radusch: Vehicular-2-X Communication: State-of-the-Art and Research in Mobile Vehicular Ad hoc Networks, Springer.
- Meinke, Gundlach: Taschenbuch der Hochfrequenztechnik, 3 Bände, Springer-Verlag
- Voges, E.: Hochfrequenztechnik. Hüthig-Verlag
- Timmermann, C.-C.: Hochfrequenzelektronik mit CAD, Band 1 & 2, Profund Verlag

Stand vom 01.10.2025 T3ES9011 // Seite 68

Bachelorarbeit (T3_3300)

Bachelor Thesis

EORM.	AIEAK	IC V BEN	711M/N	MODIII

 MODULNUMMER
 VERORTUNG IM STUDIENVERLAUF
 MODULDAUER (SEMESTER)
 MODULVERANTWORTUNG
 SPRACHE

 T3_3300
 1
 Prof. Dr.-Ing. Joachim Frech

EINGESETZTE LEHRFORMEN

LEHRFORMEN LEHRMETHODEN
Individualbetreuung Projekt

EINGESETZTE PRÜFUNGSFORMEN

PRÜFUNGSLEISTUNGPRÜFUNGSUMFANG (IN MINUTEN)BENOTUNGBachelor-ArbeitSiehe Pruefungsordnungja

WORKLOAD UND ECTS-LEISTUNGSPUNKTE

WORKLOAD INSGESAMT (IN H)DAVON PRÄSENZZEIT (IN H)DAVON SELBSTSTUDIUM (IN H)ECTS-LEISTUNGSPUNKTE360635412

QUALIFIKATIONSZIELE UND KOMPETENZEN

FACHKOMPETENZ

METHODENKOMPETENZ

-

PERSONALE UND SOZIALE KOMPETENZ

-

ÜBERGREIFENDE HANDLUNGSKOMPETENZ

Die Studierenden erfassen industrielle Problemstellungen in einem breiten Kontext und in realistischer Komplexität. Sie haben ein gutes Verständnis von organisatorischen und inhaltlichen Zusammenhängen sowie von Organisationsstrukturen, Produkten, Verfahren, Maßnahmen, Prozessen, Anforderungen und gesetzlichen Grundlagen. Sie analysieren kritisch, welche Einflussfaktoren zur Lösung des Problems beachtet werden müssen und können beurteilen, inwiefern theoretische Modelle einen Beitrag zur Lösung des Problems leisten können. Die Studierenden können sich selbstständig, nur mit geringer Anleitung in theoretische Grundlagen eines Themengebiets vertiefend einarbeiten und den allgemeinen Stand des Wissens erwerben. Sie können auf der Grundlage von Theorie und Praxis selbstständig Lösungen entwickeln und Alternativen bewerten. Sie sind in der Lage eine wissenschaftliche Arbeit als Teil eines Praxisprojektes effizient zu steuern und wissenschaftlich korrekt und verständlich zu dokumentieren.

Die Studierenden zeichnen sich durch Eigenverantwortung und Tatkraft aus, sie sind auch im Kontext einer globalisierten Arbeitswelt handlungsfähig. Sie weisen eine reflektierte Haltung zu gesellschaftlichen, soziale und ökologischen Implikationen des eigenen Handelns auf.

LERNEINHEITEN UND INHALTE

LEHR- UND LERNEINHEITEN	PRÄSENZZEIT	SELBSTSTUDIUM
Bachelorarbeit	6	354

BESONDERHEITEN

Es wird auf die "Leitlinien für die Bearbeitung und Dokumentation der Module Praxisprojekt I bis III, Studienarbeit und Bachelorarbeit" der Fachkommission Technik der DHBW hingewiesen.

Stand vom 01.10.2025 T3_3300 // Seite 69

VORAUSSETZUNGEN

LITERATUR

Kornmeier, M., Wissenschaftlich schreiben leicht gemacht für Bachelor, Master und Dissertation, Bern

Stand vom 01.10.2025 T3_3300 // Seite 70